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Abstract—As a consequence of advance in the Internet of Things (IoT) and big data technology, smart eHealthcare has emerged and

greatly enabled patients to enjoy high-quality healthcare services in disease prediction, clinical decision making and healthcare

surveillance. Meanwhile, in order to support the dramatic increase of healthcare data, healthcare centers often outsource the on-

premises data to a powerful cloud and deploy the cloud server to manage the data. However, since the healthcare data usually contain

some sensitive information and also the cloud server is not fully trusted, healthcare centers need to encrypt the data before outsourcing

them to the cloud. Unfortunately, data encryption inevitably hinders some advanced applications of the data like the similarity range

query in cloud. Although many studies on similarity range query over encrypted data have been reported, most of them still have some

limitations in security, efficiency and practicality. Aiming at this challenge, in this article, we propose a new efficient privacy-preserving

similarity range query (EPSim) scheme. Specifically, we first present a modified asymmetric scalar-product-preserving encryption

(ASPE) scheme and prove it is selectively secure. Then, we introduce a Quadsector tree to represent the data, and employ a filtration

condition to design an efficient algorithm for efficient similarity range queries over the Quadsector tree. Finally, we propose our EPSim

scheme by integrating the modified ASPE scheme and Quadsector tree. Detailed security analysis indicates that our proposed EPSim

scheme is really secure. In addition, extensive performance evaluations are conducted, and the results also demonstrate it is efficient

and practical.

Index Terms—Similarity range query, eHealthcare, outsourced encrypted data, Quadsector tree, Hilbert exclusion condition

Ç

1 INTRODUCTION

THE smart eHealthcare, which benefits from the advanced
artificial intelligence [1] and fast-growing Internet of

Things technologies [2], has improved healthcare quality in
disease prediction, clinical decision making and healthcare
surveillance. As a consequence, patients can enjoy better
healthcare services, and the healthcare data in healthcare
centers have a dramatic increase. As reported by BIS
research [3], the global big data in healthcare market are
estimated to grow over $68.75 billion by the end of 2025.

In order to support the rapid increase in healthcare
data and mine potential applications of these data, health-
care centers should be equipped with abundant storage
space and powerful computing capabilities. However, the
IT facilities in healthcare centers are incompetent with
such huge volumes of healthcare data. A popular option
for the healthcare centers is to outsource their on-prem-
ises data to a powerful and flexible cloud, and deploy the
cloud server to manage the data [4], [5]. Nevertheless, the

healthcare data usually contain some sensitive informa-
tion on patients, and the cloud server is not fully trusted.
In such case, healthcare centers tend to encrypt the data
before outsourcing them to the cloud. Although the data
encryption technique can protect the privacy of the data,
it inevitably hinders the healthcare centers to take advan-
tage of advanced applications like data analysis and artifi-
cial intelligence over the data. Among these applications,
the similarity range query has been considered as the
most basic and critical one [6].

In the eHealthcare field, the similarity range query is to
search previous patientswho are similar to a current patient as
shown in Fig. 1. The information of these similar patients can
help doctors make more accurate clinic diagnosis, and their
treatment history can assist doctors to create a better treatment
plan for the current patient. In this work, each patient’s infor-
mation is represented to be a multi-dimensional data record,
and the similarity between two data records is measured by
euclidean distance. Suppose that X ¼ fxiji ¼ 1; 2; . . . ; ng is a
healthcare dataset with n data records and each record xi has
an identity idi for i ¼ 1; 2; . . . ; n. Then, given a query record q
and a query range t, the similarity range query is to “return the
identities of data records whose euclidean distance to q is equal to or
less than t, i.e., fidijdðq; xiÞ � t; xi 2 Xg”, where dð�; �Þ denotes
the euclidean distance.

Due to its importance in practice, the problem of similarity
query over outsourced encrypted data has received consider-
able attention, and various schemes have been proposed.
However, existing schemes still have some limitations in secu-
rity, efficiency, accuracy, and practicality. Specifically, some of
the existing schemes [7] only have aweak security. Also,many
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of the existing schemes are not as efficient as expected, since
the time-consuming public key encryption operations are
required [6], [8], [9], [10], [11], or the computational cost is lin-
ear to the size of the dataset [12]. To obtain high efficiency,
many schemes fall back on the approximate similarity query
[13], [14], [15], [16], [17], [18], [19], or two cloud servers model
[20], [21]. Although the approximate similarity query schemes
can efficiently support similarity queries over high-dimen-
sional datasets, they cannot provide accurate query results.
Two cloud servers model is impractical in some real scenarios
because it will inevitably increase the running cost of the
system.

Aiming at the above challenges, in this paper, we pro-
pose a new efficient, privacy-preserving, and practical simi-
larity range query (EPSim) scheme over encrypted data in
cloud. Specifically, our contributions of this paper lie in the
following three-fold.

� First, we propose a modified asymmetric scalar-prod-
uct-preserving encryption (ASPE) scheme, which is
original from the scheme in [12]. The modified ASPE
scheme allows the data owner to share a part of the
secret key with the query user, who can use such part
to generate new similarity range queries as he/she
wants. Hence, we obtain efficiency without resorting
the online data owner and two cloud servers model.
Furthermore, we prove the proposed scheme is selec-
tively secure.

� Second, we introduce a Quadsector tree to represent
data records, which makes the computational com-
plexity of query processing sublinear to the size of
the dataset. Meanwhile, we employ a filtration con-
dition (i.e., Hilbert exclusion condition in Section 3.2)
to design an algorithm for similarity range queries
over the Quadsector tree.

� Third, by integrating the modified ASPE scheme and
Quadsector tree, we design our novel similarity
range query scheme. The detailed security analysis
and extensive experimental results show that our
proposed scheme is secure, efficient, and practical
for the eHealthcare scenario.

The remainder of this paper is organized as follows. In
Section 2, we introduce our system model, security model
and design goals. Then, we describe some preliminaries in
Section 3. In Section 4, we present our scheme, followed by
security analysis and performance evaluation in Sections 5
and 6, respectively. In Section 7, we present some related
work. Finally, we draw our conclusion in Section 8.

2 MODELS AND DESIGN GOALS

In this section, we formalize our system model, security
model, and identify our design goals.

2.1 System Model

In our system model, we consider a typical cloud-assisted
similarity range query model, which involves three types of
entities, i.e., a healthcare center (HC), a cloud server, and
multiple query doctors U ¼ fU1; U2; . . .g as shown in Fig. 2.

� Healthcare Center (HC): The HC (i.e., data owner) has
collected a healthcare dataset with huge volumes of elec-
tronic health records from patients, which can be denoted
by X ¼ fx1; x2; . . . ; xng. Each xi ¼ ðxi1; xi2; . . . ; xilÞ is an
l-dimensional data record and it has a unique identity idi
for i ¼ 1; 2; . . . ; n. In order to make full use of these data, the
HC is willing to offer similarity range query service to the doc-
tors. However, since the HC only has limited storage space
and computing capability, it chooses to outsource the dataset
X to a powerful cloud anddeploy the cloud server to offer sim-
ilarity range query service to the doctors. Meanwhile, in order
to preserve the privacy of the sensitive information in the data-
setX , theHC encryptsX before outsourcing it to the cloud.

� Cloud Server: The cloud server has rich storage space
and powerful computing capability. It is responsible for
storing the encrypted dataset X outsourced by the HC and
offering similarity range query service to query doctors. In
specific, on receiving a query request ðq; tÞ from a query
doctor, the cloud server will search on the encrypted dataset
X and find out the data records whose distance to the query
record q is equal to or less than t, i.e., fxijdðq; xiÞ � tg.
Finally, the cloud server returns the identities of these data
records, i.e., fidijdðq; xiÞ � tg to the query doctor.

