CS4613 Lecture 6: Objects

David Bremner

January 25, 2024

Desugared objects

Basic Object

(define o
(lambda (m)
(case m
[(add1l) (lambda (x) (+ x 1))]
[(subl) (lambda (x) (- x 1))1)))

use
(test ((o 'subl) 6) 5)

» why return a function (hint, think about method args)

p.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=87
lectures/lecture06/obj1.rkt

Small simplifications

(define (msg obj selector . args)
(apply (obj selector) args))

(define-syntax snd
(syntax-rules ()
[(_ obj selector args ...)
((obj (quote selector)) args

(test (msg o 'subl 6) 5)
(test (snd o subl 6) 5)

o)1)

p. 87

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=87
lectures/lecture06/obj2.rkt

Constructors

Turn object declaration into function

(define (o-constr x)
(lambda (m)

(case m

L(+)

(lambda (y) (+ x y))1)))

Now we can make as many objects as we want

(define ob
(define 02
(test (snd
(test (snd

(o-constr 5))
(o-constr 2))
o5 + 3) 8)
02 + 3) b5)

p.

88

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=88
lectures/lecture06/const.rkt

2024-01-25

CS4613 Lecture 6: Objects
L Objects

L Constructors

Constructors

Turn object det

G ox DY

Now we can make as many objects as we want

1. This looks like infix syntax, but it's really just using + as a symbol

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=88
lectures/lecture06/const.rkt

Constructors as Classes

class Thing {
constructor (x) {
this.x=x;

¥

add(y) { return this.
sub(y) { return this.

3

(define (class x)
(lambda (m)
(case m
[(+) (lambda (y) (+
[(-) (lambda (y) (-

Lol

y))l
y))1)))

p.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=89

Constructors as Classes

p.

89

Where is x stored?

(define (mk-0 x)
(lambda (m)
(case m
[(+) (lambda (y) (+ x y))]
[(-) (lambda (y) (- x y))1)))

B= (define 02 (mk-0 2))
(define 05 (mk-0 5))
(test (snd 02 - 3) -1)
(test (snd 05 + 7) 12)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=89
lectures/lecture06/mk-O.rkt

State

Constructor parameters can be used as mutable members.

(define (mk-o-state count)
(lambda (m)
(case m
[(inc) (lambda () (set! count (+ count 1)))]
[(dec) (lambda () (set! count (- count 1)))]
[(get) (lambda () count)])))

B (test (let ([o (mk-o-state 5)1)
(begin (snd o inc) (snd o inc) (snd o dec)
(snd o get)))
6)

lectures/lecture06/state1.rkt

2024-01-25

CS4613 Lecture 6: Objects
L Objects

L_State

1. Mutating the arguments to a function is also possible in e.g. C, even if
considered in somewhat poor taste

2. Note that everything is pass by value here, so we are mutating a local copy

3. There's a lot to think about here; the fact that the returned closures
remember their defining environment after that function returns is crucial

lectures/lecture06/state1.rkt

More state

Objects are independent

e (test (let ([ol (mk-o-state 3)]

[02 (mk-o-state 3)])
(begin (snd ol inc) (snd ol inc)
(list (snd ol get) (snd o2 get))))
(5 3))

p.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=90
lectures/lecture06/state2.rkt

Where is the state?

(deffun (mk-counter amount)
(lambda (m)
(if (equal? m "get")
amount
(set! amount (+ 1 amount)))))

(defvar ol (mk-counter 1000))
(defvar 02 (mk-counter 0))
(o1 "count™)
(02 "count™")
(ol "get")

mm (02 "get!)

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28mk-counter+amount%29%0A++%28lambda+%28m%29%0A++++%28if+%28equal%3F+m+"get"%29%0A++++++++amount%0A++++++++%28set%21+amount+%28%2B+1+amount%29%29%29%29%29%0A%0A%28defvar+o1+%28mk-counter+1000%29%29%0A%28defvar+o2+%28mk-counter+0%29%29%0A%28o1+"count"%29%0A%28o2+"count"%29%0A%28o1+"get"%29%0A%28o2+"get"%29%0A

Where is the state?

CS4613 Lecture 6: Objects
L Objects

2024-01-25

L_Where is the state? o

1. This simplifies the object pattern to directly run the code in question rather
than returning a function that does the running

2. The answer to the title question is that the state is in environments, and
those environments (or the variables in them, are actually mutated)

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28mk-counter+amount%29%0A++%28lambda+%28m%29%0A++++%28if+%28equal%3F+m+"get"%29%0A++++++++amount%0A++++++++%28set%21+amount+%28%2B+1+amount%29%29%29%29%29%0A%0A%28defvar+o1+%28mk-counter+1000%29%29%0A%28defvar+o2+%28mk-counter+0%29%29%0A%28o1+"count"%29%0A%28o2+"count"%29%0A%28o1+"get"%29%0A%28o2+"get"%29%0A

More flexible internal state

In general we don't want to require a correspondence between

internal representation and constructor arguments

(define (mk-o-state/priv init)
(let ([cred init]

[deb 01)

(lambda (m)

(case m

[(inc) (lambda () (set! cred (+ 1 cred)))]
[(dec) (lambda () (set! deb (+ 1 deb)))]
[(get) (lambda () (- cred deb))1))))

p.

