
Context Switching in a Hardware/Software Co-Design of the Java Virtual
Machine

Kenneth B. Kent and Micaela Serra
University of Victoria

Dept. of Computer Science
Victoria, British Columbia, Canada

{ken,mserra}@csc.uvic.ca

Abstract

This paper introduces the idea of using a field
programmable gate array (FPGA) in a
hardware/software co-design of the Java virtual machine.
The paper will discuss the partitioning of instructions and
support for the virtual machine. Discussion will follow
concerning the context switching between the two
partitions and its importance. Several algorithms are
described and analyzed with results from several
benchmarks used to assist the discussion. The paper will
conclude with a decision on the most suitable algorithm
and the justification.

1. Introduction

Since its introduction, many people have directed
resources into moving Java away from the interpreter to
increase performance. Adding hardware support for the
virtual machine has been seen as one means to attain the
performance increase. This idea can be accomplished in
either one of three ways: (i) create a general
microprocessor that is optimized for Java, yet still
functions as a general processor; (ii) make a stand-alone
Java processor that runs as a dedicated Java virtual
machine; or (iii) create a Java co-processor that works in
unison with the general microprocessor [1,2,8-10]. This
work makes advancements towards accomplishing the co-
processor approach to work in unison with a general
microprocessor to increase Java performance [6]. This
paper will address the following steps in realizing this
goal:

• Justification of why choosing the co-processor
solution over the other possibilities is a better
solution.

• Describe the partitioning and the instructions that
are supported in each of them.

• Discuss the context switching problem and the
various algorithms that will be examined for a
solution.

• Present a comparison of the results of each
algorithm and assess their suitability.

2. Co-Processor Idea

When discussing the approach of implementing the
Java virtual machine as a co-processor, what exactly is
being implied? Our goal is to provide a full Java virtual
machine for a desktop workstation [7]. For the purposes
of this research, we are not proposing to attach a co-
processor to the mainboard of a system. Rather, the co-
processor should be accessible through one of the many
system busses, figure 1. This will allow for efficient
design research and testing of various configurations and
optimizations. This is easily attainable due to the
availability of field programmable gate array (FPGA) add-
on cards that can be added to a system. One of these cards
can be used to perform verification and testing of the
design. Any research results that are obtained will apply
just the same as if the co-processor was attached to the
mainboard directly. The two significant differences
between the co-processor being on an add-on card as
opposed to being on the mainboard is the slower
communication connection and more importantly the two
distinct regions of memory, as opposed to sharing a
common memory space. An additional advantage of this
approach is that the reconfigurable co-processor can be
used for other hardware acceleration applications as
needed, exploiting indeed the true power of FPGA boards.
Here we focus on Java, yet the research will yield a
general framework for other virtual machines and other
applications.

Different hardware solutions have their merits and
flaws. The Java co-processor has the most appealing value
in that it does not replace any existing technology; instead

it supplements current technology to solve the problem.
This approach also allows for easier research. At this
point in time there has not been enough research
performed to show that either of the approaches can
provide sufficient gains in performance to justify the
costs.

Possibly the greatest advantage of this solution is that
there will now be two processing units available for
execution. With some scheduling techniques the virtual
machine can take advantage of this by using both units
together in parallel, potentially rendering better
performance than other Java acceleration techniques, such
as JIT’s. The parallelism may also provide a better
platform by which real-time support can be added to the
virtual machine, when it is later incorporated into the Java
platform.

In comparison to a stand-alone Java processor, this
solution provides greater flexibility to adapt to future
revisions to the Java platform. Since its birth, Java has
experienced changes in all areas. The API is constantly
changing and, with it, the virtual machine itself has
changed and will continue to change with better garbage
collection techniques being devised. With a
reconfigurable co-processor, changes in Java can be more
easily integrated and made readily available. If the
technology were part of the main processor, this would
not be as easy a task. In addition, providing a Java only
processor will just change the problem at hand and not fix
it. Simply the tables will be turned and Java applications
will run fast, while C and other programming languages
will be suffering from decreased performance of having to
execute through a non-native processor. With the different
execution architecture paradigms, a simple solution will
not be available.