� Query Doctors U ¼ fU1; U2; . . .g: In the system model,
there are a set of query doctors (i.e., query users), denoted
by U ¼ fU1; U2; . . .g. Each query doctor Up can enjoy the sim-
ilarity range query service from the cloud server. Mean-
while, when Up registers in the system, he/she must be
authorized by the HC. As shown in Fig. 2, the HC author-
izes query doctors by respectively distributing authorized
keys to query doctors and the cloud server.

2.2 Security Model

In our securitymodel, theHC is considered to be trusted and it
is responsible for bootstrapping the whole scheme in the sys-
tem initialization phase. For the cloud server, it is considered
to be honest-but-curious, i.e., itwill sincerely follow the protocol
to store the encrypted dataset X and offer similarity range

Fig. 1. Example of similarity range query in eHealthcare.

Fig. 2. System model under consideration.
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query service to query doctors. However, it may be curious
about the plaintext of the data records in the datasetX . Mean-
while, when processing similarity range query requests, the
cloud server may be curious about the plaintext of the query
requests and the data records satisfying the query condition,
i.e., fxijdðq; xiÞ � tg. For the query doctors, they are consid-
ered to be honest-but-curious. That is, they honestly follow the
protocol to launch similarity range query requests to the cloud
server, but may be curious about the plaintext of other
doctors’ query requests and query results. The honest-but-curi-
ous assumption of the cloud server and query doctors is rea-
sonable because the penalty of dishonest behaviors for the
involving cloud server and query doctors is high, including
losing the trust of the healthcare center and being prosecuted.
In addition, we assume that there is no collusion between the
cloud server and query doctors. Similar to the honest-but-curi-
ous assumption, the non-collusive assumption between the
cloud server and query doctors is reasonable due to the high
penalty. Note that theremay be other passive or active attacks,
such as DoS attack and data pollution attack. Since this work
focuses on privacy preservation, those attacks are beyond the
scope of this paper andwill be discussed in our futurework.

2.3 Design Goals

Our design goal is to achieve an efficient, privacy-preserv-
ing, and practical similarity range query scheme over
encrypted data in cloud. In specific, the following objectives
should be satisfied.

� Privacy preservation: Our proposed scheme should pre-
serve the privacy of the healthcare dataset, query requests
as well as query results in our considered system model.

� Efficiency: To achieve the privacy preservation require-
ment, additional computational cost will be inevitably
incurred. Therefore, in the proposed scheme, we also aim to
improve the efficiency of similarity range query.

� Practicality: The proposed scheme should also be practi-
cal in real scenarios. Specifically, it should be built upon a
single cloud server.

3 PRELIMINARY

In this section, we will introduce an asymmetric scalar-
product-preserving encryption (ASPE) scheme [12] and a
Hilbert exclusion condition, which are preliminaries of our
proposed scheme.

3.1 ASPE Scheme

ASPE scheme [12] was designed for k nearest neighbors
query. In ASPE scheme, there are two kinds of data records,
i.e., database records and query records. Without loss of
generality, both database records and query records are
regarded as l-dimensional row vectors. They are encrypted
in different ways. Specifically, ASPE scheme PASPE ¼
ðAspeSetup;AspeEnc;AspeTokenGenÞ is defined as follows.

� AspeSetup: The setup algorithm inputs the parame-
ter l and outputs a random invertible matrix M 2
Rl�l as the secret key, where R is the real domain.

� AspeEnc: The encryption algorithm takes the secret
key M as input and encrypts an l-dimensional data-
base record xi as CTxi ¼ xiM.

� AspeTokenGen: The query token generation algo-
rithm takes the secret key M as input and generates
a query token for an l-dimensional query record q as
TKq ¼ rqqðM�1ÞT , where rq is a random positive
number andM�1 is the inverse matrix ofM.

The ASPE scheme satisfies the scalar-product-preserving
property, which refers that the order of scalar products
between a query record and database records over cipher-
texts is the same as that over plaintexts. Specifically, let
CTx1 and CTx2 be the ciphertexts of x1 and x2, respectively.
Let TKq be the query token of q. Then, we have

CTx1 � TKq � CTx2 � TKq , x1 � q � x2 � q:
where “�” denotes the scalar product operation.

Correctness. The scalar-product-preserving property is
correct because

CTx1 � TKq � CTx2 � TKq

, CTx1TK
T
q � CTx2TK

T
q

, ðx1MÞðrqqðM�1ÞT ÞT � ðx2MÞðrqqðM�1ÞT ÞT
, rqx1MM�1qT � rqx2MM�1qT

, rqx1q
T � rqx2q

T

, rqðx1 � qÞ � rqðx2 � qÞ
, x1 � q � x2 � q {rq > 0:

3.2 Hilbert Exclusion Condition

Hilbert exclusion condition was proposed in [22] and it can
be used as a filtration condition in our scheme. In the fol-
lowing, we will introduce the detailed Hilbert exclusion
condition. Suppose that k1 and k2 denote two l-dimensional
data records, and ðq; tÞ denotes a similarity range query
request, where q is an l-dimensional query record and t is a
query range. Meanwhile, k1, k2 and q satisfy that dðk1;qÞ >
dðk2;qÞ. Then, we have the following theorem.

Theorem 1. The condition dðk1;qÞ2�dðk2;qÞ2
2dðk1;k2Þ > t implies that dðxi;

k2Þ < dðxi;k1Þ for all xi such that dðxi;qÞ � t. In other words,
all data records satisfying the query condition are closer to k2

than k1.

Proof. As shown in Fig. 3, let Vk1;k2 denote the perpendicu-
lar bisection plane of the line segment k1k2, and the plane
Vk1;k2 can be represented to be an equation

�
x� k1 þ k2

2

�
� ðk1 � k2Þ ¼ 0:

Then, the distance between q and Vk1;k2 is

dðq; Vk1;k2Þ

¼
�
q� k1 þ k2

2

�
� k1 � k2

dðk1;k2Þ
����

����
¼ dðk2;qÞ2 � dðk1;qÞ2

2dðk1;k2Þ

�����
�����

¼ dðk1;qÞ2 � dðk2;qÞ2
2dðk1;k2Þ

ð{ dðk1;qÞ > dðk2;qÞ as shown in Fig: 3Þ:
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Thus, when dðk1;qÞ2�dðk2;qÞ2
2dðk1;k2Þ > t, we have dðq; Vk1;k2Þ > t.

In this case, it is easy to deduce that dðxi;k2Þ < dðxi;k1Þ
for all xi such that dðxi;qÞ � t as shown in Fig. 3. tu

4 OUR PROPOSED SCHEME

In this section, we present our EPSim scheme. Before delving
into the details, we first introduce a modified ASPE scheme
and a tree data structure, called Quadsector tree, which are
important building blocks of our proposed scheme.

4.1 The Modified ASPE Scheme

ThemodifiedASPE scheme is based onASPE scheme [12]. Dif-
ferent fromASPE scheme, themodifiedASPEscheme assumes
that all values in database records and query records are inte-
gers so that we can add some numbers into the ciphertexts and
query tokens for better security. If not, we can transform them
into integers by scaling. For example, a vector ð0:1; 0:12Þ can
be scaled to an integer vector ð10; 12Þ by enlarging 100 times.
Since the modified ASPE scheme is only concerned about the
sign of the scalar product between data records and query
records (introduced in the following context), the scaling trans-
formation does not affect the correctness of themodifiedASPE
scheme. Specifically, the modified ASPE scheme PMASPE ¼
ðMAspeSetup;MAspeEnc;MAspeTokenGenÞ can be defined
as follows.

