Control Unit Operation
Chapter 20

Joannah Nanjekye

August 08, 2024

Control Unit

» Part of a CPU or other device that directs its operations

» Tells the rest of the computer system how to carry out a
program’s instructions

Input
devices L |__-__>___________»_______»__»_L_!’_l_’___n
: Control {_ Arithmetic | |
unit logic unit

: A
Output | |7 —— ‘ _____
devices Memory

External
storage

Control Unit Operation
» Circuitry that controls the flow of information through the

processor
» Directs the movement of signals between memory and the
ALU
» Also directs control signals between the CPU and I/O
devices
Input p—
devices | ____ | ________________________________ ’_ ______
Control {_ Arithmetic
o unit logic unit

: A
Output | 7T —m—m—— |
devices

Memory

External

storage

Functional Requirements of a Processor

» Operations (opcodes)

> Addressing modes

> Registers

» 1/O module interface

» Memory module interface
> Interrupts

Micro-Operations

» Are the functional or atomic operations of a processor

» A single micro-operation generally involves transfer
between:
> Registers
> Registers and external bus

» A micro-operation can also be a simple ALU operation

Micro-Operations

Instruction cycle

Instruction cycle

Instruction cycle

| Fetch | | Indirect | | Execute | |Interrupt |

[uOP| [pOP| [uOP| [zOP| [uOP|

The concept of micro-operations serves as a guide to the
design of the control unit

/

Review of Registers

» Memory address register (MAR): Is connected to the
address lines of the system bus. It specifies the address in
memory for a read or write operation

» Memory buffer register (MBR): Is connected to the data
lines of the system bus. It contains the value to be stored
in memory or the last value read from memory

» Program counter (PC): Holds the address of the next
instruction to be fetched.

» Instruction register (IR): Holds the last instruction fetched

Micro-operations

t1: MAR <« (PC)

t,: MBR < DMemory
PC «— (PC) + I

t3: IR «— (MBR)

» Each clock pulse defines a time unit

» Each micro-operation can be performed within the time of
a single time unit

» The notation (11, b, f3) represents successive time units

Rules for Grouping Micro-operations

» The proper sequence of events must be followed

» Thus (MAR « (PC)) must precede (MBR < Memory)
» Because the memory read operation makes use of the
address in the MAR

» Conflicts must be avoided
> No attempt to read to and write from the same register in
one time unit
> Results get unpredictable
» E.g,. (MBR < Memory)and(IR < MBR)

Fetch Cycle

tMAR
MBR
PC
IR
AC

MAR
MBR
PC
IR
AC

t;: MAR
tz! MBR
PC
ty: IR
0000000001100100

(a) Beginning (before t;)

0000000001100100

0001000000100000

0000000001100101

(c) After second step

[

MAR
MBR
PC
IR
AC

MAR
MBR
PC
IR
AC

(PC)
Memory
(PC)
(MBR)

+ I

0000000001100100

0000000001100100

(b) After first step

0000000001100100

0001000000100000

0000000001100101

0001000000100000

(d) After third step

The Indirect Cycle

» The address field of the instruction is transferred to the
MAR

» The address field of the IR is updated from the MBR
» IR now contains direct addressing

t;: MAR <« (IR(Address))
t,: MBR <« Memory
tz: IR(Address) <« (MBR(Address))

The Interrupt Cycle

» Contents of the PC are transferred to the MBR (facilitate
return)

» MAR is loaded with the address at which the contents of
the PC

» The PC is loaded with the address of the start of the
interrupt-processing routine

» Then store the MBR

t;: MBR <« (PC)

ty,: MAR <«— Save_Address
PC <« Routine_Address

t3: Memory <«— (MBR)

The Execute Cycle

» Micro-operations for the execute cycle depend on the
opecode

» Instruction Decoding: The control unit examines the
opcode and generates a sequence of micro-operations
based on the value of the opcode

t1: MAR <« (IR(address))
t,: MBR <« Memory
t3: Rl <« (R1l) + (MBR)

Example

ADD R1, X

t1: MAR <« (IR (address))
t,: MBR <« Memory
tz3: R1 <« (R1) + (MBR)

Example

t;: MAR <« (IR(address))
t,: MBR <« Memory
t3: MBR <« (MBR) + 1
ty;: Memory < (MBR)

If ((MBR) = 0) then

(PC «

(PC)

+ I)

