CS4613 Lecture 4

David Bremner

January 15, 2024

Defining Functions
Almost every language supports functions

(deffun (f x) (+ x x))
gem (f 3)

Most modern languages support inner functions

(deffun (f x)
(deffun (sq y) (x y y))
(+ (sq x) (sq x)))

Often via anonymous functions
(deffun (f x)
(defvar sq (lambda (y) (x y y)))
(+ (sq x) (sq x)))

p.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=58
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29+%28%2B+x+x%29%29%0A%28f+3%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29%0A++%28deffun+%28sq+y%29+%28%2A+y+y%29%29%0A++%28%2B+%28sq+x%29+%28sq+x%29%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28f+x%29%0A++%28defvar+sq+%28lambda+%28y%29+%28%2A+y+y%29%29%29%0A++%28%2B+%28sq+x%29+%28sq+x%29%29%29%0A

Anonymous functions are all we need

Let's once again prototype things by slightly modifying plait syntax
to match the book.

(define-syntax-rule (lam x body) (lambda (x) body))

Now try some examples. p.

T let1 {f {lam x {+ x x}}}
{f 3}}

{let1l {x 3}
{let1 {f {lam y {+ x y}}}
{f 3}}}

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=59
lectures/lecture04/lam1.rkt
lectures/lecture04/lam2.rkt

Syntax for defining and using functions

Abstract

[lamE (var : Symbol) (body : Exp)]
[appE (fun : Exp) (arg : Exp)]

Parser

[(? ~(lam SYMBOL ANY))
(lamE (s-exp->symbol (sx 1)) (px 2))]
[(? ~(ANY ANY)) (appE (px 0) (px 1))]

= (test (parse “{let1 {f {lam x {+ x x}}} {f 3}})
(letlE 'f (lamE 'x (plusE (varE 'x) (varE 'x)))
(appE (varE 'f) (numE 3))))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=59
lectures/lecture04/parse.rkt

Function values: 1/2

print (lambda x: x + 1) # Python

<function <lambda> at 0x7fefOb67c4ald>

console.log((x) => (x + 1)) # JavaScript

[Function (anonymous)]

lambda { [x| x + 1 }; # Ruby

#<Proc:0x00007f6eed050d08 -:3 (lambda)>

. 60

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=60

Function values: 2/2

(lambda (x) (+ x 1)) ;; Common Lisp
#<FUNCTION (LAMBDA (X)) {535578CB}>
(lambda (x) (+ x 1)) ;; Emacs Lisp

(lambda (x) (+ x 1))

(lambda (x) (+ x 1)) ;; Plait

— (Number -> Number)
#<procedure>

Implementing function values

(define-type Value
[numV (the-number : Number)]
[boolV (the-boolean : Boolean)]
[funV (var : Symbol) (body : Exp)])

Functions self evaluate
[(1lamE v b) (funV v b)]

p.

62

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=62

Implementing function values

CS4613 Lecture 4
L Implementing Functions

2024-01-15

L Implementing function values

1. As the book notes, this looks like nothing. In practice it acts is a special
kind of delayed evaluation.

2. It turns out this simple evaluation won't quite be enough. The reason it
was for Emacs Lisp was that it originally had dynamic scope

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=62

Strategy for evaluation

example eval

(let ([f (lambda (x) (+ x 1))1)
Ptacker] (£ 7))

(interp (appE f a) env)

1.

ok W

Evaluate f

Evaluate a

Check that f evaluates to a function
Evaluate the body of f in a new env
with the formal bound to evaluated a

p.

62

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5Bf+%28lambda+%28x%29+%28%2B+x+1%29%29%5D%29%0A++%28f+7%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=62

Implementing application 1/2

Eval function and argument

[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])

o))

Check for a function

[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b)]
[else (error 'app "not a function")]))]

. 63

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=63

Implementing application 2/2

p.

Interpret body
[(appE f a) (let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b) (interp b)]
[else (error 'app "not a function")]))]

in @ new environment
[CappE f a) (let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b) (interp b (extend nv v av))]
[else (error 'app "not a function")]))]

63

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=63

Testing our evaluator

p.

