
Python generators

p. 185

counter2 def nats():
n = 0
while True:

yield n
n += 1

g = nats()

print(next(g) + next(g) + next(g))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=185
lectures/lecture15/counter1.py


An infinite loop with side effects

loop (let ([n 0])
(define (loop)

(displayln n)
(set! n (add1 n))
(loop))

(loop))

I nothing surprising, but things clearly happen before the loop
finishes

lectures/lecture15/loop.rkt


Wrap the loop in (generator ...)

counter2 (define nats
(generator ()

(let ([n 0])
(define (loop)

(yield n)
(set! n (add1 n))
(loop))

(loop))))

I replace displayln with yield
I g can be suspended and restarted
I trace the control flow in the debugger

lectures/lecture15/counter2.rkt


(sortof) Translating to SMoL
(deffun (yield n) n)

(deffun (gen)
(defvar n 0)
(deffun (loop)

(yield n)
(set! n (+ n 1))
(loop))

(loop))

(+ (gen) (gen) (gen))stacker

I Starting Loop stacker
I Calling Yield stacker

https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?syntax=Lispy&randomSeed=deffun&nNext=2&program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A
https://www.cs.unb.ca/~bremner/teaching/cs4613/stacker?syntax=Lispy&randomSeed=deffun&nNext=4&program=%28deffun+%28yield+n%29+n%29%0A%0A%28deffun+%28gen%29%0A++%28defvar+n+0%29%0A++%28deffun+%28loop%29%0A++++%28yield+n%29%0A++++%28set%21+n+%28%2B+n+1%29%29%0A++++%28loop%29%29%0A++%28loop%29%29%0A%0A%28%2B+%28gen%29+%28gen%29+%28gen%29%29%0A


Stack of contexts

I We can think about the
bottom (generator) stack as
independent

I in this case especially since it
never returns



What is yield

p. 189
Unlike our fake yield in smol, yield should
I store the generator’s stack,
I return a value to the other stack

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=189


Generators have their own stack I

I break tail call optimization, so we can see the stack

loop2 (let ([n 0])
(define (loop)

(displayln n)
(set! n (add1 n))
(cons (loop) empty))

(loop))

lectures/lecture15/loop2.rkt


Generators have their own stack II

I every time we re-enter nats, we can see the previous stack
levels

counter3 (define nats
(generator ()

(let ([n 0])
(define (nat-loop)

(yield n)
(set! n (add1 n))
(cons (nat-loop) empty))

(nat-loop))))

lectures/lecture15/counter3.rkt


Generator pipelines
p. 191

I An interesting use of generators is to represent infinite
sequences.

odds (define odds
(generator ()

(define (odds-loop)
(let ([n (nats)])

(when (odd? n)
(yield n))

(odds-loop)))
(loop)))

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=191
lectures/lecture15/odds.rkt


Generator pipelines
p. 191

I An interesting use of generators is to represent infinite
sequences.

odds (define odds
(generator ()

(define (odds-loop)
(let ([n (nats)])

(when (odd? n)
(yield n))

(odds-loop)))
(loop)))20

24
-0

3-
13 Generators

Generator pipelines

1. This is translated into racket from the books python example, mainly
because it lets us see the independent stacks of the two generators

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=191
lectures/lecture15/odds.rkt


Generator pipelines II

I Disable TCO, trace the stack in the DrRacket Debugger

odds2 (define odds
(generator ()

(define (odd-loop)
(let ([n (nats)])

(when (odd? n)
(yield n))

(cons (odd-loop) empty)))
(odd-loop)))

lectures/lecture15/odds2.rkt


Continuations

I Consider the context (+ ? (nat) (nat))
I The ? is something like a formal-parameter, and the whole

context is something like a function.
I in racket these contexts are called continuations, and let/cc

is one primitive to work with them.
I (let/cc id body) binds the current continuation to id, and

it can be called like a function in body.



Continuations

I Consider the context (+ ? (nat) (nat))
I The ? is something like a formal-parameter, and the whole

context is something like a function.
I in racket these contexts are called continuations, and let/cc

is one primitive to work with them.
I (let/cc id body) binds the current continuation to id, and

it can be called like a function in body.

