
IEEE TRANSACTIONS ON BIG DATA 1

Efficient Learned Spatial Index with Interpolation
Function based Learned Model

Songnian Zhang, Suprio Ray, Member, IEEE, Rongxing Lu, Fellow, IEEE, Yandong Zheng

Abstract—Recently, researchers have demonstrated that learned index can improve query performance while reducing the storage
overhead. It potentially offers an opportunity to address the spatial query processing challenges caused by the surge in location-based
services. Although several learned indexes have been proposed to process spatial data, the main idea behind these approaches is to
utilize the existing one-dimensional learned models, which requires either converting the spatial data into one-dimensional data or
applying the learned model on individual dimensions separately. As a result, these approaches cannot fully leverage or take advantage
of the information regarding the spatial distribution of the original spatial data. To this end, in our previous work, we proposed a spatial
(multi-dimensional) interpolation function based learned model to develop a spatial learned index and designed efficient range and
kNN query strategies over it. However, there are some limitations in the proposed learned model, such as the prediction accuracy and
index building time. In this paper, we address the limitations of our previous work and propose a new spatial learned model by
employing the characteristics of the spatial interpolation functions and a novel dynamic encoding technique. Detailed experiments are
conducted with real-world datasets. The results indicate that our new proposed learned model is better than our previous one in terms
of building time, prediction accuracy, and storage overhead simultaneously, and the new learned spatial index is better than the existing
learned spatial indexes in query execution time and index building time.

Index Terms—Learned Model, Spatial Interpolation Function, Hybrid Tree, Learned Spatial Index.

F

1 INTRODUCTION

A S location-based services (LBS) have been widely de-
ployed and have become highly popular, spatial query

processing has attracted considerable interest in the research
community. Although several spatial indexes, such as R-tree
and k-d tree, have been proposed to facilitate spatial query
execution, it is still challenging to process the spatial queries
efficiently due to the rapidly growing volume of spatial
data. Recently, Kraska et al. [1] suggested substituting the
traditional indexes with machine learning based indexes
(also called learned index). Since then, several follow-up
research projects [2], [3], [4], [5], [6] have shown that the
learned index can indeed improve query performance by
learning data distribution and query workload patterns. In
addition to this advantage, some learned index research [3],
[6] revealed that, compared to the traditional indexes, the
learned index can speed up query processing with a smaller
index storage overhead. This can free up expensive main
memory for in-memory data processing.

Typically, there are two main aspects involving a learned
index, namely, a learned model and a local search. The
former is trained and used to quickly locate the approximate
position of a search key, while the latter is responsible for
refining the accurate position. Since the learned model can
greatly reduce the range of local search, in the current study,
the local search is usually achieved by performing a local
binary or exponential search. This strategy can ensure query
performance without introducing additional index storage.
However, as the fundamental aspect, finding a reasonable
learned model and further employing it in the learned index

• S. Zhang, S. Ray, R. Lu, and Y. Zheng are with the Faculty of Computer
Science, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
(e-mail: szhang17@unb.ca, sray@unb.ca, rlu1@unb.ca, yzheng8@unb.ca).

is still challenging. Currently, most of the learned indexes
are constructed based on mainly one of two categories of
learned models: machine learning [1] and piecewise linear
functions [3]. However, to the best of our knowledge, both
of these learned models can be only applied to single
dimensional data. As a result, the existing spatial learned
indexes either transform multi-dimensional data into one-
dimensional data before introducing the learned model as a
foundation [7], [8] or apply a learned model on every single
dimension [6] separately. Note that although the recently
proposed multi-dimensional learned index Tsunami [9] stud-
ied the correlation over two dimensions to build a learned
model for improving its efficiency, it mainly focused on two-
dimensional data with strong correlation patterns. Unfortu-
nately, the spatial data (usually consists of the latitude and
longitude data) does not have obvious correlation patterns.
For this reason, the question then arises, “Is there a learned
model that can be directly applied to any spatial (two-dimensional)
data and achieve better performance?”

Aiming to address the above-mentioned question, in our
previous work [10], we explored how to utilize spatial (two-
dimensional) interpolation functions as the learned model
to directly predict the position of a spatial search key.
Based on this idea, we proposed a SPatial inteRpolation
functIon based Grid index (SPRIG) to support range and
kNN queries over spatial data. The main contributions of
our previous work were: i) designed and implemented a
spatial learned index SPRIG, which offered a new learned
model for developing the spatial learned index; ii) proposed
two query execution strategies to support range and kNN
queries, respectively. The experimental results showed that
our learned index SPRIG achieved up to an order of mag-
nitude better performance than ZM-index in range queries

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 2

and was about 2.7×, 3×, and 9× faster than the multi-
dimensional learned index Flood in terms of index building,
range queries, and kNN queries, respectively [10]. From
these contributions, we can see that our previous work
mainly focused on developing a spatial interpolation based
index SPRIG, i.e., building a SPRIG system and designing
efficient query strategies over it, and the efficiency of the
learned model that underpins the SPRIG system was left for
future research. Consequently, in this paper, we focus on im-
proving the spatial learned model employed in our SPRIG
system, which can be directly applied to any spatial data
and is entirely different from the existing spatial learned
models that can be only applied to single-dimensional data.
There are two limitations with our original spatial learned
model: i) the model building time, especially the time cost
of training a grid layout, is a bit large; ii) the prediction
error may be large in some cases. In the worst case, the
prediction error in one dimension may be equal to the grid
length in that dimension, leading to a larger local search
range. To address the first limitation, we propose a new
approach to employ the spatial interpolation function in our
learned model, which can reduce building time and storage
overhead simultaneously. Regarding the second limitation,
it is actually an open problem for all spatial learned models
that adopt the space-filling curve techniques. To address
it, in this paper, we propose a dynamic encoding tech-
nique to keep the prediction error within an upper bound.
Additionally, in our previous work, we employed a cost
model to obtain an optimal grid layout for the best query
performance. However, this cost model needed to be cali-
brated by executing query workloads in order to obtain the
optimal grid parameters. Thanks to our dynamic encoding
technique, we introduce a new cost model in this paper,
which can obtain an approximately optimal grid layout
without requiring a prior execution of query workloads.
Specifically, compared to our previous work, we make the
following new contributions in this paper:
• First, we elaborate on the details of our spatial learned

model: an interpolation function based hybrid tree, denoted
as IH-tree, and analyze its limitations.
• Second, we propose a new learned model IH-tree+ by

employing the characteristics of spatial interpolation func-
tions and a novel dynamic encoding technique. Compared
to IH-tree, IH-tree+ can improve building time, prediction
accuracy, and cell locating time, while reducing the storage
overhead. Meanwhile, the dynamic encoding technique en-
ables a new cost model, which avoids the need for a prior
execution of the query workload and is much more efficient
than the cost model used in our previous work [10].
• Third, by compressing IH-tree+ into bit vectors, we

propose a compact version of IH-tree+, denoted as C-IH-
tree+, for storage-limited scenarios. Compared to IH-tree+,
C-IH-tree+ has almost an order of magnitude improvement
in storage overhead.
• Finally, we conduct extensive experiments to evaluate

our proposed learned models and compare them in terms of
building time, prediction accuracy, cell predicting time, and
storage overhead. The results show that: i) our IH-tree+ is
around 1.8× faster than IH-tree in building time; ii) IH-tree+
outperforms IH-tree by at least 3× in terms of prediction ac-
curacy. In the best case, IH-tree+ achieves 83× improvement

in prediction accuracy; iii) IH-tree+ reduces at least 20%
storage overhead compared to IH-tree. In addition, we em-
ploy IH-tree as the learned model in SPRIG and construct a
new learned spatial index, denoted as SPRIG+, by replacing
IH-tree with IH-tree+. Furthermore, we compare SPRIG+
against our previous learned index SPRIG [10], a state-of-
the-art learned index Flood [6], and a learned spatial index
ZM-index [7]. The results show that SPRIG+: i) is better than
Flood and ZM-index in query execution time; ii) has the best
performance in index building time; iii) is better than SPRIG
in storage overhead.

The remainder of this paper is organized as follows. In
Section 2, we discuss the related work. Then, we introduce
the spatial interpolation function and our SPRIG scheme in
Section 3. After that, we present our learned models in Sec-
tion 4 and cost model in Section 5, followed by performance
evaluation in Section 6. Finally, we draw our conclusion in
Section 7.

2 RELATED WORK

Kraska et al. [1] presented the idea of the learned index,
which is based on learning the relationship between keys
and their positions in a sorted array. They adopted a ma-
chine learning based technique as the learned model and
built a recursive model index (RMI), which predicts the
position of a search key within a known error bound. Since
then, a variety of learned indexes was proposed to handle
one-dimensional data. Recently, Tang et al. [2] proposed a
scalable learned index XIndex based on RMI, which focuses
on handling concurrent writes without affecting the query
performance. Very differently, Galakatos et al. [3] exploited
the piecewise linear function as the learned model to build
a data-aware index FITing-tree that replaces leaf nodes of
B+-tree with the learned piecewise linear functions. Unlike
FITing-tree, Ferragina et al. [4] introduced a pure learned
index PGM-index that does not mix the traditional data
structure and learned model. However, their work still
focuses on one-dimensional data and uses the existing linear
learned model.

