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Abstract 

This paper addresses the physical hardware requirements 
necessary for a co-design hardware/software virtual ma-
chine to not only exist, but to also provide comparable per-
formance with other implementation techniques for virtual 
machines. The discussion will center on requirements of the 
reconfigurable device and it’s peripheral connections to 
main memory and the general-purpose processor. 

1 Introduction 

To provide context for the requirements, the idea of a co-
designed virtual machine must first be given. A virtual ma-
chine for the purposes of this paper is considered to be a 
general-purpose computing platform that does not physi-
cally exist. For example, the Java virtual machine or the 
Common Language Runtime (CLR). The virtual machine 
consists of more or less a high-level operating system and a 
low-level computer architecture. Depending on the virtual 
machine implementation, the division between the two can 
be clear or very imprecise. Virtual machines have found a 
niche in general purpose computing as it provides flexibility 
in updating and revising the hardware architecture that is 
not easily available with a physical processor. Homogene-
ous computing also utilizes virtual machines because of 
their tremendous level of portability while maintaining a 
common platform interface. 

A co-designed virtual machine looks to exploit the natu-
ral split in the virtual machine of hardware and software. 
While keeping the same common platform interface and 
portability, the virtual machine is provided through not just 
a software implementation, but a software and hardware 
one. The high-level operating system constructs and func-
tionality remain in software, executing within a general-
purpose processor, but the underlying hardware architecture 
is provided through the use of a reconfigurable device. Util-
izing the parallel nature of hardware, the performance of the 
virtual machine can be increased by simply executing the 
fetch-decode-execute cycle in hardware [6]. An abstract 

view of the new system can be seen in Figure 1. The poten-
tial for a performance increase can be immediately seen in 
this new paradigm. The use of a dedicated hardware imple-
mentation in general can provide a performance increase 
over a software implementation executing in a shared multi-
processing environment. There now exist two processing 
units, the reconfigurable device and the general-purpose 
processor, making parallel execution possible.  

This approach is not desired to rely upon a specialized 
system for its success, other than the reconfigurable device 
itself. All of the required resources that are utilized in the 
abstract view of the platform are readily available. Cheap 
workstations are currently being used to execute the soft-
ware implementation. A desirable solution is to simply inte-
grate the reconfigurable device into the workstation. What 
is unclear however are the requirements of the reconfigur-
able device and its communication interconnects. For this, 
there are several questions that must be examined: 

• Device size. What is the size of the device required 
in order to provide a performance increase? 

• Device speed. What is the device speed needed in 
order to compete with the speed of the general-
purpose processor? 

• Memory size. How much memory is required for the 
reconfigurable device to perform its computations? 
Does it need access to all of the virtual machine 
data? 

• Memory speed. What is the required communication 
rate between the reconfigurable device and the 
memory system? 

• Communication rate. What is the bandwidth needed 
to support communication between the general-
purpose processor and the reconfigurable device? 

The remainder of this paper will address each of these 
questions and try to provide an answer. 

Within this environment, the reconfigurable device is not 
investigated for its capabilities in reconfiguration. For the 
purposes of this research, the reconfigurable device is used 
in a static context.  While it may be suitable for the underly-



ing hardware architecture of some virtual machines to 
change, it may not be in others. For this reason a virtual 
machine specific static configuration will be used on the 
programmable device.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 An abstract view of a co-designed virtual ma-
chine. 

2 Java Virtual Machine 

It can be quickly seen that the answers to each of these 
questions are significantly dependent upon the specific vir-
tual machine. In some virtual machines, the relationship 
between the operating system and hardware architecture is 
loose and does not require significant communication be-
tween them for the majority of the execution time. While 
other virtual machines may rely upon a much tighter inte-
gration between the two partitions. While it is possible to 
extract some requirements information from an abstract 
examination, it is more fruitful to use a test case virtual ma-
chine. It was decided to look at these questions specifically 
in respect to the Java virtual machine. 

