CS4613 Lecture 7: More About Objects

David Bremner

January 29, 2024



Self reference with mutation

p.
How to provide self (Python) or this (JS, Java)?
(define o-self!
(let ([self 'dummy])
(begin
(set! self
(lambda (m)
(case m
[(first) (lambda (x) (msg self 'second
(+ x 1)))]
[(second) (lambda (x) (+ x 1))1)))
self)))

(test (msg o-self! 'first 5) 7)


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self.rkt

2024-01-29

Self reference with mutation

CS4613 Lecture 7: More About Objects o o et (i) o e U5
L Objects that refer to themselves

L_Self reference with mutation

1. The methods discussed in the book for providing this are very similar to
methods used to provide recursive functions in interpreters. In that case
the mutated self-reference is in the interpreter data structures.


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self.rkt

.. on stacker

(defvar o-self!
(let ([self 01)

(begin
(set! self
(lambda (m)
(if (equal? m "first'")
(lambda (x) ((self "second") (+ x
1))
(if (equal? m "second")
(lambda (x) (+ x 1))
(error "mno such member")))))
self)))

((o-self!

"first") 5)

P.

94


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28defvar+o-self%21%0A++%28let+%28%5Bself+0%5D%29%0A++++%28begin%0A++++++%28set%21+self%0A++++++++++++%28lambda+%28m%29%0A++++++++++++++%28if+%28equal%3F+m+"first"%29%0A++++++++++++++++++%28lambda+%28x%29+%28%28self+"second"%29+%28%2B+x+1%29%29%29%0A++++++++++++++++++%28if+%28equal%3F+m+"second"%29%0A++++++++++++++++++++++%28lambda+%28x%29+%28%2B+x+1%29%29%0A++++++++++++++++++++++%28error+"no+such+member"%29%29%29%29%29%0A++++++self%29%29%29%0A%28%28o-self%21+"first"%29+5%29%0A

. without mutation 1/3

In order to convince ourselves that mutation is not a mandatory

feature, we can implement the same thing without mutation.
Let's see how python does it.

class Thing:
def _ _init__(self, x):
self .x=x

def add(self, y):
return self.x + y



2024-01-29

without mutation 1/3

CS4613 Lecture 7: More About Objects
LObjects that refer to themselves

class Thing
def __in

(so1t, x)

L. without mutation 1/3

1. The book calls this unfortunate as a surface syntax. It is somewhat error
prone, but it allows writing in an object oriented style in languages like C



. without mutation 2/3

We can follow the same model as python, and pass self to each
method

(define o-self-no!
(lambda (m)

(case m
[(first) (lambda (self x) ((self 'second) self
(+ x 1)))]

[(second) (lambda (self x) (+ x 1))1)))
(test (msg o-self-no! 'first o-self-no! 5) 7)


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self-no.rkt

2024-01-29

without mutation 2/3 . 94

CS4613 Lecture 7: More About Objects
LObjects that refer to themselves

low the same model as python, and pass self to each

f0 ¢ox D)

L .. without mutation 2/3 o P 04

1. Unlike the book, here we explicitly use the object twice here, once to find
the method, and once as a method parameter


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94
lectures/lecture07/o-self-no.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=94

. without mutation 3/3

p. 95
The self parameter is implicit in Python, and we can do the same

(define (msg/self obj selector . args)
(apply (obj selector) obj args))

This also simplifies our sample class.

(define o-self-no!
(lambda (m)

(case m
[(first) (lambda (self x) (msg/self self 'second
(+ x 1)))]

[(second) (lambda (self x) (+ x 1))1)))
(test (msg/self o-self-no! 'first 5) 7)


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=95
lectures/lecture07/o-self-no2.rkt

Motivation

Structural recursion is great, but

(define-type BinTree
[Empty]
[Leaf (val : Number)]
[Node (left : BinTree) (right : BinTree)])

All uses of the data type must change if it changes.

(define (tsum tree)
(type-case BinTree tree
[(Empty) 0]
[(Leaf num) num]
[(Node left right) (+ (tsum left) (tsum right))]))

. 95


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=95
lectures/lecture07/tree-sum.rkt

Dynamic dispatch tree sum 1/3

(define (node v 1 r)
(lambda (m)
(case m

[(sum) (lambda () (+ v (msg 1 'sum)

(msg r

(define (mt)
(lambda (m)
(case m
[(sum) (lambda () 0)1)))

'sum)))]1)))

p.