90

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=90

2024-01-25

More flexible internal state

CS4613 Lecture 6: Objects
L Objects

L_More flexible internal state

1. This abstraction is part of the whole Object-Oriented concept: interface vs.
implementation

2. This example is different from the one of same name in the book, to
emphasize abstraction. Notice they have the same interface.

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=90

Interface is preserved

B (test (let ([o (mk-o-state/priv 5)1)
(begin (snd o inc) (snd o inc) (snd o dec)
(snd o get)))
6)

lectures/lecture06/state3.rkt

The “Class” Pattern revisited

(define (class-w/-private constructor-params)
(let ([private-vars ...] ...)
the object pattern ...))

Which is equivalent to

(define class-w/-private
(lambda (constructor-params)
(let ([private-vars ...] ...)
. the object pattern ...)))

» set up for “let-over-lambda”

p.

91

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=91

Static or “class members”

(define mk-o-static
(let ([counter 0]) ;; outside constructor
(lambda (amnt)
(begin
(set! counter (+ 1 counter))
(lambda (m)
(case m
[(inc) (lambda (n) (set! amnt (+ amnt n)))]
[(dec) (lambda (n) (set! amnt (- amnt n)))]
[(get) (lambda () amnt)]
[(count) (lambda () counter)]))))))

.91

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=91

Testing class with static members

Static members are common

B (test (let ([o (mk-o-static 1000)1)
(snd o count))
1)
(test (let ([o (mk-o-static 0)1])
(snd o count))
2)

Private members are not

B (test (let ([ol (mk-o-static 3)]
[02 (mk-o-static 3)1])

p.

(begin (snd ol inc 2) (snd ol inc 2)
(list (snd ol get) (snd o2 get))))

(7 3))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=92
lectures/lecture06/state4.rkt
lectures/lecture06/state4.rkt

Revised class pattern

(define class-w/-private&static

(let ([static-vars ...] ...)
(lambda (constructor-params)
(let ([private-vars ...] ...)

. the object pattern ...))))

p.

92

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=92

Static on Stacker

(defvar mk-o-static
(let ([counter 0])
(lambda (amount)
(begin
(set! counter (+ 1 counter))
(lambda (m)
(if (equal? m "get") (lambda () amount)
(if (equal? m "count'") counter
(error "no such member"))))))))
(defvar ol (mk-o-static 1000))
(defvar 02 (mk-o-static 0))
e (01 "count") (02 "count")

. 92

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=92
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28defvar+mk-o-static%0A++%28let+%28%5Bcounter+0%5D%29%0A++++%28lambda+%28amount%29%0A++++++%28begin%0A++++++++%28set%21+counter+%28%2B+1+counter%29%29%0A++++++++%28lambda+%28m%29%0A++++++++++%28if+%28equal%3F+m+"get"%29+%28lambda+%28%29+amount%29%0A++++++++++++++%28if+%28equal%3F+m+"count"%29+counter%0A++++++++++++++++++%28error+"no+such+member"%29%29%29%29%29%29%29%29%0A%28defvar+o1+%28mk-o-static+1000%29%29%0A%28defvar+o2+%28mk-o-static+0%29%29%0A%28o1+"count"%29+%28o2+"count"%29%0A

Shared instance variables

As the book notes, it is common to provide access to private
members of objects of the same class.

(define mk-num
(let ([secret (gensym)])
(lambda (init)
(let ([amount init])
(lambda (m)
(cond
[(equal? m secret) (lambda () amount)]
[(equal? m 'add)
(lambda (other)
(mk-num (+ amount (msg other secret))))]
[(equal? m 'odd?) (lambda () (odd?
amount))1))))))

Shared instance variables
As the

CS4613 Lecture 6: Objects
L Objects

2024-01-25

L_Shared instance variables

1. This combines the just introduced static class pattern, with the new
function gensym. The latter just makes a symbol that guarantees not to
repeat, and is practically impossible to guess.

2. Some object oriented languages provide a more compile time solution for
enforcing private access; we'll see some related ideas when we talk about
types

Testing private sharing

EfS (define 02 (mk-num 2))
(define 03 (mk-num 3))
(define 04 (msg 02 'add 02))
(define o5 (msg 02 'add 03))
(test (msg 02 'odd?) #£f)
(test (msg 03 'odd?) #t)
(test (msg o4 'odd?) #f)
(test (msg o5 'odd?) #t)

code snippets for Lecture 6

These are also hyperlinked from the pdf if your reader
is set up

right (tested with evince, mupdf / emacs-pdftools, on
Linux) .

lectures/lecture06/state5.rkt

	Objects