Naturally, the idea of the learned index has been ex-
tended to spatial and multi-dimensional data. Wang et al. [7]
proposed a learned index ZM-index for spatial queries.
In that work, the authors utilized the Z-order curve to
convert two-dimensional data into one-dimensional values,
and then applied a machine learning model to predict a
key’s position on one-dimensional data. Qi et al. [5] re-
fined the idea of ZM-index and built a recursive spatial
model index (RSMI). Before applying Z-order curve, their
work adopts a rank space-based transformation technique
to mitigate the uneven-gap problem. Although this work
is to deal with range and kNN queries over spatial data,
it is for approximate queries rather than accurate queries
that are our targets, and it still adopts the one-dimensional
learned model. LISA [11] is a disk-based spatial learned
index that achieves low storage consumption and I/O cost.
In this work, the authors used a mapping function to map
spatial keys into one-dimensional values and a monotone
shard prediction function, which is similar to the piecewise
linear functions, to predict the shard id for a given mapped
value. Extending to multi-dimensional data, ML-index [8]

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 3

is an RMI based learned index. It first converts the multi-
dimensional data into one dimension by employing the i-
Distance technique [12]. Based on the one-dimensional data,
ML-index uses the RMI to estimate the approximate position
of a search key. Recently proposed index Flood [6] can also
support multi-dimensional data and is very relevant to our
work. It adopts the existing learned model as the building
block to predict the key’s position on a single dimension.
By integrating d − 1 dimensions’ positions, where d is
the number of dimensions, Flood can locate the cell that
covers the search key. Tsunami [9] is also a multi-dimensional
learned index. This work can address the limitations of
Flood by introducing the space-partitioning decision tree
and capturing correlations. However, it cannot be applied to
spatial data with complex correlation patterns. We refer the
readers to [13] for more related work about learned multi-
dimensional indexes.

3 BACKGROUND

Before delving into the details of our learned models, in this
section, we introduce the spatial interpolation function and
the SPRIG scheme proposed in our previous work.

3.1 Spatial Interpolation Function

Given a set of 2-dimensional sample points {(xi, yj)|1 ≤
i, j ≤ n} and their corresponding values {vij =
f(xi, yj) | 1 ≤ i, j ≤ n}, one can construct a spatial
(two-dimensional) interpolation function f(x, y) that passes
through all these sample points [14]. Afterward, given any
point (x, y), it is easy to estimate the value of f(x, y) with
the interpolation function. Borrowing the idea from the
learned index [1], if we treat vij as the position of the
point (xi, yj), we can use f(x, y) to quickly estimate the
position of any given point. Moreover, if the sample points
are not random but can represent the distribution of the
original spatial dataset, we can use fewer sample points to
fit the spatial interpolation function for estimating positions.
It indicates that the spatial interpolation function can learn
the spatial position distribution with a lower storage over-
head, which fits well with the goal of the learned index.
Therefore, it is feasible and promising to exploit the spatial
interpolation function as the learned model.

In the literature, there are many spatial interpolation
functions, such as bilinear interpolation, bicubic interpolation,
and radial based function (RBF) interpolation [15], [16]. For ease
of description, hereinafter we use the bilinear interpolation
function for our learned model. Note that it is easy to replace
the bilinear interpolation function with other interpolation
functions in our learned model.

!! !"

"!"
!

#

""

#!! #"!

#!"
#""

(!#, "#)

= ((!#, "#)

Fig. 1. Bilinear interpolation function.

!! = #, %&, %', &%, (), *&, +,, '), %##! "
=
{#
,*
#,
%(
#,
)#
#,
)&
*,
&#
#,
(%
#,
*#
#}

0

55

Fig. 2. Adaptive grid Gn×m with space-filling curve, where n = 8,m =
7. Cell ids encoded from 0 to 55 = 8 · 7− 1 along the orange line.

Bilinear interpolation function [17]. Assume there are
four points {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}, which form
a spatial domain, and the corresponding values vij =
f(xi, yj), i, j ∈ {1, 2}, as shown in Fig. 1. With these values,
we can fit a bilinear interpolation function f(x, y). The intu-
itive approach of fitting the bilinear interpolation function
is to perform the linear interpolation twice. One is along the
x dimension, and the other is along the y dimension.
• Linear interpolation in the x dimension:{

f(x, y1) =
x2−x
x2−x1

v11 +
x−x1

x2−x1
v21

f(x, y2) =
x2−x
x2−x1

v12 +
x−x1

x2−x1
v22.

(1)

• Linear interpolation in the y dimension with Eq. (1):

f(x, y) =
y2 − y
y2 − y1

f(x, y1) +
y − y1
y2 − y1

f(x, y2)

=
1

(x2 − x1)(y2 − y1)
[x2 − x, x− x1]

[
v11 v12
v21 v22

] [
y2 − y
y − y1

]
(2)

Given any point {(xt, yt) | x1 < xt < x2, y1 < yt < y2}
in the area, we can obtain the value vt = f(xt, yt). Although
it is simple to obtain unknown values by the interpolated
spatial functions, it is still challenging to build an efficient
learned model with the spatial interpolation function. In this
paper, we enable the spatial interpolation functions to build
our spatial learned index.

3.2 Our SPRIG System
In our previous work [10], we proposed a learned spatial
index, SPRIG, to deal with range and kNN queries on an
adaptive grid. Here, we simply recall index building and
query processing.

Index Building. Our SPRIG consists of three compo-
nents: 1) An n × m grid layout Gn×m, where n is the
number of columns along x dimension, while m is for
y dimension; 2) A table T ; and 3) The spatial interpo-
lation function based learned model M. The main idea
of building Gn×m is to find boundary values for each
dimension. These boundary values can divide the space
into several columns along one dimension and ensure each
column has an almost equal number of data records. We
define x and y dimensions’ boundaries as set Bx and By,
respectively, where |Bx| = n + 1 and |By| = m + 1.
Totally, there are n × m cells for the grid, and we have
Gn×m = (Bx,By). Fig. 2 illustrates an example of the adap-
tive grid, in which Bx = {0, 13, 19, 31, 42, 53, 67, 92, 100}
and By = {0, 50, 140, 200, 235, 300, 410, 500}. See Algo-
rithm 1 in [10] for calculating boundary values.

Next, we employ a simple space-filling curve to index
these cells. First, we allocate integers in the range [0, n×m−

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 4

1] as cell ids along x dimension and define a 2-dimensional
array Cid to store these cell ids: Cid[i][j] = j · n + i, 0 ≤
i < n and 0 ≤ j < m. Afterward, we can build a table
T to map the cell id to the covered records, in which the
key is the cell id and the value is a pair (firstAddress, size)
indicating the pointer to the first record and the number
of records in the cell. Based on Gn×m and Cid, we can fit
the spatial interpolation function Cid ← M(Bx,By) as our
learned model.

Query processing. The principle behind processing
queries is to locate the cell that the query point falls in.
Then, based on the located cell, the range and kNN query
strategies can be adopted to filter and refine the desired data
points. Specifically, there are two steps to locate the cell that
covers the query point:

• Step-1. Predict cell id with learned model M. Given a
query point (xq, yq), we can use the learned model to
obtain a predicted cell id pid = M(xq, yq). Afterward,
it is simple to calculate the locations of pid in set Bx

and By. That is, lpx = pid mod n, and lpy = pid / n.
• Step-2. Locate the real cell id with local binary search.

Given a pair of error guarantee (egx, egy), by ap-
plying local binary searches on Bx and By, we can
obtain the real x and y locations of the query point,
denoted as lrx and lry . The search range on Bx set is
[lpx − egx, lpx + egx], while it is [lpy − egy, lpy + egy]
on By set. Finally, we can obtain the real cell id of
(xq, yq), namely, rid = lry · n+ lrx.

Take (xq, yq) = (38, 420) in Fig. 2 as an example, which
should fall in the cell with id = 51, i.e., rid = 51. Suppose the
predicted cell id pid = M(xq, yq) = 44 and the (egx, egy) =
(1, 2). In Step-1, lpx = pid mod n = 44 mod 8 = 4 and
lpy = pid / n = 44/8 = 5. In Step-2, since egx = 1, the
binary search range on Bx is [3, 5], and it is [3, 7] on By due
to egy = 2. Since Bx[3] = 31 < 38 < Bx[4] = 42, lrx = 3.
Similarly, as By[6] = 410 < 420 < By[7] = 500, we can get
lry = 6. As a result, rid = lry · n+ lrx = 6 · 8 + 3 = 51.