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96

2024-01-29

Dynamic dispatch tree sum 1/3

CS4613 Lecture 7: More About Objects
LDynamic dispatch

LDynamic dispatch tree sum 1/3

1. These constructor definitions are simplified compared to the book. Since
self is unused, these examples skip defining it

2. The key point is that we are able to write the sum method for nodes
without knowing what kind of object we are summing. The usual kind of
trade-off applies: with this completely dynamic implementation we can't
know until runtime if that object even supports a sum method


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96

Dynamic dispatch tree sum 2/3

EMH (define a-tree

(node 10
(node 5 (mt) (mt))
(node 15 (node 6 (mt) (mt)) (mt))))

(test (msg a-tree 'sum) (+ 10 5 15 6))

p.


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
lectures/lecture07/tree-sum2.rkt

Dynamic dispatch tree sum 3/3

Suppose we want to introduce a new node type

S (define (leaf v)

(lambda (m)
(case m
[(sum) (lambda () v)1)))

B (define leafy-tree

(node 10
(leaf 5)
(node 15 (leaf 6) (mt))))

(test (msg leafy-tree 'sum) (+ 10 5 15 6))


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
lectures/lecture07/tree-sum3.rkt
lectures/lecture07/tree-sum2.rkt

2024-01-29

. Dynamic dispatch tree sum 3/3
CS4613 Lecture 7: More About Objects Gt s o 0 3
LDynamic dispatch

0 v

LDynamic dispatch tree sum 3/3

1. The key point here is that the method definition in node does not change

2. None of this should be taken to suggest that the dynamic-dispatch version
is the best for all situations, or even for the situation illustrated here.

3. In particular spreading the algorithm definition across different objects
might or might not be desirable

96


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96
lectures/lecture07/tree-sum3.rkt
lectures/lecture07/tree-sum2.rkt
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=96

What is inheritance? B

» In simplest terms, inheritance is when a method not found in
the current object is searched for in or more parent objects.

» In our object model (assuming parent-object is initialized),
this could look like

(case m

[else (parent-object m)])


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=98

Inheritance in Java 1/2

p. 100
B class Pt2 {
public int x;
Pt2(int x, int y) {
this.x = x - 3;
System.out.println("Pt2(" + x + "," + y+")");

EE class Pt3 extends Pt2 {
public int x;
Pt3(int x, int y, int z) {
super(x,y); this.x=x+7;

System.out.println("Pt3 with " + z);
11


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=100
lectures/lecture07/Pt2.java
lectures/lecture07/Pt3.java

Inheritance in Java 2/2

class Main {

public static
Pt3 p3345
Pt3 p3678

System.
System.
System.
System.

out
out
out
out

void main(String[] args) {

new Pt3(3, 4, 5);
new Pt3(6, 7, 8);

.println(p3345.x);
.println(p3678.x);
.println (((Pt2)p3345) .x);
.println (((Pt2)p3678).x);

p. 101


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=101
lectures/lecture07/Main.java

Inheritance in Java 2/2 p. 101

CS4613 Lecture 7: More About Objects
L Inheritance

2024-01-29

L—Inheritance in Java 2/2 ’ p 101

1. We can see both constructors running from the first 4 lines of output
2. We can see that separate objects are allocated for the superclass from the
second 4 lines of output


https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=101
lectures/lecture07/Main.java
https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=101

Desugared inheritance 1/2

B8 (define (node/size v 1 r)
(let ([parent-object (node v 1 r)l)
(lambda (m)
(case m

[(size) (lambda () (+ 1
(msg 1 'size)
(msg r 'size)))]

[else (parent-object m)]))))

(define (mt/size)
(let ([parent-object (mt)])
(lambda (m)
(case m
[(size) (lambda () 0)]

NrMal1enr (navont_nrnhaorcrtr mYTYHY)D)


lectures/lecture07/tree-size.rkt

2024-01-29

Desugared inheritance 1/2

CS4613 Lecture 7: More About Objects
L Inheritance

L Desugared inheritance 1/2

1. This is simplified to use a fixed base class. The version in the book is more
suitable for something like mixins, discussed at the end of the chapter.


lectures/lecture07/tree-size.rkt

Desugared inheritance 2/2

(define a-tree/size
(node/size 10
(node/size 5 (mt/size) (mt/size))
(node/size 15
(node/size 6 (mt/size)
(mt/size))
(mt/size))))

(test (msg a-tree/size 'sum) (+ 10 5 15 6))
(test (msg a-tree/size 'size) 4)



	Objects that refer to themselves
	Dynamic dispatch
	Inheritance