The Java virtual machine was chosen for several reasons. 
First, that it is reasonably representative of virtual machines 
in general. It contains both operating system and hardware 
architecture attributes, and these are both clearly divisible. 
Second, the Java virtual machine is a mature test case. 
Much research has been conducted on the Java virtual ma-
chine and its performance issues [1,3,4,9]. Using this test 
case can also show the potential performance increases in 
relation to other acceleration techniques. Finally, there is 
also readily available source code for the virtual machine to 
assist in the investigation and standard benchmarks exist for 
measuring performance and testing the execution correct-
ness. To test the co-designed Java virtual machine and gen-
erate performance data that can be analyzed, the SpecJVM 
test suite was used [10]. Unfortunately, not all of the tests 

from the test suite could be used due to the limited capabili-
ties of the simulation environment for handling multithread-
ing. Figure 2 shows the performance of each of the bench-
marks used in relation to the original execution times and 
the performance increases obtainable under an ideal devel-
opment environment1. 
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Figure 2 Overall performance increases attainable from 
a co-design Java virtual machine running under ideal 
conditions. 

The co-designed Java virtual machine that will be used 
for this inspection of necessary requirements has several 
interesting features. Details of the hardware design can be 
found in [8]. The hardware and software partitions are over-
lapping. This is not the case in traditional co-designed sys-
tems. This overlap was used to allow the virtual machine to 
perform selective run-time execution migration between the 
two processing devices. To make the decision during run-
time of when to transfer execution, several algorithms were 
developed and tested [5]. These algorithms aimed to find an 
optimal balance between two offsetting goals. First, to 
maximize the percentage of time spent executing in the 
faster hardware partition. Second, to minimize the number 
of times execution is transferred between hardware and 
software. Transferring execution is an overhead penalty that 
does not contribute to the actual execution of the applica-
tion. Therefore, minimizing the penalty is advantageous. 

                                                           
1 Block size is the variable used for run-time scheduling. It 

represents the number of sequential instructions in the 
method that can be executed in the hardware component 
for execution to migrate from the software to hardware. 
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3 Simulator 

For this co-designed virtual machine, an initial platform 
had to be chosen for the research to be conducted. It was 
decided to have it based on a Field Programmable Gate 
Array (FPGA) connected to a workstation via the systems 
PCI bus [2]. The reasoning for this decision was based on 
both the wide availability of PCI based development envi-
ronments for reconfigurable computing and that the PCI bus 
is the most common and inexpensive means to make the 
connection in a typical workstation [11]. While this is a 
reasonable basis upon which to conduct the research it does 
not imply it is an ideal platform.  

For this reason it was decided to use a custom simulation 
environment to provide the hardware design. This will al-
low us to overcome some of the potential constraints of the 
platform and provide flexibility to precisely monitor the 
overall environment for suitability in all its aspects. For 
instance, examining the effects of increasing hardware sup-
port through a larger FPGA while keeping all other factors 
constant. These factors include memory configuration, size 
of the FPGA, overall speed of the hardware design, and 
communication rates between the FPGA and both the mem-
ory and software processor. Each of these factors can be 
examined for their effects when changed individually or 
together. 

The simulator for this research is a custom software 
simulator. The reason for using a custom built simulator, 
instead of an already existing simulator, was to allow for 
easy integration with the software components. While there 
are other simulators readily available, they do not allow the 
required integration with the software components. This is 
especially important since the software components also 
rely upon the low level operating system for task scheduling 
and other support mechanisms. 

3.1 Simulator Implementation 

This section discusses various techniques used to im-
plement the software simulator for the hardware design. 
Each of these techniques are steps towards not only achiev-
ing a correct simulation timing at the clock level, but as well 
to help facilitate an eventual implementation. 

The simulator is based on the VHDL behavioral model, 
but written in C to allow for direct compilation and execu-
tion in software. The C language was chosen due to its abil-
ity to provide fast execution and its low-level support.  It is 
important to note that only the constructs in the C language 
that are directly supported by the VHDL language were 
used. 