� MAspeSetup: The setup algorithm inputs the parame-
ter l and outputs an invertible matrix M 2 Rðlþ4Þ�ðlþ4Þ

as the secret key, whereR is the real domain.
� MAspeEnc: The encryption algorithm inputs M and

an l-dimensional data record xi. The algorithm first
extends xi to be an ðlþ 4Þ-dimensional vector x0i ¼
ðri;1xi; ri;2; ri;3; ri;4; ri;4Þ, where fri;1; ri;2; ri;3; ri;4g are
random real numbers satisfying ri;1 > ri;2 > 0 and
ri;1 > ri;3 > 0. Meanwhile, the randomnumbers fri;1;
ri;2; ri;3; ri;4g are different for different data records.
Then, it encrypts xi into a ciphertextCTxi ¼ x0iM.

� MAspeTokenGen: The query token generation algo-
rithm inputs M and an l-dimensional query record q.
The algorithm first extends q to be an ðlþ 4Þ-dimen-
sional vector q0 ¼ ðrq;1q;�rq;2;�rq;3; rq;4;�rq;4Þ, where
frq;1; rq;2; rq;3; rq;4g are random real numbers satisfying
rq;1 > 2 	 rq;2 > 0 and rq;1 > 2 	 rq;3 > 0. Meanwhile,
the random numbers frq;1; rq;2; rq;3; rq;4g are different
for different query records. Then, it generates a query
token for q asTKq ¼ q0ðM�1ÞT .

Due to the introduction of random numbers in the
encryption and token generation algorithms, the modified
ASPE scheme cannot satisfy the scalar-product-preserving

property between data records and query records anymore.
Instead, it can preserve the sign of scalar product between
data records and query records. Specifically, if CTxi is the
ciphertext of xi and TKq is the query token of q, they satisfy

CTxi � TKq > 0 , xi � q > 0; ð1Þ
CTxi � TKq < 0 , xi � q � 0: ð2Þ

�

Correctness. In the following, we respectively show the
correctness of Eqs. (1) and (2).

Theorem 2. Eq. (1) is correct.

Proof. We prove the correctness of Eq. (1) by proving the
sufficiency and necessity of Eq. (1), respectively.

� Sufficiency: Prove CTxi � TKq > 0 ) xi � q > 0.
First, we have

CTxi � TKq ¼ CTxiTK
T
q ¼ x0iMðq0ðM�1ÞT ÞT ¼ x0iq

0T :

Meanwhile, we have

x0iq
0T

¼ ðri;1xi; ri;2; ri;3; ri;4; ri;4Þðrq;1q;�rq;2;�rq;3; rq;4;�rq;4ÞT
¼ ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3 þ ri;4 	 rq;4 � ri;4 	 rq;4
¼ ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3:

That is, we have

CTxi � TKq ¼ ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3: (3)

When CTxi � TKq > 0, we have

ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3 > 0

) xiq
T >

ri;2 	 rq;2 þ ri;3 	 rq;3
ri;1 	 rq;1 > 0

ð{ri;1; ri;2; ri;3; rq;1; rq;2; rq;3 > 0Þ
) xiq

T > 0 ) xi � q > 0:

Thus, from CTxi � TKq > 0, we can deduce that
xi � q > 0.

�Necessity: Prove xi � q > 0 ) CTxi � TKq > 0.
When xi � q > 0, we have xiq

T > 0. Since xi and q
are integer vectors, xiq

T is an integer. Then, from xi �
q > 0, we can deduce that

xiq
T � 1

) ri;1 	 rq;1xiqT � ri;1 	 rq;1 {ri;1; rq;1 > 0

) ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3
� ri;1 	 rq;1 � ri;2 	 rq;2 � ri;3 	 rq;3:

(4)

Since ri;1 > ri;2 > 0, ri;1 > ri;3 > 0, rq;1 > 2 	 rq;2 > 0
and rq;1 > 2 	 rq;3 > 0, we have

ri;1 	 rq;1 > ri;2 	 2 	 rq;2
ri;1 	 rq;1 > ri;3 	 2 	 rq;3

�
)

1
2 ri;1 	 rq;1 > ri;2 	 rq;2
1
2 ri;1 	 rq;1 > ri;3 	 rq;3:

�

Fig. 3. Illustration for Hilber exclusion condition.
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Thus, we can deduce that

1

2
ri;1 	 rq;1 þ 1

2
ri;1 	 rq;1 > ri;2 	 rq;2 þ ri;3 	 rq;3

) ri;1 	 rq;1 > ri;2 	 rq;2 þ ri;3 	 rq;3
(5)

) ri;1 	 rq;1 � ri;2 	 rq;2 þ ri;3 	 rq;3 > 0: (6)

By combining Eqs. (4) and (6), we can deduce that

ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3 > 0

) CTxi � TKq > 0 { Eq: ð3Þ:
Thus, from xi � q > 0, we have CTxi � TKq > 0. Hence,
Eq. (1) is correct. tu

Theorem 3. Eq. (2) is correct.

Proof. We prove the correctness of Eq. (2) by proving the
sufficiency and necessity of Eq. (2), respectively.

� Sufficiency: Prove CTxi � TKq < 0 ) xi � q � 0.
According to Eq. (3), when CTxi � TKq < 0, we have

ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3 < 0

) xiq
T <

ri;2 	 rq;2 þ ri;3 	 rq;3
ri;1 	 rq;1 { ri;1; rq;1 > 0

) xiq
T <

ri;2 	 rq;2 þ ri;3 	 rq;3
ri;1 	 rq;1 < 1 { Eq: ð5Þ:

Since xi and q are integer vectors, xiq
T is an integer.

Then, from xiq
T < 1, we have xiq

T � 0. Thus, from
CTxi � TKq < 0, we can deduce that xi � q � 0.

�Necessity: Prove xi � q � 0 ) CTxi � TKq < 0.
When xi � q � 0, we have xiq

T � 0 and can deduce
that

xiq
T � 0

) ri;1 	 rq;1xiqT � 0 {ri;1; rq;1 > 0

) ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3
� �ri;2 	 rq;2 � ri;3 	 rq;3 < 0

ð{ri;2; rq;2; ri;3; rq;3 > 0Þ
) ri;1 	 rq;1xiqT � ri;2 	 rq;2 � ri;3 	 rq;3 < 0

) CTxi � TKq < 0 { Eq: ð3Þ:

Thus, from xi � q � 0, we have CTxi � TKq < 0.
Therefore, Eq. (2) is correct. tu

4.2 Quadsector Tree

The Quadsector tree is a tree data structure and designed
for similarity range queries over multi-dimensional data
records. In the Quadsector tree, there are two kinds of
nodes, i.e., internal nodes and leaf nodes. For each internal
node, it has exactly 4 key values fk1;k2;k3;k4g and 4 sub-
trees fT1; T2; T3; T4g, where each kj is a multi-dimensional
data record for j ¼ 1; 2; 3; 4. At the same time, the data
records in the subtree Tj are closer to kj than other key val-
ues for j ¼ 1; 2; 3; 4, where the distance is measured by the
euclidean distance. For each leaf node, it stores data records

and the number of stored data records is up to 3. This is
because when a leaf node stores 4 data records, it can be fur-
ther divided. In the following, we show how to build a
Quadsector tree T for a given dataset X .