After obtaining the real cell id rid of the query point, one
can perform our range and kNN strategies starting from
the cell to collect query results. Since the range and kNN
query strategies are not the focus of this paper, we will not
re-describe them here. See details in our previous work [10].

4 OUR PROPOSED LEARNED MODELS

From Section 3.2, we can see that the key idea behind our
learned index SPRIG is to locate the real cell id of a query
point. Although SPRIG is specifically suitable for spatial
data, it still follows the basic principle of the most of existing
learned indexes to locate a search key, i.e.,

predict position with learned model + refine with the local search

As shown in Fig. 3, given a key, the learned model is
first used to predict the approximate position of the key,
denoted as pos. Then, the local search is performed in the
range of [pos - eg, pos + eg] to obtain the real position of the
search key, where eg is the error guarantee or prediction
error [1]. Since the local search is usually achieved by
performing a binary or exponential search, naturally, a series
of questions about the learned model arises: how to build

key

Learned Model

Predicted position

binary/exponential search

pos + egpos - eg

Fig. 3. Learned model + Local search. pos is the predicted position, and
eg is error guarantee or prediction error.

the learned model and how does the learned model work?
In this section, we first introduce the details of our learned
model, and then propose an optimized version in terms of
building costs, storage overhead, and prediction accuracy.
In addition, we propose a compressed learned model for
the situations that concern about the storage overhead.

4.1 Interpolation-based Learned Model

As discussed in Section 3.2, our learned model is built
with the boundary sets: Bx, By, and the cell id array Cid.
The main idea is to recursively divide the 2-dimensional
region into four sub-regions over the boundary sets Bx

and By, and each leaf node will be represented by a fitted
spatial interpolation function. Obviously, our learned model
is an interpolation-based hybrid tree structure. To ease the
description,we denote it as IH-tree, i.e., M=IH-tree.

4.1.1 Model Building
Given the tree height h (1 < h < logmin(n,m)), which is
trained with the cost model introduced in [10], we show the
model building process as follows.

Internal node. When recursively partitioning the 2-
dimensional region, we calculate the center point of the cor-
responding (sub)region as an internal node. Since we divide
the region over the generated grid, i.e., Gn×m = (Bx,By),
here the center point is the middle position projecting to
Bx and By. For example, the root node is (x = bn/2c, y =
bm/2c) and represents the whole region. Each internal node
has four children (sub-regions), which are encoded from 0
to 3 along ‘ Z’ shape. The center point of the children nodes
can be calculated with the following equations:

Child 0 :

{
x = b(parent.x− parent.bl.x)/2c+ parent.bl.x
y = b(parent.y − parent.bl.y)/2c+ parent.bl.y,

(3)

Child 1 :

{
x = b(parent.tr.x− parent.x)/2c+ parent.x
y = b(parent.y − parent.bl.y)/2c+ parent.bl.y,

(4)

Child 2 :

{
x = b(parent.x− parent.bl.x)/2c+ parent.bl.x
y = b(parent.tr.y − parent.y)/2c+ parent.y,

(5)

Child 3 :

{
x = b(parent.tr.x− parent.x)/2c+ parent.x
y = b(parent.tr.y − parent.y)/2c+ parent.y,

(6)

where (parent.x, parent.y) is the center point of the parent
node, and {parent.bl, parent.rt} are the bottom left and top
right points of the parent’ region, respectively. When the
height of the IH-tree reaches to h−1, we will stop partition-
ing the sub-regions and turn to generate leaf nodes.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 5

Leaf node. Each leaf node represents a sub-region and
stores the fitted spatial interpolation function of the sub-
region. Taking the bilinear interpolation function as an
example, we can have the following function:

f(x, y) ' φ1 + φ2x+ φ3y + φ4xy. (7)

Fitting such a function for a sub-region indicates calculating
the four coefficients {φi | i ∈ [1, 4]} so that we can compute
f(x, y) when x, y are given. If we have a formula expansion
of Eq. (2), we can obtain the following equation to calculate
the coefficients {φi | i ∈ [1, 4]}:φ1φ2φ3
φ4

 =
1

(x2 − x1)(y2 − y1)

x2y2 −x2y1 −x1y2 x1y1
−y2 y1 y2 −y1
−x2 x2 x1 −x1
1 −1 −1 1


v11v12
v21
v22

 .
(8)

In this paper, {(x1, y1), (x1, y2), (x2, y1), (x2, y2)} are
the intersection points of the grid Gn×m, and vij =
f(xi, yj), i, j ∈ {1, 2}, are the corresponding cell ids re-
trieved from the 2-dimensional array Cid. After calculating
these four coefficients {φi | i ∈ [1, 4]}, the leaf node can
store them to represent the sub-region. Note that we can
replace the bilinear interpolation functions with other spa-
tial interpolation functions, for example bicubic interpola-
tion function. In this case, there are 16 coefficients for the
interpolation function [17].

From the above process, we know that our IH-tree is well
balanced. This is because our IH-tree is built on the grid
layout Gn×m = (Bx,By) by recursively dividing Bx and By

into two parts, respectively. In particular, the middle values
of Bx and By are selected as the center point to partition the
spatial region into 4 sub-regions. For each sub-region, we
will treat it as a new spatial region and divide it into 4 new
sub-regions. In addition, we ensure that the tree height h
is in the range of 1 < h < logmin(n,m). Therefore, each
internal node of the IH-tree will have 4 children, and our
IH-tree is balanced.

Fig. 4 illustrates an example of IH-tree, in which we only
show the leaf nodes of (2, 5) and omit others for the space
consideration. Totally, there should be 16 leaf nodes. The
root node (4, 3) represents the whole area while the internal
node (2, 5) indicates the blue area. Taking fitting function
f3(x, y) under the internal node (2, 5) as an example, we
can calculate {φ3i | i ∈ [1, 4]} with Eq. (8), where x1 =
19, x2 = 42, y1 = 300, y2 = 500 are retrieved from Bx and
By, and v11 = 42, v12 = 50, v21 = 43, v22 = 51 are cell ids.

4.1.2 Predict Cell with Learned Model

Given a query point (xq , yq), we can use the built model
M, i.e., IH-tree, to predict the cell that (xq , yq) falls in,
denoted as pid = M(xq, yq). First, we need to navigate the
tree by comparing (xq , Bx[node.x]) and (yq , By[node.y]). For
example, if xq < Bx[node.x] and yq < By[node.y], child 0
will be selected as the next level node. When reaching a leaf
node, it means the query point (xq , yq) falls in the sub-region
represented by the leaf node. Generally, there are four leaf
nodes for an internal node, and their spatial interpolation
functions are defined as fi(x, y), where i ∈ [0, 3]. Then,
by computing fi(xq, yq) with Eq. (7), we can obtain the
predicted cell id, i.e., pid = fi(xq, yq).

0 13 19 31 42 53 67 92 100

0 50 140 200 235 300 410 500

"%

"&
(4, 3)

(2, 1) (6, 5)(6, 1) (2, 5)

……
……
……
……

!!"
!!#
!!$
!!'

!$"
!$#
!$$
!$'

'! (, *'" (, * '# (, * '$ (, *

/& 0, 1

/$ 0, 1/# 0, 1

/% 0, 1

Fig. 4. IH-tree. To save space, we only show the leaf nodes of (2,5) and
omit the leaf nodes of (2,1), (6,1), and (6,5).

Here, we present an example of query point (38, 420)
in the region of Fig. 4. First, the query point will be com-
pared with the root node (4, 3). Since 38 < Bx[4] = 42
and 420 > By[3] = 200, the internal node (2, 5), i.e.,
child 2, is navigated. Further, as 38 > Bx[2] = 19 and
420 > By[5] = 300, f3(x, y) is selected to compute the
predict cell id, namely, pid = f3(38, 420) with Eq. (7).

With pid and error guarantees, we can get the real cell id
by performing the local search, with details in Section 3.2.
Furthermore, range and kNN queries can be responded to
starting from the real cell in which the query point falls.

4.2 Optimized Learned Model
In this section, we design an optimized learned model
IH-tree+ by employing two optimization techniques to IH-
tree. First, in order to reduce the model building time
and storage overhead, we introduce a novel approach that
can use the spatial interpolation function to predict cell id
without fitting. Second, we propose a dynamic encoding
technique to improve prediction accuracy.

4.2.1 Learned Model without Fitting
Although the proposed learned model M=IH-tree can
quickly predict the cell id, we observed that the leaf nodes of
our IH-tree comprise the majority of nodes:

∑h−1
i=0 4i = 4h−1

3
internal nodes and 4h leaf nodes. Moreover, when building
the IH-tree, each leaf node needs to fit a spatial interpolation
function and store 4 coefficients (suppose we adopt the
bilinear interpolation function here) that are usually dou-
bles (while the internal node stores integers). Consequently,
it negatively affects the model building time and storage
overhead. Aiming at the above issues, we leverage the
property of bilinear interpolation function to reduce the
model building time and storage overhead simultaneously.

