Instruction Set Design
Chapter 13: Addressing Modes and Instruction Formats

Joannah Nanjekye

July 31, 2024

Addressing Modes

The address field or fields in a typical instruction format are
relatively small. We would like to be able to reference a large
range of locations in main memory or, for some systems, virtual
memory.

Common addressing techniques:

» Immediate
Direct

Indirect
Register
Register Direct
Displacement
Stack

vVvYVvyVvyVvyy

Notations

A = contents of an address field in the instruction.
R = contents of an address field in the instruction that refers to a register.

EA = actual (effective) address of the location containing the referenced
operand.

(X) = contents of memory location X or register X.

Several approaches are used, so different opcodes will use
different addressing modes. Also, bits in the instruction format
can be used as a mode field.

Immediate Addressing

Instruction
| | Operand |

» Operand is part of the instruction
» Operand = A
» Example SUB 9

» Subtract 9 from the contents of the accumulator
> 9is the operand

» Saves one memory or cache cycle due to no memory
reference

> Affected by the limited word length (instruction sets is small
compared to the word length)

» Used for constants and variable initialization

Direct Addressing

Example: ADD A.

Address field contains address of operand.

Instruction

Memory

Add contents of cell A to accumulator.

Operand

Look in memory at address A for operand.

(b) Direct

Single memory reference to access data.
No additional calculations to work out effective address.

Limited address space.

Indirect Addressing

* The address field refer to the address of a word in memory.

* Memory cell pointed to by address field contains the address
of (pointer to) the operand.

EA=(A)
— Look in A, find address (A) and look there for operand.
Example: ADD (A). [tosnction

— Add contents of cell pointed to
[[Operand |
m]

(c) Indirect

by contents of A to accumulator (AC).

* The disadvantage is that instruction

execution requires two memory references to fetch the operand
(address + value).

Register Addressing

» It is similar to direct addressing. The only difference is that the
address field refers to a register rather than M.M address.

* Limited number of registers.

* No memory access.

* Very fast execution.

* The advantages are: ‘ (d) Register

- Only a small address field is needed in the instruction.
- No time-consuming memory references are required.
* The main disadvantage is very limited address space.

* In modern Processors, multiple registers helps performance.

Indirect Register Addressing

« It 1is analogous to indirect addressing. The only difference is that
the address field refers to a register.

Instruction

| L.

(e) Register indirect

Registers

* Operand is in memory cell pointed to by contents of register R.
» Large address space (2n).
* One fewer memory access than indirect addressing.

Displacement Addressing

“A very powerful mode of addressing that combines the capabilities
of direct addressing and register indirect addressing”.

EA=A + (R)
Instruction

* The value contained in one address |
field (value = A) is used directly.
The other address field, or an
implicit reference refers to
a register (R) whose contents are
added to A to produce the effective
address.

Memory

Registers

(f) Displacement

Displacement Addressing ..

* There are three of the most common uses of displacement
addressing:

- Relative addressing
- Base-register addressing
- Indexing

(a) Relative addressing:

* R =Program counter(PC).

* EA=A+(PC).

* Get operand from A cells from current location pointed to by
PC.

* This share the locality of reference & cache usage.

Displacement Addressing ...

(b) base-register addressing:

The referenced register contains a main memory address, and
the address field contains a displacement from that address.

A holds displacement.
R holds pointer to base address.
The register reference may be explicit or implicit.

(c) Indexing addressing:

The address field references a main memory address, and the
referenced register contains a positive displacement from that
address.

This usage is just the opposite of the interpretation for base-
register addressing.

Displacement Addressing ...

e A=base R = displacement EA=A+R

* The value A is stored in the instruction’s address field, and the
chosen register, called an index register, is initialized to 0.
After each operation, the index register is incremented by 1.

* Some systems automatically do this as part of the same instruc
tion cycle. This is known as autoindexing.

EA=A+(R)
R)—®R) +1

* In some machines, both indirect addressing and indexing are
provided, and it is possible to employ both in the same instruct
ion. There are two possibilities: the indexing is performed
either before or after the indirection.

Displacement Addressing ...

* If indexing is performed after the indirection, it is termed
postindexing

EA=(A)+(R)

* First, the contents of the address field are used to access a me
mory location containing a direct address. This address is then
indexed by the register value.

* With preindexing, the indexing is performed before the

indirection.
EA=(A+®R)

* An address is calculated as with simple indexing. In this case,
however, the calculated address contains not the operand, but
the address of the operand.

Stack Addressing

» A stack is a linear array of locations.

» It is sometimes referred to as a pushdown list
or last-in-first-out queue.

* The top two elements of the stack may be in
processor registers, in which case the stack
pointer references the third element of the

Instruction

stack.

» The stack pointer is maintained in a register.
Thus, references to stack locations in memory
are in fact register indirect addresses.

* The machine instructions need not include a
memory reference but it is (implicitly) on top
of stack.