Step 1. Compute the key values for T ’s root node. First,
divide the dataset X into 4 subdatasets with K-Means clus-
tering technique [23], and these 4 subdatasets can be repre-
sented to be fX1;X 2;X3;X 4g. For X j, it has a centroid,
denoted by kj. Then, 4 subdatasets have 4 centroids, i.e.,
fk1;k2;k3;k4g. According to the property of K-Means clus-
tering, the data records in X j is closer to kj than other cent-
roids. Thus, we can use fk1;k2;k3;k4g as the key values of
the root node.

Step 2. Build the subtrees for T ’s root node. First, recur-
sively build a subtree Tj for the subdataset X j, where j ¼
1; 2; 3; 4. Then, use fT1; T2; T3; T4g as the subtrees of T ’s root
node. Meanwhile, Tj is associated with the key value kj for
j ¼ 1; 2; 3; 4.

For a clear description, we give an example to show the
concept of Quadsector tree.

Example 1. Assume X ¼ fð1; 0Þ; ð0; 1Þ; ð1; 2Þ; ð2; 1Þ; ð2; 2Þ;
ð8; 1Þ; ð9; 1Þ; ð8; 2Þ; ð9; 2Þ; ð1; 6Þ; ð2; 6Þ; ð1; 7Þ; ð2; 7Þ; ð8; 6Þ; ð8; 7Þ;
ð9; 6Þ; ð9; 7Þg is a two-dimensional dataset. Then, based on
X , a Quadsector tree T can be built as shown in Fig. 4.
From this figure, we can see that the root node has 4 key
values fk1;k2;k3;k4g and 4 subtrees fT1; T2; T3; T4g. Each
subtree is associated with a subdataset, e.g., T1 is associ-
ated with X1 ¼ fð1; 0Þ; ð0; 1Þ; ð1; 2Þ; ð2; 1Þ; ð2; 2Þg. Mean-
while, the key value is the centroid of the corresponding
subdataset, e.g., k1 ¼ ð1:2; 1:2Þ is the centroid of X 1. In
addition, the data records in subtree Tj is closer to kj than
other key values for j ¼ 1; 2; 3; 4.

The Quadsector tree can support efficient similarity
range queries and the query algorithm contains two stages,
i.e., filtration stage and verification stage, as shown in Algo-
rithm 1. In the filtration stage, the query algorithm finds out
candidate data records that are likely to be query result. In
the verification stage, the algorithm further verifies all can-
didate data records and returns the query result.

	 Filtration stage: In the filtration stage, the algorithm
searches the Quadsector tree in a depth-first order. Specifi-
cally, for a tree node, if it is a leaf node, its key values can be
directly added into the candidate set C. If it is an internal
node, it contains 4 key values fk1;k2;k3;k4g and 4 subtrees

Fig. 4. An example of Quadsector tree for a dataset X ¼ fð1; 0Þ; ð0; 1Þ;
ð1; 2Þ; ð2; 1Þ; ð2; 2Þ; ð8; 1Þ; ð9; 1Þ; ð8; 2Þ; ð9; 2Þ; ð1; 6Þ; ð2; 6Þ; ð1; 7Þ; ð2; 7Þ; ð8; 6Þ;
ð8; 7Þ; ð9; 6Þ; ð9; 7Þg.
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fT1; T2; T3; T4g. For each key value kj, if there exists a key
value kj1 such that

dðkj;qÞ2 � dðkj1 ;qÞ2
2dðkj;kj1Þ

> t; (7)

for 1 � j1 � 4 and j1 6¼ j, the subtree Tj cannot contain the
query result and should be pruned. Otherwise, the subtree
Tj is added into the stack S and it needs to be searched later.

	 Verification stage: In the verification stage, the algorithm
verifies the data records in the candidate set C. For each xi 2
C, if dðxi;qÞ � t, add xi into the query result R, i.e, R ¼
R [ fxig. Otherwise, xi does not satisfy the query condition
and can be discarded.

Algorithm 1. Similarity Range Query Over Plaintext

Input: The Quadsector tree T and query request ðq; tÞ
Output: The query resultR.

// Filtration phase
1: C ¼ ;; // Initialize the candidate set
2: Stack S ¼ ;;
3: S:pushðT:rootÞ;
4: while S is not empty do
5: node ¼ S:popðÞ;
6: if node is a leaf node then
7: Add node’s key values into C
8: else
9: Let k1;k2;k3;k4 be node’s key values;
10: for j ¼ 1; 2; 3; 4 do
11: if 9 kj1 satisfies

dðkj;qÞ2�dðkj1 ;qÞ2
2dðkj;kj1 Þ

> t then
12: Tj is pruned;
13: else
14: S:pushðTjÞ;

// Verification phase
15: R ¼ ;; // Initialize the query result
16: for each data record xi in C do
17: if dðxi;qÞ � t then
18: R ¼ R [ fxig;
19: returnR;

Correctness. The similarity range query algorithm is cor-
rect when the filtration inequality Eq. (7) is correct. In the
following, we prove that the filtration inequality is correct
by Theorem 4.

Theorem 4. Suppose that fk1;k2;k3;k4g are 4 key values and
fT1; T2; T3; T4g are 4 subtrees in an internal node. Then, Tj can
be pruned when there exists a key value kj1 ðj1 6¼ jÞ such that
dðkj;qÞ2�dðkj1 ;qÞ2

2dðkj;kj1 Þ
> t for j ¼ 1; 2; 3; 4.

Proof. For the kj, suppose that there exists a key value kj1

ðj1 6¼ jÞ such that
dðkj;qÞ2�dðkj1 ;qÞ2

2dðkj;kj1 Þ
> t. Then, according to

Theorem 1, we can deduce that

dðxi;kj1Þ < dðxi;kjÞ; (8)

for all xi such that dðxi;qÞ � t. In this case, the data

records within t of q cannot be stored in the subtree Tj.
This is because if xi is stored in Tj, dðxi;kjÞ should be

equal to or less than dðxi;kj1Þ, i.e., dðxi;kjÞ � dðxi;kj1Þ,
which contradicts to Eq. (8). Thus, Tj can be pruned. tu

4.3 Description of Our EPSim Scheme

In this subsection, we introduce our proposed EPSim
scheme, which consists of three phases, i.e., system initiali-
zation, local data outsourcing, and similarity range query.

4.3.1 System Initialization

In the system initialization phase, the HC is responsible for
bootstrapping the whole system. It first generates a random
invertible matrix M 2 Rðlþ9Þ�ðlþ9Þ as the secret key, where R

denotes the real domain. Meanwhile, it randomly chooses a
public key encryption algorithm Eð�Þ, and initializes a pair of
public key and secret key ðpk; skÞ for the chosen algorithm.
After that, the public key pk is published and the secret key sk
is sent to the cloud server.When a query doctorUp registers in
the system, the HC randomly chooses two matrices Mp1 and
Mp2 such that ðM�1

p1 ÞT 	Mp2 ¼ ðM�1ÞT . Then, the HC author-
izesUp by respectively distributingMp1 andMp2 toUp and the
cloud server.

4.3.2 Local Data Outsourcing

The HC has a dataset X ¼ fx1; x2; . . . ; xng. Each xi ¼
ðxi1; xi2; . . . ; xilÞ is an l-dimensional data record and it has a
unique identity idi for i ¼ 1; 2; . . . ; n. In the local data out-
sourcing phase, the HC encrypts the dataset X and outsour-
ces it to the cloud as the following steps.