20
24

-0
3-

13 Contexts as first class values: continuations

Continuations

1. In fact closures can be used simulate continuations, but it requires a
particular style of writing code called continuation passing style

2. Continuations are a common implementation technique for interpreters, but
less common as a language feature



let/cc examples
p. 209

I Continuations add generalized short circuit evaluation

let/cc ;; (test ? 3)
(test (let/cc k 3) 3)
;; (test ? 3)
(test (let/cc k (k 3)) 3)
;; (test (+ 1 ?) 4 )
(test (+ 1 (let/cc k (k 3))) 4)
;; (test ? 3)
(test (let/cc k (+ 2 (k 3))) 3)
;; (test (+ 1 ?) 4)
(test (+ 1 (let/cc k (+ 2 (k 3)))) 4)

https://www.cs.unb.ca/~bremner/teaching/cs4613/docs/plai-3.2.2.pdf#page=209
lectures/lecture15/let-cc.rkt


Early return
Sequencing expressions (or statements) leads to early return

return (define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

(define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

lectures/lecture15/with-return.rkt


Early return
Sequencing expressions (or statements) leads to early return

return (define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

(define return-k
(make-parameter
(lambda (v) (error 'return "outside with-return"))))

(define (return v) ((parameter-ref return-k) v))

(define-syntax-rule (with-return exprs ...)
(let/cc calling-context

(parameterize ([return-k calling-context])
(begin exprs ...))))

(with-return
(return 42) (/ 1 0))

20
24

-0
3-

13 Contexts as first class values: continuations

Early return

1. From the point of view of the type system, continutations are single
parameter functions

lectures/lecture15/with-return.rkt


Exception handling
I Close related to early return is exception handling

throw1 (define exception (make-parameter identity))

(define (throw msg) ((parameter-ref exception) msg))

(define-syntax-rule
(try expr ... (catch (id) recovers ...))
(let ([recovery (lambda (id) recovers ...)])

(let/cc esc
(parameterize

([exception
(lambda (x) (esc (recovery x)))])

(begin expr ...)))))

lectures/lecture15/throw1.rkt


Using the exception handler

throw1 (try
(throw "abort!")
(/ 1 0)
(display "done")
(catch (x)

(display (string-append "caught " x))))

lectures/lecture15/throw1.rkt


Nested try-catch blocks

throw2 (try
(try
(throw "abort 1\n") (display "unreached 1")
(catch (x) (display (string-append "1:" x))))

(throw "abort 2\n") (display "unreached 2")
(catch (x) (display (string-append "2:" x))))

lectures/lecture15/throw2.rkt


Generators
I Recall the generator form provided by racket/generator
I It looks a bit like the earlier try form.

lgen (define g
(generator ()

(define (loop lst)
(if (empty? lst) #f

(begin
(yield (first lst))
(loop (rest lst)))))

(loop '(a b c))))

lectures/lecture15/list-gen.rkt


Generators
I Recall the generator form provided by racket/generator
I It looks a bit like the earlier try form.

lgen (define g
(generator ()

(define (loop lst)
(if (empty? lst) #f

(begin
(yield (first lst))
(loop (rest lst)))))

(loop '(a b c))))20
24

-0
3-

13 Generators with let/cc

Generators

1. The generators here are based on those discussed in Chapter 14 of PLAI2
http://cs.brown.edu/courses/cs173/2012/book/Control_
Operations.html

2. The approach here relies on parameters (dynamic scope), rather than on
macros (as the version in PLAI).

lectures/lecture15/list-gen.rkt
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html
http://cs.brown.edu/courses/cs173/2012/book/Control_Operations.html


Building Generators

Roughly speaking, generators require two control flow features:
I early return, which we just did, and
I resuming execution, which is more exotic as a language feature



Checkpoints

(define printer
(with-checkpoint

(display "first\n")
(checkpoint!)
(display

"second\n")))

We want that execution restarts
at the last (checkpoint!) reached.