In IH-tree, each leaf node represents a sub-region that is
expressed as a fitted spatial interpolation function. Without
loss of generality, each sub-region can be formed by two
boundary values in each dimension:

x1 ≤ x ≤ x2,
y1 ≤ y ≤ y2.

(9)

If we normalize the sub-region of the leaf node with the
following equation:

x′ = (x− x1)/(x2 − x1)
y′ = (y − y1)/(y2 − y1),

(10)

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 6

0 13 19 31 42 53 67 92 100

0 50 140 200 235 300 410 500

𝐁𝐱

𝐁𝐲

(4, 3)

(2, 1) (6, 5)(6, 1) (2, 5)

……
……

(0, 2)
(3, 5)

(2, 4)
(5, 7)

Fig. 5. IH-tree+. The leaf node stores the positions of the covered
subspace. The light blue area is represented as (2, 4) and (5, 7) that
are the positions of (x1 = 19, x2 = 42) and y1 = 300, y2 = 500) over
Bx and By, respectively.

we can obtain a new bilinear interpolation function by
simply plugging Eq. (10) into Eq. (2):

f(x, y) =
1

(x2 − x1)(y2 − y1)
[x2 − x, x− x1]

[
v11 v12
v21 v22

] [
y2 − y
y − y1

]
= (1− x′)(1− y′)v11 + (1− x′)y′v12
+ x′(1− y′)v21 + x′y′v22.

(11)
With Eq. (11), we can only store four integers, i.e., the
positions of (x1, x2) on Bx and (y1, y2) on By, for each
leaf node. We denote these positions as x1.pos, x2.pos, y1.pos
and y2.pos. Regarding {vij | i, j ∈ {1, 2}}, we can retrieve
them from the two dimensional array Cid if we know
{x1.pos, x2.pos, y1.pos, y2.pos}. Alternatively, we can also cal-
culate {vij | i, j ∈ {1, 2}} if we know these positions, for ex-
ample, v11 = y1.pos ·n+x1.pos. Fig. 5 shows our IH-tree+, in
which four integers (positions) are stored in leaf nodes. Sim-
ilar to the example of IH-tree in Fig. 4, here we only show
the leaf nodes of (2, 5) and omit the leaf nodes of (2, 1), (6,
1), and (6, 5). In Fig. 5, the light green area is determined by
(x1 = 19, x2 = 42) and (y1 = 300, y2 = 500), which is also
the fourth leaf node under the internal node (2, 5). Different
from IH-tree, here we only store the positions of (x1, x2) and
(y1, y2), instead of the fitted interpolation function of the
sub-region. Consequently, we store (x1.pos = 2, x2.pos = 4)
and (y1.pos = 5, y2.pos = 7) in this leaf node.

If we would like to predict the cell id of a query point
(xq, yq), the approach is the same as the IH-tree before
navigating to leaf node. When reaching to leaf node, since
we store (x1.pos, x2.pos) and (y1.pos, y2.pos), we can first
normalize (xq, yq) with Eq. (10), i.e.,

x′q = (xq − Bx[x1.pos])/(Bx[x2.pos]− Bx[x1.pos])

y′q = (yq − By[y1.pos])/(By[y2.pos]− By[y1.pos]).
(12)

After that, the cell id can be predicted using Eq. (11) as
follows:

f(xq, yq) =(1− x′q)(1− y′q)(y1.pos · n+ x1.pos)
+ (1− x′q)y′q((y2.pos− 1) · n+ x1.pos)
+ x′q(1− y′q)(y1.pos · n+ x2.pos− 1)

+ x′qy
′
q((y2.pos− 1) · n+ x2.pos− 1).

(13)

Analysis. In the leaf node of IH-tree, we need to store
four coefficients of the bilinear interpolation function, which

are double type (8 bytes), as {xi, yi|i ∈ {1, 2}} in Eq. (8) are
usually real geographic location data. However, in the leaf
node of IH-tree+, we store four integers (each integer has 4
bytes). Furthermore, the number of leaf nodes accounts for
almost 75% of total nodes in our tree structure. Thus, we
can significantly reduce the storage overhead. In addition,
regarding the model building, we need to fit a bilinear
interpolation function for each leaf node in IH-tree with
Eq. (8). However, for building IH-tree+, we can get rid of
this step and directly store sub-region’s positions for the
corresponding leaf node. This will reduce the time cost of
model building. Although IH-tree+ will increase the time
cost of predicting cell id due to the normalization, it is a
negligible cost compared to the incurred benefits, which will
be evaluated in Section 6.1.3.

4.2.2 Dynamic Encoding Technique
Recall the last step of predicting cell, i.e., calculating pre-
dicted cell id. Regardless of whether Eq. (7) in IH-tree
or the new approach with Eq. (11) is used, the cell ids
{vij | i, j ∈ {1, 2}} are encoded globally. For a leaf node,
the predicted cell id will fall in the range of [y1.pos · n +
x1.pos, (y2.pos−1) ·n+x2.pos−1]. In Fig. 6(a), the predicted
range for the light green area is [42, 51], leading to the
predicted cell lying outside the area that the query point
should be. In the worst case, the prediction error in the x
dimension is n, i.e., egx = n. From Fig. 3, we know that
the larger prediction error entails the larger range of the
local search, which obviously deteriorates the performance
in locating real cell id. Ideally, we hope to limit the predicted
cell to the area covered by the corresponding leaf node.
In this way, the range of the subsequent local search will
be small and controllable. However, since the cell ids are
globally indexed by the space-filling curve technique (as
shown in Fig. 2), it is possible that the predicted cell id falls
outside the leaf node area.

Note that employing other space-filling curve tech-
niques, such as the Z-order curve and Hilbert curve, also
cannot ensure that the predicted cell is within the desired
area. In fact, it is an open problem for all learned models
that adopt the space-filling curve techniques, for example,
the false positive problem in the ZM-index [7] incurred by
the Z-order curve. This is because the space-filling curve
techniques cannot ensure that the closer data points in
the two-dimensional space are closer in the encoded one-
dimensional values.

0

55

42 43

50 51

(") global encoding

0 1

2 3

$ dynamic encoding

[42, 51]
Predicted

range

Predicted
range [0, 3]

!! = #". %&' − ##. %&'
=) − * = *

+! = ,". %&' − ,#. %&'
= - − . = *

Fig. 6. Global and dynamic encoding. The dynamic encoding is over a
n′ ×m′ grid. Regarding the light blue area, n′ = 2 and m′ = 2.

To address this problem, we design a dynamic encoding
technique to ensure the predicted cell that falls within
the area covered by the leaf node, which can significantly
improve the prediction accuracy. The key idea is to dynam-
ically encode the cell ids in the leaf node area instead of

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 7

0 1 2 3 4

0 1 2 3 4
(4, 3)

(2, 1) (2, 5)

……

……

(0, 2)
(0, 1)

(4, 6)
(3, 5)

(6, 5)(6, 1)

……
……
……

……
……

(2, 4)
(1, 3)

(6, 8)
(5, 7)

……

0

1 2 3 4

0 1 2 3 12 13 14 15

0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1

0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0

00000

Bit vector of internal nodes:

Bit vector of leaf nodes:

0 0 0 0 0 0 1 0 0 0 0 0 0 1 …… 0 0 1 0 0 1 0 0 0 0 1 0 1 1 …… 0 1 0 0 0 1 1 0 0 1 1 1 0 1 …… 0 1 1 0 1 0 0 0 1 0 1 1 1 1
0 3 12 15

1 byte = 8 bits(4, 3)

(0, 2), (0, 1)

!"!

#!"!

!""

Fig. 7. Compressed IH-tree+. Two bit vectors. One is for internal nods, and the other is for leaf nodes.

using the globally encoded cell ids. The cells covered by a
leaf node can be encoded from 0 to n′×m′−1 with the same
shape as the global encoding, where n′ = x2.pos − x1.pos
and m′ = y2.pos − y1.pos. In this way, we have values for
{vij | i, j ∈ {1, 2}} as follows:

v11 = 0,

v12 = (m′ − 1) · n′,
v21 = n′ − 1,

v22 = m′ · n′ − 1.

(14)

Given a query point (xq, yq), when a leaf node is selected,
we can normalize the point with Eq. (12) and calculate the
predicted cell id with the following equation.

f ′(xq, yq) =(1− x′q)y′q((m′ − 1) · n′)
+ x′q(1− y′q)(n′ − 1)

+ x′qy
′
q(m

′ · n′ − 1).

(15)

In our dynamic encoding technique, since v11 is always 0,
Eq. (15) only needs to calculate three terms while Eq. (13)
needs four terms.

