
Garbage Collection

David Bremner

March 24, 2024



Automatic memory management

I PLAI2 chapter 11
I Garbage Collection Handbook
I https:

//docs.racket-lang.org/plai/gc2-collector.html
I https:

//docs.racket-lang.org/plai/gc2-mutator.html

https://docs.racket-lang.org/plai/gc2-collector.html
https://docs.racket-lang.org/plai/gc2-collector.html
https://docs.racket-lang.org/plai/gc2-mutator.html
https://docs.racket-lang.org/plai/gc2-mutator.html


The argument for automatic storage management

Manual is hard 2253 / 2263 / C programming in general
Manual is error prone Both security bugs and memory leaks are

common with manually managed storage.



When can we automatically free an object

I When we can guarantee that it won’t be used again in the
computation (ground truth).

I this is too hard.

Two conservative approximations
Reference counting when number of references reaches zero (leave

for later)
Garbage collection when an object is not reachable from roots



Garbage Collection

I Values reachable directly (without pointers) are live (the roots)
E.g., values on the stack and in registers

I A record referenced by a live record is also live
I A program can only possibly use live records, because there is

no way to get to other records
I A garbage collector frees all records that are not live
I Allocate until we run out of memory, then run a garbage

collector to get more space



Garbage Collection Algorithm

I Color all records white
I Color records referenced by registers gray
I Repeat until there are no gray records:

I Pick a gray record, r
I For each white record that r points to, make it gray
I Color r black

I Deallocate all white records



Garbage Collection

I All records are marked white



Garbage Collection

I Mark records referenced by registers as
gray



Garbage Collection

I Need to pick a gray record
I Red arrow indicates the chosen record



Garbage Collection

Mark white records referenced by chosen
record as gray



Garbage Collection

Mark chosen record black



Garbage Collection

Start again: pick a gray record



Garbage Collection

No referenced records; mark black



Garbage Collection

Start again: pick a gray record



Garbage Collection

Mark white records referenced by chosen
record as gray



Garbage Collection

Mark chosen record black



Garbage Collection

Start again: pick a gray record



Garbage Collection

No referenced white records; mark black



Garbage Collection

I No more gray records; deallocate white
records

I Cycles do not break garbage collection
(spoiler re: Reference counting)



Mutators and Collectors(s)
Programs divided into two parts
collector manages the heap, allocates memory, collects garbage to

free space
mutator asks the collector for memory, does the work the

program is supposed to do
I from now on mostly used for test cases

collector API called by mutator
I Allocate a number,
I Allocate a pair,
I Give me the first element of that pair, …



PLAI GC language(s)

Two languages
I #lang plai/gc2/collector

I #lang plai/gc2/mutator

Collectors implement a specific API
I See the docs: search for init-allocator

Collectors use an API provided by the collector language
I See the docs: search for heap-ref



PLAI GC language(s)
Two languages
I #lang plai/gc2/collector, #lang plai/gc2/mutator

The mutator language transforms mutators to
I keep track of roots
I make allocations explicit
I use the collector API

Mutators are (mostly) regular PLAI (racket) programs
I No need to use the (low-level) collector API directly!



Heap Model

I Like Lectures 10 - 11, but with symbols for tags.
I Heap is a vector of values
I Collector and mutator language are dynamically typed,

allowing non-homogeneous heap.
I All values need to be allocated in the heap
I All values need to be tagged (to remember their type)



Atomic and compound values

I Atomic values include, numbers, symbols, booleans, and the
empty list.

I Conceptually these fit in one cell; this is somewhat of a lie.
I Compound values include pairs and closures



Roots and compound values
Mutator creates roots to avoid race condition.

cons-ex (define (cons-test)
(cons 1 2))

(define the-cons (cons-test))

I i.e. 1 and 2 are on the heap, but nothing references them until
the cons is allocated.

lectures/lecture18/cons-ex.rkt


A non-collecting collector

I Put the allocation pointer at address 0 (visible)
I Allocate all constants in the heap, tag them with ’flat
I Allocate all conses in the heap, tag them with ’cons
I Allocate all closures in the heap, tag them with ’clos



Low level allocation
(define (init-allocator)

(heap-set! 0 1))

(define (malloc n)
(define addr (heap-ref 0))
(unless (<= (+ addr n) (heap-size))

(error 'allocator "out of memory"))
(heap-set! 0 (+ addr n))
addr)



Atomic values
(define (gc:alloc-flat x)

(define addr (malloc 2))
(heap-set! addr 'flat)
(heap-set! (+ addr 1) x)
addr)

(define (gc:deref addr)
(unless (equal? (heap-ref addr) 'flat)

(error 'gc:deref "not a flat at ~a" addr))
(heap-ref (+ addr 1)))



Allocating pairs

(define (gc:cons f r)
(define addr (malloc 3))
(heap-set! addr 'cons)
(heap-set! (+ addr 1) (read-root f))
(heap-set! (+ addr 2) (read-root r))
addr)



Accessing pairs

(define (gc:first addr)
(check-pair addr)
(heap-ref (+ addr 1)))

(define (gc:rest addr)
(check-pair addr)
(heap-ref (+ addr 2)))



Allocating closures 1/2

closure-ex (let ([x 100]
[y 1000])

(lambda () (+ x y)))

lectures/lecture18/closure-ex.rkt


Allocating closures 2/2
(define (gc:closure code-pointer free-vars)

(define addr (malloc (+ 2 (length free-vars))))
(heap-set! addr 'clos)
(heap-set! (+ addr 1) code-pointer)
(for ([i (in-range 0 (length free-vars))]

[v (in-list free-vars)])
(heap-set! (+ addr 2 i)

(read-root v)))
addr)



Testing a collector without a mutator

(with-heap h-expr body-exprs ...)

I h-expr must evaluate to a vector
I that vector is used for heap-ref and heap-set!

I body-exprs can (must) use the collector API.



Testing the non-collecting collector

null-gc (module+ test
(with-heap (vector 'x 'x 'x 'x 'x)

(init-allocator)
(gc:alloc-flat #f)
(test (current-heap) (vector 3 'flat #f 'x 'x))))

lectures/lecture18/null-gc.rkt


Testing our non-collecting collector
null-gc (module+ test

(with-heap (vector 'x 'x 'x 'x 'x 'x 'x 'x 'x)
(init-allocator)
(gc:cons

(simple-root (gc:alloc-flat #f))
(simple-root (gc:alloc-flat #t)))

(test (current-heap)
(vector 8 'flat #f 'flat #t 'cons 1 3 'x))))

lectures/lecture18/null-gc.rkt


Testing with mutator programs
cons2 (allocator-setup "null-gc.rkt" 20) ; heap size

(define c1 (cons 2 (cons 3 empty)))
(define c2 (cons 1 c1))

(test/location=? (rest c2) c1) ; point to same location

(test/value=? (rest c1) '(3)) ; produce same value

lectures/lecture18/cons2.rkt


Our friend fib
fib (allocator-setup "null-gc.rkt" 160)

(define (fib n)
(cond

[(<= n 1) 1]
[else (+ (fib (- n 1)) (fib (- n 2)))]))

(fib 5)

lectures/lecture18/fib.rkt

	Overview and Motivation
	Garbage Collection
	plai/gc
	First plai/gc collector