To promote a proper hardware design, the design is im-
plemented using a distinct function to encapsulate the de-
scription of each hardware component. Signals between 

hardware components are implemented using two variables. 
One variable possesses the state of the signal at the current 
time t, and the second variable holds the value of the signal 
at time t+1. Using this technique, the setting of signals can 
be delayed until each of the components have executed for 
the equivalent of one clock cycle. Thus signal assignments 
are delayed and propagated at the appropriate time. 

Various components that are modeled in the simulator 
are described using characteristics of available components. 
The PCI interface simulated contains the same timing char-
acteristics of the provided Xilinx PCI interface in the Hot-II 
development environment [11]. This is also true for the 
controller to access the memory provided on the FPGA 
card, and any internal caches modeled after the Xilinx 
LogiBlox memories [11,12]. These components are also 
restricted to provide legitimate services. For example, the 
caches are constrained to provide only sizes that fit within 
those attainable with the Xilinx Foundation tools [12]. 

While the simulator is targeted specifically for the ex-
ample Java virtual machine, the design is aware of its possi-
ble use for other virtual machines. The simulator maintains 
a design that reflects the overall design of the architecture 
with the fetch-decode-execute paradigm. Provided that an-
other virtual machine’s hardware architecture is based on 
the same principle, then the simulator can be successfully 
changed and reused. 

4 Reconfigurable Device Requirements 

For the reconfigurable device itself, two criteria are of 
importance. The speed of the device when configured with 
the hardware design and the size of the device needed to 
hold the hardware design. 

4.1 Speed Requirements 

It is obvious that the faster the FPGA the better. What is 
unclear is the threshold for how fast the FPGA must be in 
order to provide a performance increase. For discussion of 
the required speed for the FPGA, the speed relationship 
between the FPGA and host CPU will be used. Tradition-
ally, FPGA speeds have been three to five times slower than 
that of processor speeds. 

To simplify the investigation, each of the benchmark re-
sults is examined without the communication costs. In these 
cases, a performance increase was seen for all of the bench-
marks, but not for all FPGA speed ratios that fall within the 
typical ratio between processor and FPGA. Table 1 shows 
for each benchmark and partitioning scheme the threshold 
FPGA speed ratio. These ratios indicate the maximum num-
ber of cycles the software host processor can execute for 
each single cycle the hardware design can execute. If the 



cute. If the software processor can execute a higher number 
of cycles for each cycle the FPGA can execute, then a per-
formance decrease will be seen. If the software processor 
executes less cycles than the threshold for each cycle exe-
cuted by the FPGA then a performance increase will occur. 

With an FPGA that is up to a factor of five times slower 
than the host processor a performance increase is possible 
for almost all of the results shown in the table. It can be 
clearly seen that the lowest threshold value is that of the 
Mandelbrot application under the compact and host parti-
tioning schemes. Even in this case, the ratio is within the 
traditional bounds of the speed offerings of FPGAs. These 
results show that current available speeds of FPGAs are 
potentially capable of being used in this capacity. 
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Compact 5.75 5.47 4.12 4.70 6.29 

Host 5.78 6.24 4.12 5.47 6.34 

Full 7.19 7.43 53.30 8.32 6.37 

Table 1 Threshold speed ratios between the software 
processor and the hardware design. 

4.2 Space Requirements 

Though the simulation environment is incapable of pro-
viding a quantitative assessment of the design space re-
quirements, the results obtained can be used to project some 
insights into the qualitative size of the FPGA. Specifically, 
the partitioning scheme it must be capable of supporting. 
For all tests, under all variations of parameters, the per-
formance of the co-designed virtual machine increases with 
the greater level of hardware support. From the previous 
table, it can be seen that for each benchmark the Full parti-
tioning scheme out performs the Host partitioning scheme, 
which in turn out performs the Compact partition. Thus, in 
general, the larger the FPGA the greater the performance 
increase. 

This is only true, however, when the communication 
costs are negligible. When the communication costs rise to 
a significant level, the driving characteristic behind a parti-
tioning strategies success is its frequency of transferring 
execution between the partitions. This frequency is indi-
rectly determined by the partitioning scheme, and directly 
by the density of the instructions supported in hardware. 
Tests have shown that the larger the hardware partition, 
typically the more execution transfer between the partitions. 