Since the predicted cell id with Eq. (15) is the local cell
id, we need to convert it to global cell id with the following
equation:

pid =(f ′(xq, yq)/n
′ + y1.pos) · n

+ (f ′(xq, yq) mod n′ + x1.pos).
(16)

Analysis. Since we employ the dynamic encoding tech-
nique, the predicted range will be from 0 to n′ × m′ − 1.
As a result, the prediction cell is limited to the leaf node
area. Fig. 6(b) depicts an example of the dynamic encoding
technique. We will evaluate and compare the prediction
accuracy in Section 6.1.2.

Additionally, this technique can make the prediction
error controllable. That is, we can ensure the prediction error
should be no larger than the position range of the leaf node
area. In our previous work [10], since the prediction error
is unpredictable, we use the maximum prediction error as
error guarantee, which was obtained by executing the whole
query workload. However, thanks to the dynamic encoding
technique, our IH-tree+ can ensure the real prediction error
in x dimension to be no larger than x2.pos− x1.pos− 1 and
y2.pos−y1.pos−1 for the y dimension. As a result, we can set

the error guarantees in x dimension (egx) and y dimension
(egy) as follows.

egx = x2.pos− x1.pos− 1,

egy = y2.pos− y1.pos− 1.
(17)

It means that we do not need to obtain the error guarantees
by performing the query workload. Under this setting,
the tree height of our IH-tree+ can be calculated with
h = log(max(negx

, megy
)).

4.3 Compressed IH-tree+

Generally, the learned model will be deployed in the main-
memory to speed up the query processing. In order to
reduce the consumption of precious memory, we present
a compressed version of our proposed learned model, IH-
tree+. Since our IH-tree+ is well balanced, it is easy to com-
press the tree structure into bit vectors. Motivated by [18],
our compressed IH-tree+ is shown in Fig. 7.
• The internal nodes are compressed into a bit vector,

denoted as BVI, and each node has blog nc+1+ blogmc+1
bits, where n and m are the number of the columns in x and
y dimensions, respectively.
• The leaf nodes are compressed into another bit vector,

denoted as BVL, and each node has 2(blog nc+1+blogmc+
1) bits.

For ease of implementation, we reorganize each bit vec-
tor with bytes. If the remaining bits are less than 8, we will
complement it with 0s. In Fig. 7, we only show the reorga-
nized bit vector of internal nodes and omit the reorganized
bit vector of leaf nodes for simplicity. The reorganized bit
vectors are denoted as B̃VI and B̃VL, respectively. Note that,
if we know a node’s position in BVI and BVL, it is easy to
access the corresponding bits in B̃VI and B̃VL. Here, we take
mapping BVI to B̃VI as an example.

B̃VI.loc = BVI.pos · (blognc+ 1 + blogmc+ 1)/8

offset = B̃VI.pos · (blognc+ 1 + blogmc+ 1) mod 8,
(18)

where BVI.pos is the node position in BVI, B̃VI.loc is the byte
location in B̃VI, and offset is the offset in the byte. In Fig. 7,
the internal node (6, 5) has the node position BVI.pos = 4.
With Eq. (18), we can access its bits in the fourth byte, i.e.,
B̃VI.loc = (4 · 7)/8 = 3 (encoding from 0), and offset is (4 · 7)
mod 8 = 4. Similarly, we can access the leaf node’s bits from

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 8

Algorithm 1 Predicting cell id over compressed IH-tree+
Input: Two bit vectors, BVI and BVL. Query point (xq, yq). The tree height, h.
Output: Predicted cell id, pid.
1: node← BVI[0]; α← 0; β ← 0; δ ← 0;
2: while α < h do
3: α← α+ 1;
4: if xq < Bx[node.x] then
5: β ← yq < By[node.y] ? 0 : 2
6: else
7: β ← yq < By[node.y] ? 1 : 3
8: if α < h− 1 then
9: BVI.pos← (δ · 4 + β) + (4α − 1)/3;

10: node← BVI[BVI.pos];
11: δ ← δ · 4 + β;
12: BVL.pos← δ · 4 + β;
13: leaf node← BVL[BVL.pos];
14: return pid← Eq. (15) and Eq. (16) with leaf node;

B̃VL by mapping BVL.pos to {B̃VL.loc, offset}. As a result,
hereafter, we only show how to calculate the node positions
in BVI and BVL.

When predicting the cell id of a query point (xq, yq),
traversing the IH-tree+ for selecting the leaf node is con-
verted to searching over BVI for obtaining the leaf node’s
corresponding position in BVL. Typically, there are three
steps to predict cell id with the compressed IH-tree+.

Step-1: Search over BVI. First, we define α as the level
number of the IH-tree+, where α ∈ [0, h− 1]. Next, the first
position in BVI is accessed since it must be the root node.
After comparing (xq, yq) with (Bx[node.x],By[node.y]), we
can determine which child is selected. We define the child
number as β, where β = {0, 1, 2, 3}. Suppose (xq, yq) =
(60, 240). It will be compared with (Bx[4],By[3]) = (42, 200)
first. Since xq > 42, yq > 200, child 3 will be selected, i.e.,
β = 3. Consequently, if we define δ as the parent’s position
in its level, the child node’s position in BVI can be calculated
with the following equation:

BVI.pos = (δ · 4 + β) +
4α − 1

3
, (19)

where δ · 4 + β is the child node’s position in its level.
Following the above example, we have BVI.pos = (0 · 4 +
3) + (41 − 1)/3 = 4. It is worth noting that the node (6, 5)’s
position in its level is 0 · 4 + 3 = 3, which can be used to
calculate its children’s position in BVI.

Step-2: Retrieve leaf node from BVL. When reaching
to the last level’s internal node, after determining β, the
corresponding leaf node’s position in BVL can be easily
calculated with δ ·4+β. Here δ is the internal node’s position
in the last level. In our example, the last level’s internal node
is (6, 5). Since xq < Bx[5] = 67, yq < By[5] = 300, β = 0.
Therefore, BVL.pos = 3 · 4 + 0 = 12. Thus, we can retrieve
and recover (4, 6) and (3, 5) from BVL.

Step-3: Calculate the predicted cell id. After obtaining
(4, 6) and (3, 5), the final step is to calculate the predicted
cell id with Eq. (15) and Eq. (16), which is the same as the
uncompressed IH-tree+.

Algorithm 1 formally depicts the process of predicting a
cell id with the compressed IH-tree+.

Analysis. Our IH-tree+ has
∑h−1
i=0 4i = 4h−1

3 internal
nodes and 4h leaf nodes, where h is the tree height. The-
oretically, the storage footprint of our IH-tree+ is as least
4h−1

3 ·4·2·8+4h·4·4·8 bits since each internal node stores two
integers, while the leaf node has four integers. However,
the storage overhead of the compressed IH-tree+ is around
4h−1

3 ·(blog nc+1+blogmc+1)+4h·2·(blog nc+1+blogmc+

TABLE 1
Notations in cost model

Notation Definition

T(Fn×m
in) the execution time of the spatial interpolation function

T(Bn×m) the execution time of local binary search
Tr average time of retrieving a cell
Ts average time of scanning a data point
Ni the number of cells intersected with query window
Nc the number of cells contained within query window
Np the data points in the intersected cells

1) bits. Since log n and logm are usually less than 15, and
the compressed IH-tree+ does not have pointers that exist in
the real-world tree-structure, the compressed IH-tree+ will
appreciably reduce the storage consumption. Negatively,
the compressed IH-tree will increase the time cost when
predicting cell id. It is because we need to recover bits to
the corresponding integers and calculate the node’s position
in BVI. We will evaluate the IH-tree+ and its compressed
version in Section 6 and shift the decision to users.

5 COST MODEL

In our previous work [10], we use the following cost model
to determine the number of columns in x dimension and y
dimension, i.e., the value of n and m:

Time = T(Fn×m
in) + T(Bn×m) + Tr · (Ni +Nc) + Ts ·Np.

The notations used in the above model are listed in Table 1.
Given a dataset D and a query workload W , we obtain
the best layout parameters: n × m that makes Time to
have minimal average value. Note that the above model
is an example model used for range query. Although this
model allows us to obtain the best layout parameters, it
is expensive since we need to perform range queries over
each possible layout and select the best one. In this paper,
our proposed learned model IH-tree+ makes it possible to
model time cost with the number of operations, which is
motivated by [19]. Similar to our previous work, we take
the range query as an example to show the new approach
in building a cost model.

First, we define Tc as the average time of comparing two
double values and Te as the average time of refining a data
point. Then, the time cost of performing a range query can
be roughly modeled as follow:

Time = 2 · log(max(n,m)) · Tc + n′ ·m′ · Tr +N ′ · Te,

where n′ and m′ are the number of cells that intersected
with the query window in x and y dimensions and N ′ is
the number of data points in the intersected cells. With this
model, we can obtain the layout parameters that render the
minimal time cost without performing real range queries.