[CappE f a)
(let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b)
(interp b (extend nv v av))]
[else (error 'app "not a function")]))]

(test (run “{letl {f {lam x {+ x 1}}} {f 8}}) (numV 9))
(test (run “{letl {y 1} {letl {f {lam x {+ x yl}}}
{f 8}}})
(numV 9))

65

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=65
lectures/lecture04/interp-lam1.rkt

Oops we made dynamic scope

B (test (run “{letl {y 1} {let1 {f {lam x {+ x y}}?}
{letl {y 2} {f 8}}}})
(numV 9))

Test with plait

Scopel]
- (test

{let1 {y 1} {letil {f {lam x {+ x y}}}
{let1 {y 2} {f 8}}}}
9)

p.

lectures/lecture04/interp-lam1.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=66
lectures/lecture04/scope1.rkt

Evaluation via substitution

(let ([y 11)
(let ([f (lambda (x) (+ x y))1)
(let ([y 21) (£ 8))))

subst. 1 for x

(let ([f (lambda (x) (+ x 1))1)
(let ([y 21) (£ 8)))

subst. \ for f
(let (y 2) ((lambda (x) (+ x 1)) 8))

P.

66

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=66
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5By+1%5D%29%0A++%28let+%28%5Bf+%28lambda+%28x%29+%28%2B+x+y%29%29%5D%29%0A++++%28let+%28%5By+2%5D%29+%28f+8%29%29%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5Bf+%28lambda+%28x%29+%28%2B+x+1%29%29%5D%29%0A++%28let+%28%5By+2%5D%29+%28f+8%29%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28y+2%29+%28%28lambda+%28x%29+%28%2B+x+1%29%29+8%29%29%0A

Evaluation via substitution

CS4613 Lecture 4
L Implementing Functions

2024-01-15
i

L_Evaluation via substitution s G e

1. Our example is slightly different than the one in the book, but the idea is

the same
2. In fact we have to be a bit careful about how we do substitution here, as

the second y “obviously” should not be replaced

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=66
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5By+1%5D%29%0A++%28let+%28%5Bf+%28lambda+%28x%29+%28%2B+x+y%29%29%5D%29%0A++++%28let+%28%5By+2%5D%29+%28f+8%29%29%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28%5Bf+%28lambda+%28x%29+%28%2B+x+1%29%29%5D%29%0A++%28let+%28%5By+2%5D%29+%28f+8%29%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28let+%28y+2%29+%28%28lambda+%28x%29+%28%2B+x+1%29%29+8%29%29%0A

Substitution and environments

1. Substitution enforces static scope: by execution time the
variable is gone

2. Substitution replaces variables according to the defining
environment

3. To get the equivalent of substitution, we need to remember
the definining environment.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=67

2024-01-15

Substitution and environments

CS4613 Lecture 4
L Implementing Functions

L_Substitution and environments

1. As mentioned above, it is actually not completely trivial to get the rules for
substitution correct. One needs to define free and bound variables, for a
start

2. The book talks about environments as delayed substitutions. This is true,
although maybe more relevant in the context of environments as a faster
replacement for substitution

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=67

Remembering the defining environment

closure constructor

(define-type Value
[numV (the-number : Number)]
[boolV (the-boolean : Boolean)]
[funV (var : Symbol) (body : Exp) (nv : Env)])

save environment
[(1lamE v b) (funV v b nv)]

. 67

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=67

Using the saved environment

[(appE f a)
(let ([fv (interp f nv)]
[av (interp a nv)])
(type-case Value fv
[(funV v b f-env)
(interp b (extend f-env v av))] ;; changed
[else (error 'app "not a function")]))]

lectures/lecture04/interp-lam2.rkt

2024-01-15

Using the saved environment

CS4613 Lecture 4
L Implementing Functions

LUsing the saved environment

1. The book uses shadowing to bind a new nv; I find it less confusing to
new name.

use a

lectures/lecture04/interp-lam2.rkt

Testing the revised interpreter

previously failing
(test (run “{letl {y 1} {letl {f {lam x {+ x y}}}
{let1 {y 2} {f 8}}}})
(numV 9))

[interp2]
a hew pattern
(test (run “{{letl {x 3} {lam y {+ x y}}} 4})
(numV 7))
(test (run “{{letl {y 3} {lam y {+ y 1}}} 5}
(numV 6)) ;; maybe 47

. 68

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=68
lectures/lecture04/interp-lam2.rkt
lectures/lecture04/interp-lam2.rkt

Understanding one of our tests

try in stacker

((let ([y 31)
(lambda (y) (+ y 1)))

Emm D)

subst. y does nothing
((lambda (y) (+ y 1))
5)

p.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=68
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28%28let+%28%5By+3%5D%29%0A+++%28lambda+%28y%29+%28%2B+y+1%29%29%29%0A+5%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28%28lambda+%28y%29+%28%2B+y+1%29%29%0A+5%29%0A

	Functions
	Implementing Functions