 If Java were to be incorporated into the main
processor unit, there would have to be some trade-offs
between execution for Java and for legacy programming
languages such as C. Surely some of these trade-offs will
make it difficult to provide optimizations for execution
within the processing unit. Wayner says: “An advantage
for Java chip proponents is how complex it is to design a
chip for fast C and Java code performance” [11]. To
design a viable chip for both is complex since users will
definitely not want to see a decrease in the performance of

their current applications to see an increase for Java
applications.

The Java co-processor solution also has the benefit of
choice. With it available as an add-on card, systems that
are not required to provide fast execution of Java can
simply continue using a fully software solution. Systems
that do require fast Java execution can plug-in the card
and increase performance without having to replace any of
their current components or more drastically having to
move to another system all together. As seen with other
similar products such as video accelerators, this is the
preferred solution for consumers. Finally, the plug-in card
can be used as a co-processor for other applications, given
its reconfigurability.

3. Partitioning and Design

The Java virtual machine is comprised of two parts: a
low level instruction set from which all the Java language
can be composed, and a high level operating system to
control flow of execution, object manipulation, and device
controllers. To partition the Java virtual machine between
hardware and software the first step is the realization of
what choices are to be made. Since part of the virtual
machine is high level operating control, it is impossible to
transfer this work into hardware due to its restrictions.
This leads to investigating the instruction set of Java to
determine what is capable of being implemented in
hardware.

3.1 Software Partition

The instructions that must remain in software are those
designed for performing object-oriented operations. These
include instructions for accessing object data, creating
object instances, invoking object methods, type checking,
using synchronization monitors, and exception support.

Each of these object-oriented instructions requires
support that cannot be implemented in hardware since
they need class loading and verification. Loading and
verification involve locating the bytecode for a class,
either from disk or a network, and verifying that it does
not contain any security violations. Once the bytecode is
verified, if the instruction requires creation of an object
then the creation may require accessing the virtual
machine memory heap and the list of runnable objects.
This process requires complex execution and a significant
amount of communication with the host system. As such,
it is better to execute the instruction entirely on the host
system than within the Java co-processor hardware.

Exceptions are a very complex mechanism to
implement in any situation. The reason for this is the
effects that an exception can have on the calling stack and
the flow of execution. Within the virtual machine it could

Figure 1: Hardware Architecture

memory

Intel
CPU

memory

Xilinx
FPGA

PCI Bus

involve folding back several calling stacks to find a
location where the exception is finally caught. An
exception in Java also involves the creation of an
Exception object that is passed back to the location where
the exception is caught. This can result in class loading
and verifying as part of the exception throwing process.
As a result of this potential complexity, the exception
instructions are implemented in software where
manipulating the execution stack is more easily
performed.

3.2 Hardware Partition

For each instruction it is obvious that if more can be
implemented in hardware the better it is, since the overall
purpose of this design is to obtain faster execution.
Additionally, all instructions can be implemented in
software, as shown by current implementations of the Java
virtual machine. So for a preliminary investigation, the
research entails determining if an instruction can be
moved from software to hardware. We look at grouping of
instructions to be implemented in hardware with a brief
explanation as to why the decision was made.

Some of the instructions that exist in the Java virtual
machine are instructions that can be found in any
processor. As such there is no question that these
instructions can be implemented in the hardware partition
of the Java machine. These instructions include: constant
operations, stack manipulation, arithmetic instructions,
shift and logical operations, type casting, comparison and
branching, jump and return, and data loading and storing
instructions. Some of these instructions also include
instructions that are typically found in a floating-point unit
co-processor.

In addition there are other Java specific instructions
that can be implemented in hardware. These instructions
are mostly the quick versions of the object-oriented
instructions. It is these instructions that differ the Java
hardware co-processor from other microprocessors. These
instructions are used for creating new objects, accessing
synchronization monitors, invoking object methods, and
accessing object data. Once these instructions are invoked
upon an object, subsequent calls can use the quick version
that does not require class loading or verification. It is the
implementation of these instructions in hardware that can
contribute to the hardware speed-up of Java.