6 EVALUATION

This paper aims to improve the performance of learned
model that is employed as the foundation in the learned
index. As a result, in Section 6.1, we experimentally evaluate
and compare the performance of our proposed learned
models, i.e, IH-tree, IH-tree+, and compressed IH-tree+, in
terms of model building time, prediction accuracy, models’
storage overhead, and cell predicting time. Besides, in our

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 9

5 10 20 50 100
Scale

0

100

200

300

Bu
ild

in
g

Ti
m

e
(u

s) IH-tree
IH-tree+
C-IH-tree+

5 10

2
4
6

(a) Tweet200K

5 10 20 50 100
Scale

0

100

200

300

Bu
ild

in
g

Ti
m

e
(u

s) IH-tree
IH-tree+
C-IH-tree+

5 10

2
4
6

(b) Tweet2M

5 10 20 50 100
Scale

0

100

200

300

Bu
ild

in
g

Ti
m

e
(u

s) IH-tree
IH-tree+
C-IH-tree+

5 10

2
4
6

(c) Tweet20M
Fig. 8. Time cost of building learned models over different datasets (grid layouts) varying with scale factors from 5 to 100. Since the time cost is too
small when the scale factors are 5 and 10, we use a reduced figure to zoom in them.

5 10 20 50 100
Scale

50

100

150

200

Pr
ed

ic
tio

n
er

ro
r IH-tree

IH-tree+
C-IH-tree+

(a) Tweet200K

5 10 20 50 100
Scale

50
100
150
200
250

Pr
ed

ic
tio

n
er

ro
r IH-tree

IH-tree+
C-IH-tree+

(b) Tweet2M

5 10 20 50 100
Scale

100
200
300
400
500
600

Pr
ed

ic
tio

n
er

ro
r IH-tree

IH-tree+
C-IH-tree+

(c) Tweet20M
Fig. 9. Prediction accuracy over different datasets (grid layouts) varying with scale factors from 5 to 100.

5 10 20 50 100
Scale

200

400

600

800

Ex
ec

ut
io

n
tim

e
(n

s) IH-tree predict
IH-tree+ predict
C-IH-tree+ predict

IH-tree local
IH-tree+2 local
C-IH-tree+2 local

(a) Tweet200K

5 10 20 50 100
Scale

200

400

600

800

Ex
ec

ut
io

n
tim

e
(n

s) IH-tree predict
IH-tree+ predict
C-IH-tree+ predict

IH-tree local
IH-tree+2 local
C-IH-tree+2 local

(b) Tweet2M

5 10 20 50 100
Scale

200

400

600

800

Ex
ec

ut
io

n
tim

e
(n

s) IH-tree predict
IH-tree+ predict
C-IH-tree+ predict

IH-tree local
IH-tree+2 local
C-IH-tree+2 local

(c) Tweet20M
Fig. 10. Time cost of predicting cell and local search over different datasets (grid layouts) varying with scale factors from 5 to 100.

SPRIG system, we adopt IH-tree as the learned model. By
replacing IH-tree with IH-tree+ or its compressed version,
we have a new learned spatial index SPRIG+. In order
to show the performance of learned spatial indexes, in
Section 6.2, we compare SPRIG+, SPRIG with Flood (a state-
of-the-art learned index [6]) and ZM-index (a learned spatial
index [7]) in terms of query execution time, index building
time, and storage overhead.

All learned models and learned spatial indexes were
implemented in Java and evaluated with in-memory ver-
sions. Same as our previous work, we adopt three Twit-
ter datasets [20] consisting of tweets with their locations:
Tweet200k, Tweet2M, and Tweet20M that have 200k, 2M, and
20M spatial points, respectively. We conduct all experiments
on a machine with 16 GB memory and 3.4 GHz Intel(R)
Core(TM) i7-3770 processors and running Ubuntu 16.04 OS.

6.1 Performance of Learned Models

From Section 4, we know that the performance of our
learned model is related to the constructed grid, i.e.,
Gn×m = (Bx,By), and the height of the proposed hybrid
tree h = dlog(max(negx

, megy
))e.

• Our evaluation will run over the grids with dimen-
sions: 210 × 170, 300 × 300, and 710 × 690 that are the
best layouts for conducting range queries over Tweet200k,

Tweet2M, and Tweet20M, respectively, and are used in the
experiments of our previous work.
• To clearly show the impact of the tree height, we will

vary the position range of leaf node area by scaling down
the grid layout with the scale factors: {5, 10, 20, 50, 100}.
Correspondingly, the tree heights will be {3, 4, 5, 6, 7} under
the above grid layouts. For example, if the scale factor is 20,
under the grid layout 210 × 170, the position range of leaf
node area is d210/20e×d170/20e = 11×9. The correspond-
ing tree height will be h = dlog(max(21011 ,

170
9))e = 5.

6.1.1 Time cost of building model
Fig. 8 illustrates the time cost of building learned model
varying with the scale factors from 5 to 100, in which C-
IH-tree+ represents the compressed IH-tree+. We separately
evaluate the building model time over Tweet200k, Tweet2M,
and Tweet20M datasets, as shown in Fig. 8(a), Fig. 8(b), and
Fig. 8(c). We can see that the building time with these three
datasets has the same trend and similar values. That is
because the time cost of building model is only related to
the tree height h, and varying the scale factors from 5 to 100
exactly corresponds to the tree height from 3 to 7 for each
dataset. Further, as the tree height increases, the building
time will increase, which is in line with the expectation.
From Fig. 8(a), Fig. 8(b), and Fig. 8(c), we know that our
proposed IH-tree+ has the best performance in terms of

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 10

model building time. Specifically, i) IH-tree+ is around 1.8×
faster than IH-tree. This benefit comes from the first novel
optimization technique presented in Section 4.2.1. It allows
us to build learned model, i.e., IH-tree+, without fitting the
spatial interpolation functions for leaf nodes; ii) IH-tree+
is around 3× faster than C-IH-tree+. As we discussed in
Section 4.3, in C-IH-tree+, the tree structure needs to be
further compressed into bit vectors. Consequently, C-IH-
tree+ consumes more computational costs.

6.1.2 Prediction accuracy
As shown in Fig. 3, the prediction accuracy will impact the
local search range. That is, if the prediction error is larger,
the range of the binary/exponential search will be larger.
In our learned index, after predicting a cell, we separately
conduct the local search on x dimension and y dimension
to locate the real cell (seeing details in Section 3.2). As a
result, we measure the prediction accuracy with the sum of
prediction errors in x and y dimensions, i.e.,

prediction error = |pidx − ridx|+ |pidy − ridy|, (20)

where pid is the predicted cell id of a query point, and rid
is the real cell id of the query point. Note that it is easy to
calculate the cell’s x and y positions if we know the cell id.
For example, pidx = pid mod n and pidy = pid/n, where n
is the number of columns in x dimension. We can use the
same approach to calculate ridx and ridy .

In Fig. 9(a), Fig. 9(b), and Fig. 9(c), we evaluate the
prediction accuracy over these three Tweet datasets by
calculating the prediction error with Eq. (20). All of these
figures show that: i) IH-tree+ and C-IH-tree+ have the same
prediction error. That is because the only difference between
these two structures is the storage organization, which is
independent of the prediction error. From another prospec-
tive, this result proves the correctness of our C-IH-tree+; ii)
Compared to IH-tree, our IH-tree+ and C-IH-tree+ improve
the prediction accuracy at least 3×. With the scale factor
increasing, the accuracy improvement increases and can
achieve 83× on Tweet200k dataset, 59× on Tweet2M dataset,
and 56× on Tweet20M dataset, when the scale factor is 100.
The significant benefit comes from the dynamic encoding
technique presented in Section 4.2.2. It limits the prediction
error within a small area covered by the leaf node. Taking
Tweet20M dataset as an example, the corresponding gird
layout is 710 × 690. As the scale factor increases from 5
to 100, the leaf nodes area narrows down from 142× 138 to
8× 7 (see Section 6 on how to calculate the leaf node area).
As a result, when the scale factor is 5, the prediction error
of IH-tree+ in x dimension must be less than 142 and that is
less than 138 in y dimension. When the scale factor is 100,
it is less than 8 and 7 in x and y dimensions, respectively.
While, the prediction error of IH-tree scatters over the whole
space. Our experimental results show that when the scale
factor is 5, the prediction error of IH-tree+ is 107, while it
is 322 for IH-tree. When the scale factor is 100, it is 5 for
IH-tree+ and 280 for IH-tree. In addition, from these figures,
we can see that the prediction error increases, as the grid
layouts becomes larger (from 210×170 on Tweet200k dataset
to 710×690 on Tweet20M dataset). Since we adopt the same
scale factors, the leaf nodes area is larger for the larger grid
layout, leading to a larger prediction error. In fact, we can

further enlarge the scale factor for the larger grid layout to
improve the prediction accuracy. It offers us guidance for
ensuring prediction accuracy, namely, when the grid layout
is large, we should select a larger scale factor.