(printer)
(printer)
(printer)

first
second
second
second



Functions with state
last-call that remembers the previous value of its parameter,
and returns that.

last-call (define last-call
(let ([state (none)])

(lambda (n)
(let ([old state])

(begin
(set! state (some n))
old)))))

(test (last-call 1) (none))
(test (last-call 2) (some 1))
(test (last-call 3) (some 2))
(test (last-call 3) (some 3))

lectures/lecture15/last-call.rkt


Functions with state
last-call that remembers the previous value of its parameter,
and returns that.

last-call (define last-call
(let ([state (none)])

(lambda (n)
(let ([old state])

(begin
(set! state (some n))
old)))))

(test (last-call 1) (none))
(test (last-call 2) (some 1))
(test (last-call 3) (some 2))
(test (last-call 3) (some 3))

20
24

-0
3-

13 Generators with let/cc

Functions with state

1. We could combine boxes with closures for this, but since we don’t need the
pass-by-reference features of boxes, we will use the usually-forbidden set!
instead

2. The ”tricky” bit is the use of let to define a variable to preserve the state
in. This variable is visible only inside the define. This ”let-over-lambda”
pattern should be fairly familiar by now.

3. Note also the use of the plait Option type. This could be avoided in plain
racket or typed/racket

lectures/lecture15/last-call.rkt


Building checkpoint
Use let/cc inside checkpoint to capture the call site.

printer (define (checkpoint!) ((parameter-ref cpthunk)))
(define-syntax-rule (with-checkpoint body ...)

(let* ([last-checkpoint (none)])
(lambda ()

(parameterize
([cpthunk

(lambda ()
(let/cc k

(set! last-checkpoint (some k))))])
(type-case (Optionof (Void -> 'a))

last-checkpoint
[(none) (begin body ...)]
[(some k) (k (void))])))))

lectures/lecture15/printer.rkt


Building checkpoint
Use let/cc inside checkpoint to capture the call site.

printer (define (checkpoint!) ((parameter-ref cpthunk)))
(define-syntax-rule (with-checkpoint body ...)

(let* ([last-checkpoint (none)])
(lambda ()

(parameterize
([cpthunk

(lambda ()
(let/cc k

(set! last-checkpoint (some k))))])
(type-case (Optionof (Void -> 'a))

last-checkpoint
[(none) (begin body ...)]
[(some k) (k (void))])))))

20
24

-0
3-

13 Generators with let/cc

Building checkpoint

1. Now that we know how to store store things for future invocations of a
function, we can use a combination of ‘let‘ and ‘set¡ to store a continuation.

2. We might loosely call the place where checkpoint! is invoked the call site

lectures/lecture15/printer.rkt


Generators
I two uses of let/cc

generator (let/cc dyn-k ;; generator call site
(parameterize ([yield-param

(lambda (v)
(let/cc gen-k ;; yield call site

(begin
(set! last-checkpoint

(some gen-k))
(dyn-k v))))])

(type-case (Optionof ('a -> 'b)) last-checkpoint
[(none) (let ([arg v]) (begin exprs ...))]
[(some k) (k v)])))

lectures/lecture15/generator.rkt


Using the generator 1/2

generator (define g1
(generator (v)

(letrec ([loop (lambda (n)
(begin

(yield n)
(loop (+ n 1))))])

(loop v))))

(g1 10) (g1 10) (g1 10)

lectures/lecture15/generator.rkt


Using the generator 1/2

generator (define g2
(generator (v)

(letrec ([loop (lambda (n)
(loop (+ (yield n) n)))])

(loop v))))

(g2 10) (g2 10) (g2 10)

lectures/lecture15/generator.rkt


Using the generator 1/2

generator (define g2
(generator (v)

(letrec ([loop (lambda (n)
(loop (+ (yield n) n)))])

(loop v))))

(g2 10) (g2 10) (g2 10)

20
24

-0
3-

13 Generators with let/cc

Using the generator 1/2

1. The identifier names are different, but my generator solution
is based on the macro based solution from [Chapter 14 of
PLAI](http://cs.brown.edu/courses/cs173/2012/book/ControlOperations.html).Theversionheremakesmoreextensiveuseofdynamicscope.Therearebetterwaystodefinebindingslikeyieldbuttheyneedmoreadvancedmacrotools.

lectures/lecture15/generator.rkt

	Generators
	Contexts as first class values: continuations
	Generators with let/cc

