
Number Systems, Computer Arithmetic and
Character Systems

Joannah Nanjekye

July 09, 2024



Decimal System

Consider a whole number: 6210

▶ 6210 = (60 ×101) + (2 ×100)
▶ 6210 = 1111102

Consider a fraction number: 0.45610

▶ 0.45610 = (4 ×10−1 ) + (5 ×10−2 ) + (6 ×10−3 )
▶ 0.8110 = 0.1100112

The right had side is the Least Significant Bit while the left hand
side is the Most Significant Bit



Binary System

▶ 1111102 = (1 ×25) + (1 ×24) + (1 ×23) + (1×22) + (1 ×21)
+ (0 ×20) = 6210

▶ 1001.101 = 23 + 20 + 2−1+2−3=9.62510



Hexadecimal System

▶ Binary digits are grouped into sets of four bits, called a
nibble

▶ 000100012 = 1116

▶ 4116 = 001000012

▶ 4116 = (4 × 161) + (1 × 160) = 6510



Hexadecimal System

▶ Why the hexadecimal notation is preferred:
▶ It is more compact than binary notation
▶ In most computers, binary data occupy some multiple of 4

bits, and hence some multiple of a single hexadecimal digit
▶ It is extremely easy to convert between binary and

hexadecimal notation



Integer Representation

▶ Consider an 8-bit word
▶ It can represent positive numbers from 0 to 255
▶ And negative numbers from -127 to +128
▶ This is because the the Most Significant Bit will represent

the sign



Sign Magnitude Representation

▶ In an n-bit word, the right most n - 1 bits hold the
magnitude of the integer:
▶ +18 = 00010010
▶ -18 = 10010010

▶ Limitations of the sign magnitude representation
▶ Arithmetic has to consider both the sign and magnitude
▶ There are two representations of zero (+0 and -0)



twos Complement

▶ +3 = 00000011
▶ +2 = 00000010
▶ +1 = 00000001
▶ +0 = 00000000
▶ -1 = 11111111
▶ -2 = 11111110
▶ -3 = 11111101



Integer Arithmetic: Negation

▶ In twos complement negation is achieved in two steps:
▶ compute the Boolean complement of each bit of the integer
▶ Treat he result as an unsigned binary integer, add 1

▶ +18 = 00010010
▶ bit wise complement = 11101101
▶ 11101101 + 1 = 11101110 = -18
▶ Negation is referred to as the twos complement

operation
▶ There are two special cases 0 and 128 for an 8-bit

representation:
▶ 0 = 00000000 twos complement + 1 = [1]00000000 = 0

(discard carried 1)
▶ +128 = 10000000 twos complement + 1 = 10000000 = -128



Integer Arithmetic: Addition

▶ Change negative numbers to twos complement
▶ Treat positive numbers as unsigned
▶ The result is in twos complement form
▶ Whether it is positive or negative



Integer Arithmetic: Addition and Overflow

▶ The result may be larger than the word size
▶ This is called an overflow
▶ When adding two numbers, if they are both positive or both

negative, an overflow occurs if and only if the result has the
opposite sign



Integer Arithmetic: Subtraction

Subtraction is achieved by performing addition. The number
being subtracted (subtrahend) should be converted to twos
complement before being added to the minuend



Unsigned: Multiplication

▶ Generate partial products which are summed to get the
final product

▶ Each successive partial product is shifted one position to
the left relative to the preceding partial product

▶ The multiplication of two n-bit binary integers results in a
product of up to 2n bits in length (e.g., 11 * 11 = 1001)



Unsigned: Multiplication

There are two approaches:
▶ perform a running addition on the partial products (saves

storage)
▶ For each 1 on the multiplier, an add and a shift operation

are required; but for each 0, only a shift is required



Signed: Multiplication
One alternative is to:
▶ convert both multiplier and multiplicand to positive numbers
▶ perform the multiplication
▶ compute the twos complement of the result

We can use Booth’s algorithm instead.



Unsigned: Division

▶ Examine the bits of the dividend from left to right
▶ Stop when the bits examined correspond to number

greater than or equal to the divisor
▶ Before the condition, place 0s in the quotient from left to

right
▶ After the condition, place a 1 in the quotient and the divisor

is subtracted from the partial dividend



Signed: Division

1. Compute he twos complement of the divisor
2. Express the dividend as a 2n-bit positive number, e.g 4-bit

0111 becomes 00000111
3. Shift the dividend left 1 bit position
4. Subtract the divisor from the dividend
5. If the result is positive, MSB = o, then dividend is 1
6. If the result is negative, MSB = 1, then dividend is 0
7. Repeat steps 2 through 4 as many times as there are bit

positions in the dividend



Signed: Division



Limitations of the twos Complement

▶ Very large and very small numbers can not be represented
▶ The fractional part of the quotient in a division of two large

numbers could be lost



The Scientific Notation

▶ Move the decimal point to a convenient location
▶ Use the exponent of 10 to keep track of that decimal point
▶ This approach can be used on binary numbers as follows:

±S × B±E

Three fields are used to store the binary word of a number:
▶ Sign: plus or minus
▶ Significand S
▶ Exponent E
▶ Base B



Floating-point Representation

▶ The leftmost bit stores the sign of the number
▶ The exponent value is stored in the next 8 bits
▶ The representation used is known as a biased

representation
▶ Bias = (2k−1 − 1) = 27 − 1 = 127, k is the number of bits
▶ The final portion of the word (23 bits in this case) is the

significand



IEEE Binary Floating-point Representation

Defines the following format:
▶ Arithmetic format: all the mandatory operations defined

by the standard are supported by the format
▶ Basic format: covers five floating-point representations,

three binary and two decimal, whose encodings are
specified by the standard, and which can be used for
arithmetic

▶ Interchange format: fixed-length binary encoding that
allows data interchange between different platforms and
that can be used for storage

Each of the formats have bit lengths of 32, 64, and 128 bits and
exponents of 8, 11, and 15 bits



IEEE Binary Floating-point Representation



Floating-point Arithmetic



Addition and Subtraction

▶ Check for zeros
▶ Align the significands
▶ Add or subtract the significands
▶ Normalize the result



Guard Bits
▶ The ALU loads the exponent and significand before a

floating point operation
▶ The length of the register is almost always greater than the

length of the significand plus an implied bit
▶ The register contains additional bits, called guard bits
▶ To pad out the right end of the significand with 0s



Rounding

▶ This is where extra bits in a floating-point format number
are removed

▶ To generate a number that is close to the original number
▶ Alternative approaches to rounding:

▶ Round to nearest: rounded to the nearest representable
number

▶ Round toward +∞: rounded up toward plus infinity
▶ Round toward −∞: rounded up toward minus infinity
▶ Round toward 0: rounded toward zero



Character Systems

▶ We deal with both symbolic alphabetic and numeric data
▶ Systems to encode characters as binary numbers are

required for a computer
▶ Common systems include:

▶ ASCII (American Standard Code for Information
Interchange)

▶ EBCDIC (Extended Binary Coded Decimal Interchange
Code)

▶ UNICODE (A unique number is provided for each
character)



ASCII
”One” = O = 0x4F, n = 0x6E, e = 0x65