4. Context Switching

With the addition of a second processing unit, there is the
burden of determining when and if the execution should
be moved from one unit to the other. Since the
architecture has two distinct memory systems for each
processing unit, the cost of a context switch from one unit

to another is high due to the penalty in transferring the
necessary data between memory subsystems. With this
high cost, it is necessary to only perform a context switch
in instances where the performance gain of making the
transition will result in a significant gain that out weights
the cost of the context switch. If the penalty for context
switching is too high in comparison to the gains of
hardware execution, it will be necessary to reduce the
context switching latency by moving the FPGA closer to
the host system. This can be done by connecting the
FPGA to a faster dedicated bus, or by placing the FPGA
directly onto the host mainboard. The next section
discusses several algorithms that were used to perform a
run-time analysis of the Java bytecode to mark appropriate
locations where performing a context switch is
worthwhile. Currently, this analysis needs to be done at
run-time since any changes made to the bytecode at
compile time will result in the loss of portability. If the
augmenting of the bytecode were to take place at compile
time, a more in-depth analysis could take place and a
resulting better algorithm could be used. This would
completely eliminate the performance hit at run-time.

Several measurements were taken to determine the
actual cost of communication between the host and the co-
processor connected through the PCI bus. Context
switches will vary in cost depending on the amount of data
that must be transferred which is dependent upon the
current execution state. Our development environment,
the HOT-IIXL board, contains 4Mb of user memory, so
we tested both extremes of data transfer [5]. For 100
transfers of zero data, i.e. a simple handshake, 4022 cycles
were required. For 100 context switches with transfers of
4Mb data in each direction, 71926957 cycles were used.
Tests were performed on a 750Mhz Pentium III host,
which provides 1193180 cycles/second of computation.
This clearly shows the high cost in performing a context
switch, especially when a high data transfer is required.

5. Context Switching Algorithms

There are three basic algorithms that were
investigated: pessimistic, optimistic, and pushy. Each of
these algorithms analyzes the methods found within each
of the classes that are requested for loading during the
execution of a given Java program. The algorithms insert
new opcodes into the methods that result in a context
switch from one processing unit to another. With the
addition of bytecodes into the methods, the class structure
itself is changed to reflect this and make the class legal for
classloading. Each of the algorithms work on the basic
idea of creating blocks of bytecodes that can be executed
within the hardware accelerator. The analysis to create the
blocks is done on the bytecodes being executed
sequentially. A better analysis is more than likely possible

by investigating the branching structure of the bytecode,
however such an analysis is too costly to perform at run-
time, especially with no predictive branching model for
the application [3].

In analyzing the algorithms, not only do the algorithms
need to be compared, but also the optimal block size must
be considered. If the minimum block size is chosen
(size=1) then a context switch to hardware will occur for
every instruction that can be executed in the co-processor.
This will result in many instances of context switching to
execute one instruction. Clearly, this will result in slower
performance. If a ridiculously high block size is chosen,
then very few, if any, hardware blocks will be found and
all execution will take place in software. This is
complicated by the fact that branching instructions within
a block can result in effectively shortening the block. Thus
finding a block size, in addition to an algorithm, to
minimize context switching but maximize hardware
execution is critical.

The following subsections discuss the various
algorithms that were investigated. For simplicity in the
discussion, the portion of the virtual machine
implemented on the FPGA will be referred to as the
hardware side/unit.

5.1 Pessimistic Approach

An approach taken to blocking code for execution in
the hardware unit is to assume the worst case scenario.
This approach only inserts instructions to context switch
to hardware in the event that the next predefined number
of sequential instructions it sees are to be executed in
hardware. Context switching back to the software partition
occurs when an instruction is encountered in hardware
that is not supported. Any instructions that are initially
software instructions, before being changed into the
hardware quick versions, are considered to be software
only instructions. This ensures that if no branching takes
place in the block of instructions, then the minimum
number of instructions will be executed to offset the cost
of performing the context switch.

The resulting drawback of this approach is that the
execution becomes more software bound than hardware
bound. This is due to two different characteristics of the
bytecode. First, that there are a minimal number of blocks
of sequential instructions made up of these types of
instructions. As a result there are few context switch
instructions added into the methods and execution tends to
stay within the software partition. The second
characteristic is that blocks of bytecode that contain
instructions that will later be transformed into hardware
instructions will never be tagged to be executed in
hardware. Once transformed, if the instruction is
encountered while executing in hardware, it will be

executed there, but the algorithm fails to push the
execution to hardware if the instruction is encountered in
software.