Step 1. Build a Quadsector tree T for the dataset X . In T ,
each internal node has 4 key values fk1;k2;k3;k4g and 4
subtrees fT1; T2; T3; T4g. Meanwhile, the subtree Tj stores
the data records who are closer to kj than other key values
for j ¼ 1; 2; 3; 4. For the leaf nodes, each of them contains up
to 3 data records.

Step 2. Encrypt the internal nodes of T . For each internal
node, it has 4 key values fk1;k2;k3;k4g. For each kj, the HC
constructs three ðlþ 5Þ-dimensional vectors fkj;j1 jj1 ¼
1; 2; 3; 4; j1 6¼ jg for j ¼ 1; 2; 3; 4. Each kj;j1 is constructed
based on key values kj and kj1 as

kj;j1 ¼ ðjjkjjj22 � jjkj1 jj22;kj � kj1 ; dðkj;kj1Þ; 0:5;�0:5; 0Þ;
(9)

where jj � jj22 is the square of euclidean norm, e.g., jjkjjj22 ¼
kj � kj. Then, the HC extends kj;j1 to be an ðlþ 9Þ-dimen-
sional vector as k0

j;j1
¼ ðrj;j1;1kj;j1 ; rj;j1;2; rj;j1;3; rj;j1;4; rj;j1;4Þ,

where frj;j1;1; rj;j1;2; rj;j1;3; rj;j1;4g are random numbers satisfy-
ing rj;j1;1 > rj;j1;2 > 0 and rj;j1;1 > rj;j1;3 > 0. Meanwhile,
the random numbers frj;j1;1; rj;j1;2; rj;j1;3; rj;j1;4g are different
for different kj;j1 ’s. Furthermore, theHC encrypts kj;j1 as

CTkj;j1
¼ MAspeEncðkj;j1 ;MÞ ¼ k0

j;j1
M:

Thus, each internal node will be encrypted to be fCTkj;j1jj; j1 ¼ 1; 2; 3; 4; j1 6¼ jg. Meanwhile, the internal node has 4
subtrees fT1; T2; T3; T4g.

Step 3. Encrypt the leaf nodes of T . For each leaf node
LNode, it has up to 3 data records. For each xi 2 LNode, the
HC constructs an ðlþ 5Þ-dimensional vector x0i as

x0i ¼ ðjjxijj22; xi; 0; 0:5; 0:5;�1Þ: (10)

Then, the HC extends x0i to be an ðlþ 9Þ-dimensional vector
x00i ¼ ðri;1x0i; ri;2; ri;3; ri;4; ri;4Þ, where fri;1; ri;2; ri;3; ri;4g are
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random real numbers satisfying ri;1 > ri;2 > 0 and ri;1 >
ri;3 > 0. Meanwhile, fri;1; ri;2; ri;3; ri;4g are different for dif-
ferent data records. Furthermore, the HC encrypts xi as

CTxi ¼ MAspeEncðx00i ;MÞ ¼ x00iM:

In this case, each leaf node LNode will be encrypted to be
fðidi;CTxiÞjxi 2 LNodeg. After this step, the Quadsector tree
T is encrypted to be Tcipher.

Step 4. Finally, the HC outsources the encrypted Quad-
sector tree Tcipher to the cloud server.

4.3.3 Similarity Range Query

Upon receiving the encrypted Quadsector tree Tcipher, the
cloud server can provide the similarity range query service
to query doctors. In specific, the query doctor Up can launch
a similarity range query request ðq; tÞ to the cloud server as
the following steps.

Step 1. Based on ðq; tÞ, the query doctor Up constructs an
ðlþ 5Þ-dimensional vector q0 as

q0 ¼ ð1;�2q;�2t; jjqjj22; jjqjj22; t2Þ: (11)

Then, Up extends q
0 to be an ðlþ 9Þ-dimensional vector q00 ¼

ðrq;1q0;�rq;2;�rq;3; rq;4;�rq;4Þ, where frq;1; rq;2; rq;3; rq;4g are
random real numbers satisfying rq;1 > 2 	 rq;2 > 0 and
rq;1 > 2 	 rq;3 > 0. Meanwhile, frq;1; rq;2; rq;3; rq;4g are differ-
ent for different query requests. Furthermore, with the
secret keyMp1, Up uses the modified ASPE scheme to gener-
ate a query token TKq for q as

TKq ¼ MAspeTokenGenðq00;Mp1Þ ¼ q00ðM�1
p1 ÞT :

In addition, Up chooses a random access key ak and uses the
public key encryption algorithm to encrypt ak as EpkðakÞ.
Then, Up sends a similarity range query request together
with fEpkðakÞ;TKqg to the cloud server.

Step 2. On receiving the query request, the cloud server
first checks whether Up is authorized or not. If not, the cloud
server will reject the query request. Otherwise, the cloud
server processes the query request as the following steps.

Step 3. The cloud server uses the authorized key Mp2 to
update the query token TKq as

TKq ¼ TKqMp2 ¼ q00ðM�1
p1 ÞTMp2 ¼ q00ðM�1ÞT :

After updating, the query token TKq is converted to a token
generated by the secret keyM.

Step 4. With the query token TKq, the cloud server
searches on the encrypted Quadsector tree Tcipher to obtain
the query result. Similar to the query algorithm over plain-
text in Algorithm 1, the query algorithm over encrypted
data contains two stages, i.e., filtration stage and verification
stage, as shown in Algorithm 2.

	 Filtration stage: The filtration stage in Algorithm 2 is simi-
lar to that inAlgorithm1.Different fromAlgorithm 1, inAlgo-
rithm 2, each internal node contains ciphertexts fCTkj;j1

j
j; j1 ¼ 1; 2; 3; 4; j1 6¼ jg and 4 subtrees fT1; T2; T3; T4g. Mean-
while, the filtration inequality in Eq. (7) is replaced by the
inequalityCTkj;j1

� TKq > 0.
Correctness of the Filtration Inequality Replacement. The

inequality CTkj;j1
� TKq > 0 is equivalent to Eq. (7). First,

we have

CTkj;j1
� TKq > 0

, CTkj;j1
TKT

q > 0

, ðk0
j;j1

MÞðq00ðM�1ÞT ÞT > 0

, k0
j;j1

q00T > 0

, rj;j1;1 	 rq;1kj;j1q
0T � rj;j1;2 	 rq;2 � rj;j1;3 	 rq;3 > 0

, kj;j1q
0T > 0 { based on the modified ASPE:

From kj;j1q
0T > 0, we can deduce that

jjkjjj22 � jjkj1 jj22 � 2q � ðkj � kj1Þ � 2tdðkj;kj1Þ > 0:

Furthermore, we can deduce that

jjkjjj22 � jjkj1 jj22 � 2qðkj � kj1Þ
2dðkj;kj1Þ

> t

, ðjjkjjj22 � 2qkj þ jjqjj22Þ � ðjjkj1 jj22 � 2qkj1 þ jjqjj22Þ
2dðkj;kj1Þ

> t

, dðkj;qÞ2 � dðkj1 ;qÞ2
2dðkj;kj1Þ

> t:

That is, Eq. (7) holds. Thus, the inequality CTkj;j1
� TKq > 0

is equivalent to Eq. (7).

Algorithm 2. Similarity Range Query Over Ciphertext

Input: The encrypted Quadsector tree Tcipher and query token
TKq

Output: The query resultR.