6.1.3 Time cost of predicting cell id
In Fig. 10, we use the dark green bar to depict the time cost
of predicting cell over Tweet200k, Tweet2M, and Tweet20M
datasets. From this figure, we have the following observa-
tions: i) IH-tree is slightly faster than IH-tree+ in predicting
cell. That is because when reaching to the leaf node, the IH-
tree+ needs to first normalize the query point with Eq. (10)
and then calculate the predicted cell id with Eq. (15) and
Eq. (16). While for the IH-tree, it can directly calculate
the predicted cell id with Eq. (7); ii) C-IH-tree+ has the
worst performance in predicting cell id. That is due to
the extra computational costs in calculating node position
and recovering integers from compressed representation.
It is reasonable since C-IH-tree+ is used for the storage-
constrained environment and sacrifices the time cost of
predicting cell to reduce storage overhead; iii) with the scale
factor increasing, the cell predicting time increases for all
three learned models. That is because, when the grid layout
is given, the larger scale factor will render a larger tree
height, leading to a higher search time to reach the leaf node.

In Fig. 10, we also plot the time cost of local search using
the wheat color bar. Since locating cell time = predicting cell
time + local search time, the complete bar in Fig. 10 illustrates
the time cost of locating the cell that a query point falls
in, which is the principle behind range and kNN queries
discussed in our previous work. From these three figures,
we know that, when the scale factor is larger than 20, IH-
tree+ has a better performance than IH-tree in locating cell.
This benefit comes from the fewer local search time. In fact,
the local search time is related to the prediction accuracy
discussed in Section 6.1.2. Since IH-tree+ is much more
accurate than IH-tree in predicting cell (as shown in Fig. 9),
its local search range will be smaller than that of IH-tree,
leading to a lower local search time. When the scale factor is
larger than 20, the benefit from local search will exceed the
extra time cost in predicting cell. As a result, in these cases,
IH-tree+ has a better performance in locating cells.

5 10 20 50 100
Scale

100

200

300

St
or

ag
e

ov
er

he
ad

s (
KB

)

IH-tree
IH-tree+
C-IH-tree+

5 10

2
4
6

Fig. 11. Storage overhead of IH-tree, IH-tree+, and C-IH-tree+. Since
the storage overhead is too small when the scale factors are 5 and 10,
we use a reduced figure to zoom in them.

6.1.4 Storage overhead
In this section, we compare the storage overhead of differ-
ent learned modes, i.e., IH-tree, IH-tree+, and C-IH-tree+.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 11

Recalling Section 4, the theoretical storage footprint of these
three learned models is shown as Table 2.

TABLE 2
Theoretical storage footprint of learned models

Model Theoretical storage footprint (bits)

IH-tree 4h−1
3
· 4 · 2 · 8 + 4h · 4 · 8 · 8

IH-tree+ 4h−1
3
· 4 · 2 · 8 + 4h · 4 · 4 · 8

C-IH-tree+
4h−1

3
· (blognc+ 1 + blogmc+ 1)

+ 4h · 2 · (blognc+ 1 + blogmc+ 1)

From this table, we can see that the storage footprints of
our proposed learned models are related to the tree height
h and grid layout Gn×m. In our evaluation, for these three
datasets, the grid layouts are 210×170, 300×300, and 710×
690, respectively. Consequently, the impact of grid layout
on storage is almost negligible due to the log calculation.
Meanwhile, when varying the scale factors from 5 to 100,
all of these grid layouts have the tree height from 3 to 7.
Therefore, learned models’ storage overhead is almost the
same under different Tweet datasets. Thus, here we only
show one figure (Fig. 11) to depict the storage overhead of
our proposed learned models.

In order to obtain the practical results, we adopt the
SizeOf class in Java to measure the storage overhead of
these learned models as shown in Fig. 11. From this figure,
we can see that: i) IH-tree+ can reduce at least 20% storage
overhead compared to IH-tree. This benefit comes from the
first optimization technique presented in Section 4.2.1, in
which we store the positions (integer) instead of coefficients
(double); ii) C-IH-tree+ has almost an order of magnitude
improvement in storage overhead compared to IH-tree+. On
the one hand, the compact bit blog nc + 1 + blogmc + 1 is
usually less than 4 · 2 · 8 = 64. On the other hand, there is
no pointer in the compressed bit vectors, while it is intrinsic
to the tree structures.

Remark. From the above evaluation, we can see that: i)
IH-tree+ is better than IH-tree in terms of building time,
prediction accuracy, and storage overhead. Although IH-
tree is slightly faster than IH-tree+ in predicting cell id,
the latter has a better performance in locating cell when the
scale factor is larger than 20; ii) Compared to IH-tree+, C-IH-
tree+ can significantly reduce the storage overhead although
it consumes higher computational costs in building model
and predicting cell, which offers a choice for the storage-
limited environment. Table 3 illustrates the best learned
model(s) under different measurements.

TABLE 3
Best learned model(s) in different measurements

Models IH-tree IH-tree+ C-IH-tree+

Building time X

Prediction accuracy X

Predicting cell time X

Locating cell time when h ≤ 5 when h > 5

Storage overhead X

0.1% 0.5% 1.0% 1.5% 2.0%
Selectivity

5

10

15

Ex
ec

ut
io

n
tim

e
(s

)

Flood
SPRIG (IH-tree)
SPRIG+ (IH-tree+)
SPRIG+ (C-IH-tree+)

Fig. 12. Execution time of range query over Tweet20M varying with
selectivities from 0.1% to 2.0%. Note that, the execution time of ZM-
index is individually shown in Table 4 due to its significant time cost.

6.2 Performance of Learned Spatial Indexes

In this section, we evaluate the performance of SPRIG+,
SPRIG, Flood, and ZM-index in terms of query execution
time, index building time, and storage overhead. From Sec-
tion 6.1. we can see that the learned models have the similar
performance trend from Tweet200k to Tweet20M. Meanwhile,
we have compared the performance of SPRIG, Flood and
ZM-index over Tweet200k, Tweet2M, and Tweet20M in our
previous work [10]. Consequently, to save space, here, we
only compare these learned spatial indexes over the largest
dataset: Tweet20M.

6.2.1 Query execution time

Fig. 12 depicts the average execution time of range query
varying with selectivies from 0.1% to 2.0%. Since ZM-index
is much slower than other learned indexes, we exclude it
from Fig. 12 and list its performance in Table 4. We can
see that our learned indexes SPRIG and SPRIG+ are better
than Flood and ZM-index in all cases. Compared with
SPRIG, SPRIG+ has almost the same performance. This is
because: i) the locating cell time of IH-tree+ is close to IH-tree
(seeing Section 6.1.3); ii) the query strategy accounts for a
large proportion of the execution time, and both SPRIG and
SPRIG+ use the same query strategy. Note that, since this
paper focuses on the efficiency of the learned mode instead
of query execution strategies, the execution time of kNN
query remains the same as we have shown in our previous
work. Thus, we omit the performance of kNN queries and
only show the performance of range queries.

TABLE 4
Query execution time of ZM-index on Tweet20M

Selectivity 0.1% 0.5% 1.0% 1.5% 2.0%

Execution Time (s) 12 13 35 43 58

6.2.2 Index building time

Table 5 illustrates the index building time of learned spatial
indexes, including ZM-index, Flood, SPRIG, and SPRIG+.
For building learned spatial indexes, the process can be
roughly divided into two stages: building learned model
and building inverted table, in which the inverted table
is used to manage the cell id and the corresponding data
points in the cell. In addition, Flood, SPRIG, and SPRIG+
need to train the best layout parameters with the cost model,
as shown in Section 5, before building their learned models.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 12

TABLE 5
Index building time of learned spatial indexes

Leaned Indexes Train grid layout Build learned model Build inverted table Total

ZM-index NA 297.6 ms 6.4 s 304 s

Flood 10.5 s < 0.1 s 21.7 s 32.3 s

SPRIG (IH-tree) 113 s < 0.001 s 8.7 s 121.7 s

SPRIG+ (IH-tree+) < 0.1 s < 0.001 s 8.7 s 8.7 s

SPRIG+ (C-IH-tree+) < 0.1 s < 0.001 s 8.7 s 8.7 s

TABLE 6
Storage overhead of learned spatial indexes

Leaned Indexes Learned model Inverted Table Total

ZM-index 56 KB 87 KB 0.14 MB

Flood 53 KB 189 KB 0.24 MB

SPRIG (IH-tree) 266 KB 5736 KB 6.0 MB

SPRIG+ (IH-tree+) 202 KB 5736 KB 5.94MB

SPRIG+ (C-IH-tree+) 18 KB 5736 KB 5.75MB

From Table 5, we can see that SPRIG+ has the best perfor-
mance in index building time: i) compared with ZM-index,
SPRIG+ has less time consumption in building model. This
is because ZM-index adopts the machine learning approach
, i.e., feed-forward neural network, to build the learned
model, while our SPRIG+ only needs to build the IH-tree+
or C-IH-tree+, which is much more efficient than the ma-
chine learning approach; ii) compared with Flood, SPRIG+
has a lower time consumption in building model and
building inverted table stages. Regarding building learned
model, SPRIG+ is at the microsecond level as shown in
Fig. 8(c), while Flood is at the millisecond level. Regarding
building inverted table, Flood is more expensive, since it
needs to sort the data points in each cell; iii) compared
with SPRIG, SPRIG+ significantly reduces the time cost
of training layout since it does not need to execute query
workload to obtain the layout parameters.