Both the size and speed requirements of the program-
mable device are linked. Having a slow FPGA requires a 
larger hardware design space for a performance increase to 
be attained. Likewise, a fast FPGA does not require as large 
a design space area. A prime example of this is the Mandel-
brot application. Provided that the FPGA can support the 
design space required of the Full partitioning scheme, a 
performance increase can be obtained despite as large a 
difference in clock ratio of 53:1, as shown in Table 1. For 
the host system that was used in this research, a 750 Mhz 
Intel Pentium, that translates into a required minimum 15 
Mhz hardware design. This is also true for a small FPGA 
that can operate at a high clock rate. 

4.3 Memory Requirements 

For the co-designed virtual machine, performance can be 
affected by the memory space that is available for the hard-
ware and software components. In the development envi-
ronment used, the memory space utilized is not unified, but 
rather split between each components local memory region. 
For the software partition of the virtual machine the avail-
able memory space is not an additional concern because it 
would provide the same memory resources available to a 
software only virtual machine. However, for the co-
designed virtual machine, the distinct local memory avail-
able to the FPGA is typically constrained and may present 
problems. In the event that not enough memory is available 
to the hardware component then execution would remain in 
software, thus under utilizing the hardware partition. 

In the case study Java virtual machine, the amount of 
data transferred between the hardware and software compo-
nents during execution of each of the benchmarks was re-
corded. For all of these benchmarks, the maximum amount 
of data used by the hardware partition was 11312 bytes. 
This includes the method to execute, the local data vari-
ables, and the data stack with sufficient room for growth to 
the maximum stack size. The common amount required for 
all benchmarks and partitioning is most likely a result of the 
same underlying Java API method being executed by all 
benchmarks. Though the specific memory requirements are 
application dependent, this demonstrates that in general for 
the Java virtual machine the memory requirements for the 
hardware component are substantially low considering the 
available 4 Mb of local memory in this particular develop-
ment environment. 

4.3.1 Host Memory Accessing Requirements 

The development environment that simulation originally 
targeted did not have the ability to access the host memory 
system. With the vast amount of memory required by most 
applications for data, having the programmable device ca-
pable of accessing the host memory system is desirable. 



There are other possible architectures that can provide this 
capability. To allow for exploration of the methodologies 
effects, the simulator was built with the capability. 

For the purposes of simulation, the protocol for access-
ing the host memory system was treated identically to ac-
cessing the local memory on the PCI card. This protocol has 
a 3 cycle delay associated with it for enabling the memory 
and setting the requested address plus the additional delay 
of the bus. With this specification the co-designed perform-
ance results were collected. These results can be used to 
determine for each of the benchmarks the delay that can be 
tolerated before the execution crosses the threshold and 
degrades performance. Figure 3 shows the threshold num-
ber of cycles for each of the benchmarks under the full par-
titioning scheme, along with the different speed ratios, 
where accessing the host memory system is vital. If the de-
lay in accessing the host memory is above the threshold 
value, then the application will execute slower in the co-
designed virtual machine. This figure does not factor in the 
on-chip caching of data once it is initially accessed by the 
hardware component. Included in the figure are the different 
thresholds for each of the performance ratios between raw 
computing elements that have a direct effect. 
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Figure 3 Threshold values for communication delays of 
accessing memory from the host system. 

These results show that accessing a common memory 
store with a delay is tolerable. However due to how fre-
quently the memory is accessed, the co-designed virtual 
machine can only tolerate an average delay of up to 50 cy-
cles for each access. Beyond this delay performance begins 
to degrade in comparison to the software execution. It suf-
fices to say that the development environment used which 
requires accessing the host memory through the PCI bus is 
not viable. Tests showed that an average of 8760 cycles 
were required to retrieve a 32-bit word of data across the 

PCI bus. It is only through the use of the on-chip data cache 
that the Mandelbrot application is capable of tolerating the 
slow PCI bus to provide a performance increase. 