// Filtration phase
1: C ¼ ;; // Initialize the candidate set
2: Stack S ¼ ;;
3: S:pushðTcipher:rootÞ;
4: while S is not empty do
5: node ¼ S:popðÞ;
6: if node is a leaf node then
7: Add node’s encrypted data records into C
8: else if node is an internal node then
9: for j ¼ 1; 2; 3; 4 do
10: if 9 j1 satisfies CTkj;j1

� TKq > 0 then
11: Tj is pruned;
12: else
13: S:pushðTjÞ;

// Verification phase
14: R ¼ ;; // Initialize the query result
15: for each ciphertext CTxi in C do
16: if CTxi � TKq < 0 then
17: R ¼ R [ fidig;
18: returnR;

	 Verification stage: The verification stage in Algorithm 2
is similar to that in Algorithm 1. Different from Algorithm 1,
the verification inequality dðxi;qÞ � t is replaced by
inequality CTxi � TKq < 0. In addition, when the verifica-
tion inequality holds, the algorithm adds idi instead of xi to
the query resultR, i.e.,R ¼ R [ fidig.

Correctness of the Verification Inequality Replacement. The
inequality CTxi � TKq < 0 is equivalent to the inequality
dðxi;qÞ � t. First, we have
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CTxi � TKq < 0

, CTxiTK
T
q < 0

, ðx00iMÞðq00ðM�1ÞT ÞT < 0

, x00i q
00T < 0

, ri;1 	 rq;1x0iq0T � ri;2 	 rq;2 � ri;3 	 rq;3 < 0

, x0iq
0T � 0 { based on the modified ASPE:

From x0iq
0T � 0, we can deduce that

jjxijj22 � 2xi � qþ jjqjj2 � t2 � 0:

Furthermore, we have

dðxi;qÞ2 � t2 � 0 , dðxi;qÞ � t:

Thus, the inequality CTxi � TKq < 0 is equivalent to the
inequality dðxi;qÞ � t.

After executing Algorithm 2, the cloud server obtains the
query resultR.

Step 5. The cloud server recovers the access key ak by
decrypting the ciphertext EpkðakÞ. Then, it uses ak to
encrypt the query result as AESakðRÞ, and returns the
encrypted query result AESakðRÞ to Up.

Step 6. On receiving the encrypted query result AESakðRÞ,
the query doctorUp uses ak to recover the query resultR.

5 SECURITY ANALYSIS

In this section, we analyze the security of the modified
ASPE scheme and our proposed EPSim scheme.

5.1 Security of The Modified ASPE Scheme

Similiar as [24], we prove that the modified ASPE scheme is
selectively secure in the real/ideal simulation setting.
Before formally proving the security, we first define the
leakage in the modified ASPE scheme. Given a data record
xi and a query record q, the leakage is the sign of scalar
product between CTxi and TKq, i.e., L ¼ signðCTxi � TKqÞ.
With the leakage, we respectively define the real experiment
and ideal experiment.

Real Experiment. The real experiment involves a chal-
lenger and a PPT (probabilistic polynomial-time) adversary
A, and they interact as follows.

� Setup: In the setup algorithm, the adversary A choo-
ses a random data record x, and sends it to the chal-
lenger. Then, the challenger executes MAspeSetup
algorithm to generate a secret keyM.

� Query phase 1: The adversaryA adaptively chooses p1
query records fqjj1 � j � qp1

g and sends them to the
challenger, where p1 is a polynomial number. Then,
the challenger generates a token for each qj as
TKqj

¼ MAspeTokenGenðM;qjÞ for 1 � j � p1, and
returns these tokens to A.

� Challenge phase: The challenger encrypts xi as CTxi ¼
MAspeEncðM; xiÞ and returns CTxi to A.

� Query phase 2: Similar toQuery phase 1, the adversaryA
adaptively chooses another ðp2 � p1Þ query records
fqjjp1 < j � p2g and obtains the query tokens fTKqjjp1 < j � p2g from the challenger, where p2 is a poly-
nomial number.

Ideal Experiment. The ideal experiment involves a simula-
tor with leakage L and a PPT adversary A, and they interact
as follows.

� Setup: In the setup algorithm, the adversary A choo-
ses a random data record xi, and sends it to the simu-
lator. Then, the simulator chooses a random vector
CTxi as the ciphertext of xi.

� Query phase 1: The adversaryA adaptively chooses p1
query records fqjj1 � j � qp1

g and sends them to the
simulator, where p1 is a polynomial number. For
each qj, the simulator has a leakage L ¼ signðCTxi �
TKqj

Þ, and it can use L to construct a query token
TKqj

for qj as

1) If signðCTxi � TKqj
Þ > 0, choose a random vector

TKqj
such that CTxi � TKqj

> 0.

2) If signðCTxi � TKqj
Þ < 0, choose a random vector

TKqj
such that CTxi � TKqj

< 0.

Then, the simulator returns these query tokens to A.
Challenge phase: The simulator returns CTxi to A.
Query phase 2: Similar toQuery phase 1, the adversaryA
adaptively chooses another ðp2 � p1Þ query records
fqjjp1 < j � p2g and obtains the query tokens fTKqjjp1 < j � p2g from the simulator, where p2 is a poly-
nomial number.

Definition 1 (Security of themodifiedASPE scheme). The
modified ASPE scheme is selectively secure with the leakage L iff
for all PPT adversaries issuing polynomial numbers of query
token generations, there exists a PPT simulator such that the
probability that a PPT distinguisher D can distinguish the real
and ideal experiments is negligible, i.e., jPr½DðViewA;RealÞ ¼
1
 � Pr½DðViewA;Ideal;LÞ ¼ 1
j is negligible.
In our real experiment and ideal experiment, the view of a

PPT distinguisherD is fCTxi ; fTKqj
g1�j�p2

g. In the following,

we show that D cannot distinguish the real experiment and
ideal experiment. First, in the real experiment,CTxi andTKqj
are generated according to the modified ASPE scheme. In the
modified ASPE scheme, the encryption algorithm contains
random numbers fri;1; ri;2; ri;3; ri;4g. The query token genera-
tion algorithm contains random numbers frq;1; rq;2; rq;3; rq;4g.
These random numbers make the ciphertexts and query
tokens look like random vectors. Second, in the ideal experi-
ment, the ciphertext and query tokens are randomly chosen
based on the leakage, so they are also random vectors. Thus,
the view of a distinguisherD is random ciphertexts and query
tokens in both real and ideal experiments. In this case, the
probability that D can distinguish them is negligible. Thus,
the modified ASPE scheme is selectively secure, which also
means that themodifiedASPE scheme is semantically secure.

5.2 Security of Our EPSim Scheme

In this subsection, we analyze the security of our EPSim
scheme. In specific, we will show that our scheme is pri-
vacy-preserving under our security model, i.e., (i) the data-
set stored in the cloud is privacy-preserving; (ii) query
requests are privacy-preserving; (iii) query results are pri-
vacy-preserving.
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� The dataset stored in the cloud is privacy-preserving. In our
security model, the cloud server is considered to be honest-
but-curious. It may attempt to deduce the plaintext of the
dataset when storing dataset. Before outsourced to the
cloud, the dataset has been encrypted to be a Quadsector
tree. In the encrypted tree Tcipher, each internal node has
ciphertexts fCTkj;j1

jj; j1 ¼ 1; 2; 3; 4; j1 6¼ jg. Each ciphertext
is encrypted by the modified ASPE scheme and the secret
key is M. Since the modified ASPE scheme is selectively
secure and the cloud server only has part of the secret key
M, it is difficult for the cloud server to learn about the plain-
text of these ciphertexts without the complete M. For the
leaf nodes, each of them is also encrypted by the modified
ASPE scheme. Then, the security of the modified ASPE
scheme can guarantee that the cloud server has no idea on
the plaintext of these data records. Thus, the dataset in the
cloud is privacy-preserving.