6.2.3 Storage overhead

From Section 6.2.2, we know that all of the evaluated
learned spatial indexes need to build a learned mode and an
inverted table. Correspondingly, there are two main compo-
nents for a learned spatial index: a learned model and an
inverted table. Note that our learned indexes, SPRIG+ and
SPRIG, additionally contain a grid layout Gn×m = (Bx,By).
Since it takes up very litter space, we merge it into the
inverted table component. Table 6 shows the storage over-
head of learned models, inverted tables, and learned spatial
indexes (the Total column). From this table, we can see
that SPRIG+ with the C-IH-tree+ has the smallest storage
overhead for the learned model, which is due to the com-
pression techniques that we used in Section 4.3. However,
our learned indexes have a larger storage overhead for the
inverted table, resulting in a larger storage overhead for
the indexes overall. This is because, compared to ZM-index
and Flood, our learned indexes have more cells to represent
the entire spatial space. Although our indexes consumes
more storage compared to Flood and ZM-index, we achieve
significantly better query and index building performance

with an acceptable storage overhead. Moreover, the overall
storage requirements with our approaches are relatively
small and manageable, for instance, they are about 6MB
even with the largest dataset Tweet20M (i.e., 20 million
tweets).

7 CONCLUSION

In this paper, we have proposed a new learned model with a
novel interpolation function based hybrid tree. Specifically,
we first observed that the spatial interpolation function
could make it possible to predict values without fitting.
Based on this observation, we improved our approach in
calculating prediction values, which can reduce both the
building time and storage overhead. Then, we propose a
dynamic encoding technique to limit the prediction error
within a given area, which can significantly improve the
prediction accuracy of our spatial learned model. After that,
we present a succinct version of our learned model for the
storage-constrained environments. Our experimental results
suggest that our proposed learned model is better than the
previous one (used in our previous work [10]) in terms of
building time, prediction accuracy, and storage overhead at
a negligible predicting time cost. In addition, we compare
SPRIG+ with our previous work and other learned indexes.
The results show that SPRIG+ has the best performance in
building index and is better than Flood and ZM-index in
query performance. In our future work, we will consider
further reducing the storage overhead of the inverted table
used in our learned index and try to make our proposed
learned index support updates.

ACKNOWLEDGEMENTS

This research was supported in part by NSERC Discovery
Grants (04009, 03787, RGPIN-2022-03244).

REFERENCES

[1] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The
case for learned index structures,” in SIGMOD, 2018, pp. 489–504.

[2] C. Tang, Y. Wang, Z. Dong, G. Hu, Z. Wang, M. Wang, and
H. Chen, “Xindex: a scalable learned index for multicore data
storage,” in SIGPLAN, 2020, pp. 308–320.

[3] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“Fiting-tree: A data-aware index structure,” in SIGMOD, 2019, pp.
1189–1206.

[4] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic
compressed learned index with provable worst-case bounds,”
VLDB, vol. 13, no. 8, pp. 1162–1175, 2020.

[5] J. Qi, G. Liu, C. S. Jensen, and L. Kulik, “Effectively learning spatial
indices,” VLDB, vol. 13, no. 12, pp. 2341–2354, 2020.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON BIG DATA 13

[6] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, “Learning multi-
dimensional indexes,” in SIGMOD, 2020, pp. 985–1000.

[7] H. Wang, X. Fu, J. Xu, and H. Lu, “Learned index for spatial
queries,” in 2019 20th IEEE MDM. IEEE, 2019, pp. 569–574.

[8] A. Davitkova, E. Milchevski, and S. Michel, “The ml-index: A
multidimensional, learned index for point, range, and nearest-
neighbor queries.” in EDBT, 2020, pp. 407–410.

[9] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska, “Tsunami: a
learned multi-dimensional index for correlated data and skewed
workloads,” Proceedings of the VLDB Endowment, vol. 14, no. 2, pp.
74–86, 2020.

[10] S. Zhang, S. Ray, R. Lu, and Y. Zheng, “Sprig: A learned spatial
index for range and knn queries,” in 17th International Symposium
on Spatial and Temporal Databases, 2021, pp. 96–105.

[11] P. Li, H. Lu, Q. Zheng, L. Yang, and G. Pan, “Lisa: A learned index
structure for spatial data,” in SIGMOD, 2020, pp. 2119–2133.

[12] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “idis-
tance: An adaptive b+-tree based indexing method for nearest
neighbor search,” ACM Transactions on Database Systems (TODS),
vol. 30, no. 2, pp. 364–397, 2005.

[13] A. Al-Mamun, H. Wu, and W. G. Aref, “A tutorial on learned
multi-dimensional indexes,” in SIGSPATIAL, 2020, pp. 1–4.

[14] L. Mitas and H. Mitasova, “Spatial interpolation,” Geographical in-
formation systems: principles, techniques, management and applications,
1999.

[15] D. E. Myers, “Spatial interpolation: an overview,” Geoderma, 1994.
[16] J. Li and A. D. Heap, “A review of spatial interpolation methods

for environmental scientists,” 2008.
[17] S. A. Teukolsky, B. P. Flannery, W. Press, and W. Vetterling,

“Numerical recipes in c,” SMR, vol. 693, no. 1, pp. 59–70, 1992.
[18] G. Jacobson, “Space-efficient static trees and graphs,” in 30th an-

nual symposium on foundations of computer science. IEEE Computer
Society, 1989, pp. 549–554.

[19] Y. Li, D. Chen, B. Ding, K. Zeng, and J. Zhou, “A pluggable learned
index method via sampling and gap insertion,” arXiv preprint
arXiv:2101.00808, 2021.

[20] https://developer.twitter.com/en, 2018.

Songnian Zhang received his M.S. degree from
Xidian University, China, in 2016 and he is cur-
rently pursuing his Ph.D. degree in the Fac-
ulty of Computer Science, University of New
Brunswick, Canada. His research interest in-
cludes cloud computing security, big data query
and query privacy.

Suprio Ray (Member, IEEE) is an Associate
Professor with the Faculty of Computer Sci-
ence, University of New Brunswick, Fredericton,
Canada. He received a Ph.D. degree from the
Department of Computer Science, University of
Toronto, Canada, in 2015. His research inter-
ests include big data and database management
systems, run-time systems for scalable data sci-
ence, provenance and privacy issues in big data
and query processing on modern hardware. E-
mail: sray@unb.ca.

Rongxing Lu (Fellow, IEEE) is a Mastercard
IoT Research Chair, a University Research
Scholar, an associate professor at the Fac-
ulty of Computer Science (FCS), University of
New Brunswick (UNB), Canada. Before that,
he worked as an assistant professor at the
School of Electrical and Electronic Engineering,
Nanyang Technological University (NTU), Singa-
pore from April 2013 to August 2016. Rongxing
Lu worked as a Postdoctoral Fellow at the Uni-
versity of Waterloo from May 2012 to April 2013.

He was awarded the most prestigious “Governor General’s Gold Medal”,
when he received his PhD degree from the Department of Electrical &
Computer Engineering, University of Waterloo, Canada, in 2012; and
won the 8th IEEE Communications Society (ComSoc) Asia Pacific (AP)
Outstanding Young Researcher Award, in 2013. Dr. Lu is an IEEE
Fellow. His research interests include applied cryptography, privacy
enhancing technologies, and IoT-Big Data security and privacy. He has
published extensively in his areas of expertise, and was the recipient
of 9 best (student) paper awards from some reputable journals and
conferences. Currently, Dr. Lu serves as the Chair of IEEE ComSoc CIS-
TC (Communications and Information Security Technical Committee),
and the founding Co-chair of IEEE TEMS Blockchain and Distributed
Ledgers Technologies Technical Committee (BDLT-TC). Dr. Lu is the
Winner of 2016-17 Excellence in Teaching Award, FCS, UNB.

Yandong Zheng received her M.S. degree from
the Department of Computer Science, Beihang
University, China, in 2017 and she is currently
pursuing her Ph.D. degree in the Faculty of Com-
puter Science, University of New Brunswick,
Canada. Her research interest includes cloud
computing security, big data privacy and applied
privacy.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2022.3186857

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:13:35 UTC from IEEE Xplore. Restrictions apply.