Summary

Mode Algorithm Principal Ad 2 Principal Disad g
Immediate Operand = A No memory reference Limited operand magnitude
Direct EA = A Simple Limited address space
Indirect EA = (A) Large address space Multiple memory references
Register EA =R No memory reference Limited address space
Register indirect EA = (R) Large address space Extra memory reference
Displacement EA = A + (R) Flexibility Complexity

Stack EA = top of stack No memory reference Limited applicability

Instruction Formats

» The layout of the bits in an instruction set:
» Opcodes
» Operands, implicit or explicit
» Memory address
> Register
» Usually more than one instruction format is used and
usually varies depending on whether its addressing
memory, I/O devices or a register

Instruction Bit Semantics

» Many instruction formats:

» complicates decoding
» Uses more instruction bits (to specify the format)

VAX 11 instruction format
Byte 0 i n

IDpCodeI A/M [\‘)\J | A/M [}\I\' | A/M [N}\; |

operand specifier

register |5 |1 autoinc [8 [r |
disp Alr
Lc [r | half word |
LE [r [word

index |4|rlm|r|dlsplacgm_enﬂ

Instruction Bit Semantics

6 bits Sbits Sbits Sbits 5 bits 6 bits

opcode	rs	rt	rd	sa	funct
opcode	rs	rt	immediate		
_opcode	target				

¢ the opcode tells the machine which format
e so addrl,r2,r3 has

— opcode=0, funct=32, rs=2, rt=3, rd=1, sa=0

— 000000 00010 00011 00001 00000 100000

Instruction Length

Variable: | I ‘

Fixed: | |

[

Hybrid: [

» Variable-length instructions (Intel 80x86, VAX) require
multi-step fetch and decode, but allow for a much more
flexible and compact instruction set

» Fixed-length instructions allow easy fetch and decode, and
simplify pipelining and parallelism

Instruction Length

» Affected by and affects:
» Memory size
» Memory organization
» Bus structure
» CPU complexity
» CPU speed

Longer Instruction Length

» Pros:

» More opecodes

» Operands

» Addressing modes

» Greater address range

> Easier programming
» Cons:

» Waste of space

Expanding Opecodes

» Make some opcodes short, but have a means to provide
longer ones when needed

» When the opcode is short, a lot of bits are left to hold
operands

» |f an instruction has no operands (such as Halt), all the bits
can be used for the opcode

> In between, there are longer opcodes with fewer operands
as well as shorter opcodes with more operands

Example 1

» Consider a machine with 16-bit instructions and 16
registers. And we wish to encode the following instructions:

» 15 instructions with 3 addresses
» 14 instructions with 2 addresses
» 31 instructions with 1 address

» 16 instructions with 0 addresses

» Can we encode this instruction set in 16 bits?

Example 1

0
14

0 240
13 253
0 4064
30 4094
0 65520
15 65535

0000
1110

1111
1111

1111
1111

1111
1111

R1
R1

0000
1101

1110 0000
1111 1110

R2

R2

R1

R1

1111 1111
1111 1111

R3
R3

R2

R2

R1

R1

0000
1111

15 3-address codes

14 2-address codes

31 1-address codes

16 0-address codes

Solution

» The first 15 instructions account for:
15x24x24x2% = 15x2'2 = 61440 bit patterns

» The next 14 instructions account for: 14x24x24 = 15x28 =
3584 bit patterns

» The next 31 instructions account for: 31x2* = 496 bit
patterns

» The last 16 instructions account for 16 bit patterns

> In total we need 61440 + 3584 + 496 + 16 = 65536
different bit patterns

» Having a total of 16 bits we can create 28 = 65536 bit
patterns

We have an exact match with no wasted patterns. So our
instruction set is possible

Example 2

> |s it possible to design an expanding opcode to allow the
following to be encoded with a 12-bit instruction? Assume
a register operand requires 3 bits
» 4 instructions with 3 registers
» 255 instructions with 1 register
> 16 instructions with O register

Solution

>
>
>

The first 4 instructions account for: -
4x23x23x23 = 4x2° = 2048 bit patterns

The next 255 instructions account for: - 255x23 = 2040 bit
patterns

The last 16 instructions account for 16 bit patterns
In total we need 2048 + 2040 + 16 = 4104 bit patterns

With 12 bit instruction we can only have 2'2 = 4096 bit
patterns

Required bit patterns (4104) is more than what we have
(4096), so this instruction set is not possible with only 12

bits

Allocation Bits

Trade-off between opcodes and the power of the addressing
capability. Variable-length opecodes are helpful
» Factors determining the use of addressing bits:

» Number of addressing modes
» Number of operands

> Register vs. memory
Number of register sets

>
» Address range

Pre-lecture 16

Processor Organization

Arithmetic and logic unit

<—>{ Status flags

4—’(Shifter

<—>(Complementer [€

Arithmetic
and

Boolean
logic

Internal CPU bus

Registers

Control
unit

Control
paths

Register Organization

DO
D1
D2
D3
D4
Ds
D6
D7

A0
Al
A2
A3
A4
A5
A6

A7’

Data registers

Address registers

Program status

Program counter

Status register

(a) MC68000

General registers

AX
BX
CcX
DX

Poi
SP
BP
SI
DI

Cs
DS
SS
ES

General registers

Program status

Flags
Instr ptr

(b) 8086

A EAX AX
Base EBX BX
Count ECX CX
Data EDX DX
nters and index ESP SP
Stack ptr EBP BP
Base ptr ESI SI
Source index EDI DI
Dest index
Program status
Segment FLAGS register
Code Instruction pointer
Data (c) 80386—Pentium 4
Stack
Extract

Acknowledgement of Sources

> Most of these slides are adopted from Dr. Nader Taleb
lectures

> https://slideplayer.com/slide/10852334/

» https://cseweb.ucsd.edu/classes/su06/cse141/slides/s02-
isa-1up.pdf

> https://slideplayer.com/slide/9163053/

https://h3turing.vmhost.psu.edu/cmpsc312/ExpOpcodesi.pdf
> https://www.cset.oit.edu/ lynnd/cst131/ho/Lec03Slides.pdf