� The query requests are privacy-preserving. The query
requests involve the private information of the query doc-
tors, so they should be kept secret from the cloud server
and other query doctors. In our scheme, when a query doc-
tor Up launches a query request ðq; tÞ, he/she uses the mod-
ified ASPE scheme to generate a query token TKq. In order
to obtain the query request ðq; tÞ, the cloud server and other
query doctors may attempt to deduce ðq; tÞ from the query
token TKq. However, the query token is generated by Up’s
authorized key Mp1. For the cloud server, it only has the
random authorized key Mp2, but has no idea on Mp1. For
other query doctors, their authorized keys are randomly
chosen and are different from Mp1. In this case, both the
cloud server and other query doctors have no idea on the
authorized key Mp1. Then, the security of the modified
ASPE scheme can guarantee that it is difficult for them to
obtain the plaintext of the query request from TKq. There-
fore, the query requests are privacy-preserving.

� The query results are privacy-preserving. The query result
R contains the identities of data records satisfying the query
condition. As described in our security model, the query
doctors may be curious about the query results of other
query doctors. However, in our scheme, for Up’s query
result R, the cloud server first encrypts it with the access
key ak, i.e., AESakðRÞ. Since ak is chosen by Up and shared
with the cloud server by a public key encryption algorithm,
other query doctors have no idea on it. Then, the security of
AES technique can guarantee that other query doctors can-
not obtain the query resultRwithout ak.

For the cloud server, it may be curious about the plain-
text of the data records corresponding to these identities.
Since the data records corresponding to the query results
are encrypted with the modified ASPE scheme, the security
of the modified ASPE scheme can guarantee that the cloud
sever has no idea on the plaintext of these data records.
Therefore, the query results are privacy-preserving.

6 PERFORMANCE EVALUATION

In this section, we first evaluate the performance of our EPSim
scheme from both theoretical and experimental aspects. Since
we aim at improving the similar range query efficiency, we
mainly focus on evaluating the computational cost of similar-
ity range queries. Meanwhile, since the ASPE scheme [12] is

considered as themost efficient similarity range query scheme
with accurate query results, to validate the efficiency of our
EPSim scheme, we compare it with the ASPE scheme. Then,
we show that our EPSim scheme is practical.

6.1 Theoretical Analysis

Suppose that X is a dataset with n l-dimensional data
records and is encrypted into an encrypted Quadsector tree,
denoted by Tcipher. Since Tcipher is a Quadtree, its height is
about log 4n. Meanwhile, the ciphertext of each Tcipher’s
internal node contains 12 ðlþ 9Þ-dimensional vectors, and
the ciphertext of each Tcipher’s leaf node is an ðlþ 9Þ-dimen-
sional vector. When performing similarity range queries
over Tcipher, the computational cost depends on two factors,
i.e., (i) the number of internal nodes and leaf nodes that
need to be searched; and (ii) the computational cost of
searching internal nodes and leaf nodes. Given a similarity
query ðq; tÞ, on the one hand, the number of internal nodes
and leaf nodes that need to be searched is closely related to
the size of the query result. Without loss of generality, sup-
pose that aq;t denotes the size of the query ðq; tÞ’s query
result. Then, the number of internal nodes and leaf nodes
that need to be searched is about aq;t 	 log 4n. On the other
hand, since the ciphertext of each Tcipher’s internal node con-
tains 12 ðlþ 9Þ-dimensional vectors and the ciphertext of
each Tcipher’s leaf node is an ðlþ 9Þ-dimensional vector, the
computational cost of searching internal nodes and leaf
nodes is 12ðlþ 9Þ and ðlþ 9Þ, respectively. Thus, the overall
computational cost of a similarity query is approximately
Oðaq;t 	 ðlþ 9Þ 	 log 4nÞ. In this case, the computational cost
of similarity queries is affected by three parameters, i.e., t, l,
and n.

� The size of dataset n: When the size of the dataset (i.e.,
n) increases, the height of Quadsector tree (i.e., log 4n) will
become larger. Hence, the computational cost of similarity
range queries will increase.

� The query range t: When t increases, the size of the query
result (i.e., aq;t) will increase. As a result, the computational
cost of similarity range queries will correspondingly increase.
Meanwhile, we have the following observation.

Observation 1. Let X be dataset and the data records in each
dimension are in the domain of ½L;R
. Then, in most cases,
when the query range t is larger than half of the domain, i.e.,
t > R�L

2 , almost no subtrees can be pruned during the process
of similarity range queries. Then, the similarity range queries
will become less efficient.

We take two-dimensional dataset as an example to show
that Observation 1 is correct. From Hilbert exclusion condi-
tion, we can infer that one subtree can be pruned iff
dðq; Vk1;k2Þ > t. Specifically, when dðq; Vk1;k2Þ > t and
dðk1;qÞ > dðk2;qÞ, the query result will be closer to k2 than
k1 and the data records in k1’s subtree can be pruned.
When dðq; Vk1;k2Þ > t and dðk1;qÞ < dðk2;qÞ. The data
records in k2’s subtree can be pruned. That is, whether a
subtree can be pruned depends on the relationship between
dðq; Vk1;k2Þ and t.

Meanwhile, when t > R�L
2 , dðq; Vk1;k2Þ and t almost can-

not satisfy Hilbert exclusion condition and almost no sub-
trees can be pruned. As shown in Fig. 5b, when Vk1;k2 is in
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the middle of the whole area, dðq; Vk1;k2Þ is equal to or less
than t for any query record q. Thus, Hilbert exclusion con-
dition cannot be satisfied. As shown in Fig. 5c, when Vk1;k2

is on the left side of the whole area, dðq; Vk1;k2Þ is equal to or
less than t for any q in Area 1. In contrast, for any q in Area
2, dðq; Vk1;k2Þ > R�L

2 holds. Thus, when q falls into Area 2,
the subtree related to k1 can be pruned. However, the num-
ber of data records falling into Area 2 is small. This is
because k1 and k2 should be symmetrical about the line
Vk1;k2 . When Vk1;k2 is on the leaf side of the whole area, k2

should be near to Vk1;k2 . Meanwhile, since k2 is the centroid
of data records in k2’s subtree. Then, most data records in
k2’s subtree should be near to k2. Correspondingly, most
query records should fall into Area 1, so they cannot satisfy
the Hilbert exclusion condition. Hence, almost no subtrees
can be pruned even if Vk1;k2 is on the left side of the whole
area. Likewise, when Vk1;k2 is on the right of the whole area,
the subtrees also cannot be pruned. Thus, Observation 1 is
correct.

� The dimension of data records l: The computational
cost of similarity range queries increases with the increase
of l. When l increases, the computational cost of computing
the scalar product between encrypted data records and
query tokens will increase.

6.2 Experimental Analysis

In this subsection, we experimentally evaluate the perfor-
mance of our EPSim scheme and compare it the ASPE
scheme. We implemented our scheme and the ASPE scheme
in Java and conducted experiments on a machine with
Apple M1 CPU, 16 GB RAM, and macOS Big Sur operating
system. Since both our scheme and the ASPE scheme can
use public key encryption algorithm Eð�Þ to protect the pri-
vacy of the query results, the computational cost from Eð�Þ
is not considered in our experiments. The evaluated data-
sets include a real dataset and a synthetic dataset. The real
dataset is an EEG dataset [25]. It consists of 14,980 data
records and 14 attributes. The synthetic dataset is randomly
generated and all values fall within the range of ½0; 20
. Since
the computational cost of similarity range query is affected
by parameters n, t, and l, we evaluate the impact of these
parameters, respectively. In our evaluation, each experi-
ment is conducted 1000 times, and the average result is
reported.

