
Program Execution

Joannah Nanjekye

July 08, 2024



Announcements

▶ Lab 1 has been posted on D2L
▶ Quiz 1 is next Wednesday, 17th July, 10:50 - 11:20
▶ Labs due every Wednesday, by midnight
▶ Assignments due every Friday, by midnight



Outline

▶ Program Execution
▶ Revisit the Instruction Cycle
▶ Instruction Format
▶ Assembly Language Programming



The Instruction Cycle

Fetch cycle: reads instructions from memory one at a time
▶ Reads the next instruction from the program counter (PC)

register
▶ Loads it in the instruction register (IR)

Execute cycle: interprets the instruction and performs the
required action
▶ Each instruction has a bit that specifies the action
▶ This action is one of the core functions of the computer like

control, processing etc



Revisiting Key Registers

▶ r0 - r1: general-purpose registers, r0, ..., rn for temporary
storage

▶ PC: program counter, contains the address of the next
instruction to be execute

▶ IR: instruction register, stores the instruction currently
being executed

▶ MAR: memory address register stores the address of the
location in main memory that is currently being accessed
by a read or write operation

▶ MBR: memory buffer register stores data that has just
been read from main memory, or data to be immediately
written to main memory



Program Execution: Fetch Phase

1. The PC supplies the address of the next instruction to be
executed to the MAR

2. The MAR reads this instruction
3. The PC is incremented by the size of an instruction
4. The instruction is read and loaded in to the MBR
5. Then copied to the IR
6. The ope-code is decoded



Program Execution: Execute Phase

1. A load or store requires sending the memory address to
from the IR to the MBR

2. Then a read or write operation is done
3. If the operands are from a register, then they are

transferred to the ALU
4. The ALU operates on the operands
5. A result is passed to a destination register



Constants

▶ Consider an instruction MUL r0, r1,8
▶ The constant operand, 8, is transferred from the operand

field in the IR, not from the registers



Flow Control

▶ An action that modifies the normal instruction sequence
▶ Conditional behavior allows a processor to select one of

two possible courses of actions:
▶ Execute the next instruction in sequence
▶ Load the PC with a new value and execute a branch to

another region of code
▶ Conditional behaviour depends on the status value in the

Condition Code Register (CCR)
▶ The status in the CCR can be :

▶ Zero (Z)
▶ Negative in two’s complement terms (N)
▶ Generated a Carry (C)
▶ Generated an arithmetic oVerflow (V)



Summary

FETCH

MAR← PC
PC← PC + 1
MBR← MAR
IR← MBR

EXECUTE

MAR← IR
MBR← MAR
r1← MBR



Example
Goal: Add the contents at address 940 to the contents at
address 941 and store the result at address 941



Instruction Format

Consider the instructions in our example program: 1940, 5941,
2941

Load 1 940

ADD 5 941

Store 2 941

▶ Size of opcode space = 24 = 16
▶ Size of memory space = 26 = 4096 = 4K



Instruction Format

L = M + L LDA M 1940
ADD L 5941
STA L 2941

Instruction Opcode Address Assembly Code
1940 0001 1001 0100 0000 LDA M
5940 0101 1001 0100 0001 ADD L
2940 0010 1001 0100 0001 STA L



Instruction Cycle State



Interrupts



Types of Interrupts



Instruction Cycle with Interrupts

During an interrupt, the processor does the following:
▶ It suspends execution of the current program being

executed
▶ And saves its context
▶ It sets the program counter to the starting address of an

interrupt handler routine



Efficiency of Interrupts: Short Wait



Efficiency of Interrupts: Long Wait



Instruction Cycle State with Interrupts



Multiple Interrupts

There are two ways of dealing with multiple interrupts:
▶ A disabled interrupt: the processor ignores that interrupt

request signal. Interrupts are handled in strict sequential
order

▶ Define interrupt priority: allow an interrupt of higher
priority to cause a lower-priority interrupt handler to be
itself interrupted