5.2 Optimistic Approach

The optimistic approach attempts to capture the
instances of sequential bytecodes where some of the
instructions are initially software instructions, but will
later be transformed into hardware instructions. This is
accomplished by assuming that this class of instructions is
executable in hardware during the augmenting process.
This is done with the desire of creating more blocks of
instructions, which can be executed in the hardware
partition, thus resulting in more context switch
instructions. As with the pessimistic approach, execution
stays in the hardware partition until an instruction is
encountered that requires execution in the software
partition. To eliminate useless context switching where a
context switch to hardware instruction is immediately
followed by a software instruction, a check is made before
every context switch to ensure that the next instruction is
truly a hardware instruction.

The resulting drawback of this approach is that in
some cases this results in fewer context switches to
hardware. This is due to instances where previously two
blocks were delimited for execution separated by a
transforming instruction. Consider figure 2 where
previously two hardware blocks may have been created,
instead 1 larger block is used. Upon first execution of the
block, execution will switch back to the software side on
line 3, to change the instruction to its quick form. Thus,
first execution of the block will be performed in software,
subsequent executions will occur in hardware. In the event
that the block is executed only once, then no execution
will occur in hardware. More importantly, it is possible
that the loop in the block may be computationally
intensive. The previous algorithm may have inserted
context switch instructions inside the loop and triggered
execution in hardware, but the optimistic algorithm wants
to create the one large block. The optimistic approach
fairs no better in forcing execution into the hardware
partition when possible due to a lack of context switch
instruction(s) in the appropriate place(s)

Figure 2: Bytecode Example

1: sw
2: conshw
3: sw/hw instruction
4: label: hw
5: sw/hw instruction
6: …
7: hw
8: goto label

5.3 Pushy Approach

The pushy algorithm attempts to “force” execution
back into the hardware partition whenever possible. This
is accomplished by modifying the optimistic approach
such that whenever an instruction is encountered in the
hardware partition that forces execution back into
software, the instruction is executed in software as
required, but the virtual machine attempts to force the
execution back to the hardware partition as soon as
possible. A context switch to software instruction signifies
any instance where execution is desired to be in the
software partition.

This has a positive effect on blocks that are executed
multiple times. After the initial execution, the Java
instructions that invoke the transition from hardware to
software change to become hardware instructions
themselves. Thus, if only one explicit context to hardware
instruction is seen, the block of byte code will still execute
in hardware. This has a negative effect on blocks that are
executed only once. In these cases, the execution flow
jumps back and forth between partitions as it attempts to
force execution in hardware.

Additional improvements were tried with the pushy
algorithm to perform a further look ahead when
determining to push the execution back to hardware. This
was accomplished by looking ahead to verify that the next
two instructions were executable in hardware. This used
the assumption that the execution flow would follow
sequentially and not branch to a different location. The
results of comparing the two look ahead techniques
showed that the gain was very little. This is due to the
infrequent number of instances where execution is pushed
back into hardware. The additional penalty for looking
ahead further does not outweigh the number of saved
context switches.

6. Results

Any numerical results obtained are highly dependent
on the benchmarks chosen. To determine the performance
and characteristics of the various algorithms, benchmarks
from the standard specJVM98 test suite were used [4].
This does not guarantee the results are not skewed based
on the benchmarks, but the tests are intended to be a
representative set of Java programs. For this work, all
benchmarks, which provided source code, were used.
Thus, the tests used were jess, raytrace, mtrt (multi-
threaded raytrace), db, and compress. Two other in-house
tests, namely mandel (calculate the mandelbrot set) and
queens (calculate 8-queens problem), were also used.

Several interesting characteristics showed with the
algorithms and the benchmarks. One interesting

characteristic is that in some cases, the optimistic
approach performed very poorly in comparison to the
pessimistic and pushy approaches. This can be seen in the
Mandelbrot test shown in figure 3 where the optimistic
had nearly 0% hardware instructions for all block sizes,
while pessimistic and pushy reached almost 100%. This is
due to the instance where a block of bytecode that is
wrapped by context switch instructions, contains a loop
that dominates the execution time, but consists of an
initial software instruction, as previously described in
section 5.2. This effect does not occur in the other two
algorithms.