5 Communication Requirements 

With the tight relationship between the hardware and 
software components, it is extremely important that the 
communication link between them be sufficiently fast. In 
the event that the communication medium is relatively slow, 
any performance gains achieved by hardware execution 
over software execution can be overshadowed. The com-
munication speed requirements are directly affected by the 
application running within the virtual machine, and are thus 
very instance specific. If the application demands frequent 
execution migration and high levels of data exchange be-
tween hardware and software components, then the more 
critical the demands on the communication medium. 

Different techniques were employed in the overall co-
design process to minimize the communication between 
hardware and software. The overlap in partitions along with 
run-time scheduling ensures that execution migration only 
occurs when it is significant and a performance increase is 
feasible. Communication was further reduced by simply 
communicating frequently used data and in some cases, 
only data that was changed. Each of these techniques con-
tributes to significantly less bandwidth, but certain require-
ments still exist. 
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1 2287% 1900% 11.3% 171% 6365% 

3 2190% 1668% 11.2% 162% 2624% 

5 1652% 1113% 10.8% 137% 2276% 

7 1325% 894% 10.8% 136% 2499% 

9 879% 741% 10.6% 130% 2381% 

11 737% 552% 10.6% 109% 1032% 

13 386% 550% 11.0% 127% 4853% 

15 389% 678% 11.0% 103% 146% 

Table 2 Percentage of original execution time when in-
cluding the communication penalty over the PCI bus. 

Table 2 shows that only one of the benchmarks, Man-
delbrot, shows a significant performance increase despite 
the communication costs of the PCI bus and this is due to 



certain characteristics of the application itself. Most other 
benchmarks show a high performance decrease because of 
the communication. Examining the Queen benchmark, the 
execution is close to matching the original execution time. 
In this case, the average number of hardware cycles per 
context switch is 8299 with an average of 879.94 instruc-
tions per context switch. Though these numbers are depend-
ent on both the type and ordering of instructions, it does 
provide an estimate of the hardware support density needed 
to obtain a performance increase. The overall results show 
that the PCI bus hinders the execution and is the cause for a 
performance decrease. 

There are several underlying reasons for the PCI bus be-
ing unsuitable for usage in a co-design virtual machine envi-
ronment. The most obvious problem is that the bus is shared 
with other devices. Sharing the bus results in unnecessary 
delays when waiting for the bus arbitrator to hand over con-
trol of the bus. This is especially true when the PCI bus 
typically holds relatively high bandwidth hardware compo-
nents such as the audio, video and network devices. In 
comparison with the relative speeds of the hardware and 
software computing elements, the PCI bus is exceptionally 
slow. For the specific development environment used in the 
case study, the PCI bus operates at 33 Mhz, while the 
FPGA operates at speeds up to 100 Mhz and the host proc-
essor at a phenomenal 750 Mhz. With such a high disparity 
between the communication and operating speeds the nec-
essary communication between the partitions results in a 
drastic performance penalty. 

6 Conclusions 

While the idea of providing the FPGA that implements 
the hardware design on a bus that has comparable speeds 
with that of the FPGA itself or the software processor may 
not be feasible, a better overall architecture is certainly 
more attainable. Ideally, to have the FPGA device directly 
attached to the mainboard of the host system on a dedicated 
bus would provide a considerable improvement. Likewise, 
to have a fast communication bus between the FPGA and 
the host’s memory is also beneficial. As can be seen from 
the results in the previous section, the methodology does 
promise varying performance gains for each of the bench-
marks without the communication penalty. This demon-
strates that for this approach to succeed in general a more 
suitable architecture must be present. 

From the above analysis, it can be seen that while recon-
figurable computing is offering a potentially high perform-
ance increase, there still remains much work before it can 
be used for all applications. Specifically, performance is 
lacking not in the reconfigurable devices themselves, but in 
the environments within which they are provided. This bot-

tleneck can be addressed by providing the programmable 
devices through better interfaces. Specifically by providing 
reconfigurable devices on the mainboard of a system. By 
doing so, the communication requirements necessary can be 
fulfilled.  
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