Example

BSA X

t1: MAR <« (IR(address))
MBR <« (PC)

t,: PC <« (IR(address))
Memory <— (MBR)

ty: PC « (PC) + I

Instruction Cycle

» Each phase can be decomposed into a sequence of
elementary micro-operations
» E.g fetch, indirect, and interrupt cycles
> Execute cycle:
» One sequence of micro-operations for each opcode
» Need to tie sequences of micro-operations together

» Assume a new 2-bit register, Instruction cycle code (ICC)
> |t desighates which part of cycle the processor is in:

» 00: Fetch

» 01: Indirect

> 10: Execute

» 11: Interrupt

Flow Chart for the Instruction Cycle

11 (interrupt) / cc? \ 00 (fetch)

10 (execute) 01 indirect
Y Y Y
Setup Read Fetch
interrupt address instruction
((
A Execute)
ICC=00 instruction ICC=10
Yes / Interrupt \ N,
for enabled
interrupt?
Y Y Y Y

Control of the Processor

Key functional requirements:
» Define the basic elements of a processor
» Describe micro-operations that the processor performs
» Determine functions that the control unit must perform

Basic Elements of a Processor

> ALU

> Registers

> Internal data paths
» External data paths
» Control Unit

Categorization of Micro-operations

» All of the micro-operations fall into one of the following
categories:
» Transfer data between registers
» Transfer data from register to external Transfer data from
external to register
» Perform arithmetic or logical operations

Functions of a Control Unit

» Sequencing
» Causing the CPU to step through a series of
micro-operations

> Execution
» Causing the performance of each micro-operation

» Both functions are achieved using control signals

General Model of the Control Unit

Instruction register

Control signals
5] within CPU
.
Flags .
.4> Control signals
Control from control bus
unit <
Clock——
Control signals
to control bus

Control bus

Control Signals - Input

» Clock
» One micro-instruction per clock cycle
» Instruction Register

» Ope-code for current instruction determines which
micro-instructions re performed during the execution cycle

> Flags

» State of CPU

» Results of previous operations
» From control bus

> Interrupts
» Acknowledgements

Control Signals - Output

» Within the CPU

» Cause data movement

» Activate specific ALU functions
» Via control bus

> To memory
> To /o devices

Example: Control Signal Sequence - Fetch

> MAR « (PC)

» Control unit activates signal to open gates between the PC
and MAR

» MBR < (Memory)

» Open gates between MAR and address bus
» Open gates between data bus and MBR

A Control Signals Example

Cs
M Cu
R
Cpy C3 <—Cy
Cs cy AC
‘ e ‘ ’ ® ‘ Cy "% %4* Cy
Ce
| «—
><—C, V< C ® Control
Cy B ALU : signals
M <
O A «
R .
-~ Cont.rol « Flags
unit .
|l

¢. . .¢
@ Control

signals

Internal Processor Organization

Micro-operations Active Control Signals

t;: MAR < (PC) G,
Fetch: b 11\)4(]:3 Eagerfiry GCs, Cr

t3: IR < (MBR) @y

t;: MAR < (IR(Address)) Cg
Indirect: t;: MBR < Memory Cs, Cr

t3: IR(Address) < (MBR(Address)) Cy

t;: MBR « (PC) C,
Interrupt: ty): MAR < Saye-address

PC < Routine-address
t3: Memory < (MBR) Cpa, Cw

CPU with Internal Bus

Control
unit
[

Address
lnes | MAR |-
Data
lines m

Internal CPU bus

Control Unit Implementation

Two main categories of implementation:

» Microprogrammed implementation
» Hardwired implementation

» Control unit is a state machine circuit
> Input logic signals transformed into output logic signals
» Which are the control signals

Control Unit with Decoded Inputs

Instruction register

Clock—

Timing
generator

Decoder
[I

I I

Y
—T—
71:2 Control

unit

—T,—>

Flags

Hardwired implementation

» Control Unit Inputs
» Flags and control bus
> Each bit means something
» Instruction register
> ope-code cause different control signals for each different
instruction
» Decoder takes encoded input and produces single output
> nbinary inputs and 2" outputs
» Control unit logic

» Logic of the control unit that produces output control signals
as a function of its input signals

Control Unit Logic

Let us consider a single control signal, Cs . This signal causes
data to be read from the external data bus into the MBR

> Let us define two new control signals, P and Q and the
boolean expression Cs defines

PQ =00 Fetch Cycle
PQ =01 Indirect Cycle
PQ =10 Execute Cycle
PQ =11 Interrupt Cycle

CS = POG.Tz + P'Q'Tz

Sources Acknowledgement

» Course Textbook

> https://slideplayer.com/slide/9710526/
> https://slideplayer.com/slide/5855121/
> https://slideplayer.com/slide/6607257/