However, in other cases, the pessimistic approach
faired poorly in executing instructions in hardware. This is
a result of the dominating execution points having a high
concentration of first time software instructions. This high
concentration results in very few or no context switch
instructions to be added. Thus all of the execution takes
place in software. This does not happen with the other
algorithms as they desire to push the instructions to
hardware on subsequent executions of the bytecode.
Figure 4 shows the percentage of instructions executed in
hardware for the Jess benchmark. As the block size gets
bigger, the amount of execution in hardware drops to

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Block Size

P
er

ce
n

ta
g

e

pessimistic optimistic pushy

Figure 3: Mandelbrot Percentage Hardware Instructions

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Block Size

P
er

ce
n

ta
g

e

pessimistic optimistic pushy

Figure 4: Jess Percentage Hardware Instructions

almost a negligible amount very quickly. This effect
happens for all benchmarks with the pessimistic approach,
but at different block sizes.

If one examines, the algorithms together over all of the
benchmarks, figure 5, it is seen that the pushy algorithm
performs best for providing a high amount of execution on
the hardware partition. This is very important since the
higher volume of execution in the hardware partition will
increase performance both by executing in the faster
hardware partition, but as well by providing a large
window where parallelism can be used. It must also be
considered that the pushy algorithm contains a greater
level of run-time logic required to determine if execution
should return to hardware after a context switch to
software.

Another concern is: what is the optimal block size?
Figure 5 shows that as like other algorithms the
percentage of execution in hardware slowly decreases as
the block size gets larger. However, for the pushy
algorithm the decline is much less dramatic. Figure 6
depicting the average number of instructions per context
switch, shows that the pushy algorithm performs best for
blocks of size 7-10, with local maximum of 8. Further

sampling of the various Java programs may show a better
block size.

7. Conclusions and Summary

From the results presented above it can be clearly seen
that all of the algorithms are very susceptible to
characteristics that vary between applications. As such,
any given algorithm could perform best depending on the
Java application. If the augmenting of bytecode were to
take place at compile time, a better algorithm could be
used that could be more adaptive to the characteristics
prevalent in the bytecode. This would also eliminate the
performance hit at run-time, resulting in even higher
performance gains.

Parallelism will be a dominant factor in how much
performance increase is attained. The more execution that
takes place in hardware will allow for more parallelism!
Forcing the execution of bytecode in hardware may not
itself contribute to a performance increase once the
context switch cost is factored in, but it will provide an
opportunity for parallelism that will provide an increase.

The results attained look promising for the percentage
of execution that can take place in hardware and the
relatively low number of context switches that are
necessary to attain it.

12. References

[1] Aoki, Takashi, and Eto, Takeshi. On the Software Virtual
Machine for the Real Hardware Stack Machine. USENIX Java
Virtual Machine Research and Technology Symposium, April,
2001.
[2] El-Kharashi, M. W., ElGuibaly, F., and Li K. F. An Operand
Extraction-Based Stack Folding Algorithm for Java Processors.
International Conference on Computer Design, 2000.
[3] Hecht, Matthew S. Flow Analysis of Computer Programs.
The Computer Science Library Programming Language Series.
Elsevier North-Holland, 1977.
[4] http://www.spec.org/osg/jvm98. Standard Performance
Evaluation Corporation, November 1997.
[5] http://www.vcc.com/Hotii.html. Virtual Computer
Corporation, July 2001.
[6] Kent, Kenneth B. and Serra, Micaela, Hardware/Software
Co-Design of a Java Virtual Machine, 11th IEEE International
Workshop on Rapid Systems Prototyping, June 21-23, 2000.
[7] Lindholm, Tim and Yellin, Frank, The Java Virtual Machine
Specification, Addison Wesley, September 1996.
[8] Sun Microsystems, The Java Chip Processor: Redefining the
Processor Market, Sun Microsystems, November 1997.
[9] Sun Microsystems. picoJava-I: picoJava-I Core
Microprocessor Architecture. Sun Microsystems white paper,
October 1996.
[10] Sun Microsystems. picoJava-II: Java Processor Core. Sun
Microsystems data sheet, April 1998.
[11] Wayner, P. Sun Gambles on Java Chips. BYTE. November
1996.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Block Size

P
er

ce
n

ta
g

e

pessimistic optimistic pushy

Figure 5: Average Percentage Instructions/Context Switch

Figure 6: Average Number Instructions/Context Switch

0

100

200

300

400

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Block Size

In
st

 /
C

o
n

te
xt

 S
w

it
ch

pessimistic optimistic pushy