� The size of dataset n: In Fig. 6a, we plot the computa-
tional cost of our scheme and the ASPE scheme varying
with n on EEG dataset. In this experiment, we set l ¼ 5, t ¼
6, and n ranges from 4,000 to 14,000. From this figure, we
can see that the computational cost of our scheme and the

ASPE scheme increases with n but our scheme is more effi-
cient than the ASPE scheme. For example, when n ¼ 14000,
the average computational cost of our scheme is about 0.524
ms, while that of the ASPE scheme is about 6.37 ms.

In Fig. 6b, we plot the computational cost of our scheme
and the ASPE scheme varying with n on a synthetic dataset.
In this experiment, we set l ¼ 5, t ¼ 3, and n ranges from
10,000 to 60,000. From this figure, we can see that the
computational cost of our scheme and the ASPE scheme
increases with n but the increasing rate of our scheme is
lower than that of the ASPE scheme. In addition, our
scheme is much more efficient than the ASPE scheme. For
example, when n ¼ 60000, the average computational cost
of our scheme is about 1.165 ms, while that of the ASPE
scheme is about 27.88 ms.

� The query range t: In Fig. 7a, we plot the computational
cost of our scheme and the ASPE scheme varying with t on
EEG dataset. In this experiment, we set n ¼ 14000, l ¼ 5,
and t ranges from 3 to 10. From this figure, we can see that
the computational cost of the ASPE scheme is almost
unchanged. This is because the similarity range query in the
ASPE scheme is achieved by traversing all data records and
the query efficiency is not related to the query range t. In
our scheme, the computational cost increases with the query
range t. This is because when t increases, more data records
can satisfy the query condition. That is, the size of the query
result will increase. In this case, the computational cost of
similarity queries will correspondingly increase. In addi-
tion, we can see that our scheme is much more efficient than
the ASPE scheme.

In Fig. 7b, we plot the computational cost of our scheme
and the ASPE scheme varying with t on a synthetic dataset.
In this experiment, we set n ¼ 60000, l ¼ 5, and t ranges
from 2 to 4. This experiment also demonstrates that the
computational cost of our scheme increases with t and is
more efficient than the ASPE scheme.

� The dimension of data records l: In Fig. 8a, we plot the
computational cost of our scheme and the ASPE scheme

Fig. 5. Example to show the correctness of Observation 1. Fig. 6. Computational cost versus the size of dataset n.

Fig. 7. Computational cost versus the query range t.
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varying with l on EEG dataset. In this experiment, we set
n ¼ 14000, and l is in the range of f4; 5; 6; 7; 8g. In order to
make query results contain 4 to 10 data records, the query
range t is correspondingly set to be f3; 6; 8; 10; 12g. From
this figure, we can see that the computational cost of the
ASPE scheme and our scheme linearly increases as l
becomes larger. Meanwhile, we can see that our scheme is
more efficient than the ASPE scheme.

In Fig. 8b, we plot the computational cost of our scheme
and the ASPE scheme varying with l on a synthetic dataset.
In this experiment, we set n ¼ 60000 and l is in the range of
f4; 5; 6; 7; 8g. To make the query result contain 4 to 6 data
records, the query range t is correspondingly set to be
f1:5; 2:5; 3:5; 4:5; 5:5g. From Fig. 8b, we can see that this
experiment also shows the computational cost of our
scheme increases as l becomes larger. Meanwhile, our
scheme is much more efficient than the ASPE scheme in
query processing.

6.3 Practicality

In this subsection, we show that our scheme is practical as
defined in Section 2.3. On the one hand, when a query doc-
tor Up registers in the system, the HC authorizes Up through
a random secret key Mp1. Thus, the HC does not have to
share the secret key M with query doctors. On the other
hand, the HC does not have to stay online. Meanwhile, our
scheme is built under a single cloud server. Therefore, our
scheme is practical.

7 RELATED WORK

The similarity query is to search the data records who are
similar to a specific query record, where the similarity
between two data records are measured by various distance
metrics such as euclidean distance. Meanwhile, with the
popularity of cloud service, the similarity query over out-
sourced encrypted data has attracted considerable attention
from academia and industria [26], and many privacy-pre-
serving similarity query schemes were proposed.

Oliveira et al. [7] introduced a distance-preserving trans-
formation technique to encrypt the data. In the proposed
scheme, the distance over encrypted data records is the
same as that over plaintext data records. With the distance-
preserving property, it is easy to perform the similarity
range query over encrypted data. However, Wong et al. [12]
showed that the distance-preserving transformation could
not resist level-2 attack (defined in [12]). In the level-2
attack, when an attacker knows the encrypted dataset and

several plaintext data records, the whole dataset can be
recovered.

Some similarity query schemes [6], [8], [9], [10], [12] are
inefficient. For the schemes [6], [8], [9], [10], they employed
public key encryption techniques, e.g., Paillier encryption
technique, to achieve similarity queries. However, the time-
consuming public key encryption techniques make these
schemes inefficient. For the scheme [12], it is an asymmetric
scalar-product preserving encryption (ASPE) scheme [12]
and was proposed to achieve similarity queries based on
matrix encryption. Although, compared with the public key
encryption based schemes [6], [8], [9], [10], the ASPE scheme
is more efficient and is considered as the most efficient simi-
larity query scheme with accurate query results. However,
the ASPE scheme performs similarity queries by traversing
each data record, so the computational complexity of query
processing is linear to the size of the dataset. Thus, it is also
inefficient.

Some efficient similarity query schemes [20], [21], [27],
[28], [29] were proposed, but they are impractical in some
real scenarios. Zhu et al. [27], [28] designed two similarity
range query schemes. In these schemes, interactive proto-
cols between the data owner and query users are designed
such that the query users can obtain the query result with-
out the secret key. In [29], Zhu et al. adopted Paillier homo-
morphic encryption technique in the process of query
encryption such that the query users can launch queries
without the secret key. The schemes [27], [28], [29] can avoid
the secret key sharing with query users but they require that
data owners (i.e., healthcare centers in our scheme) stay
online.

To further improve the similarity query efficiency, two
schemes [20], [21] were proposed by combining garbled cir-
cuits technique [30], SSE, and LSH, but these two schemes
have another limitation, i.e., they were built under the
model of two cloud servers. However, in order to reduce
the cloud bills, the data owners may prefer to deploy a sin-
gle cloud server in some real scenarios. Thus, the schemes
[20], [21] are also impractical. In addition, to balance data
security, query efficiency and query result accuracy, some
approximate privacy-preserving similarity query schemes
were proposed [13], [14], [15], [16], [17], [18], [19], but they
are not applicable to our scenario.

8 CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving similarity range query scheme. Specifically, we
first presented a Quadsector tree to represent dataset, and
employed an efficient filtration condition, i.e., Hilbert exclu-
sion condition, to design an efficient similarity query algo-
rithm. At the same time, based on the ASPE scheme, we
constructed a modified ASPE scheme and proved that it is
selectively secure. Finally, we proposed our scheme by
employing the modified ASPE scheme to encrypt and
search the Quadsector tree. In addition, security analysis
and performance evaluation show that our scheme can well
preserve the privacy of dataset, query requests and query
results, and it is indeed efficient and practical in similarity
range queries. In our future work, we will explore other

Fig. 8. Computational cost versus the data dimension l.

2752 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 11,2023 at 13:18:33 UTC from IEEE Xplore.  Restrictions apply. 



data structures to represent the dataset and construct more
efficient similarity range query scheme.
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