k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

Reporter: Ximeng Liu
Supervisor: Rongxing Lu

School of EEE, NTU
http://www.ntu.edu.sg/home/rxlu/seminars.htm

May 9, 2014
1 Main References

2 Introduction

3 Background

4 Basic Protocols

5 The proposed scheme
Main References

k-Nearest Neighbor algorithm
Problem Definition

Suppose Alice owns a database D of n records t_1, \ldots, t_n and $m + 1$ attributes. Let $t_{i,j}$ denote the j-th attribute value of record t_i. Initially, Alice encrypts her database attribute-wise, that is, she computes $E_{pk}(t_{i,j})$, for $1 \leq i \leq n$ and $1 \leq j \leq m + 1$, where column $(m + 1)$ contains the class labels. Let the encrypted database be denoted by D'.
Problem Definition

Let Bob be an authorized user who wants to classify his input record \(q =< q_1, \cdots, q_m > \) by applying the k-NN classification method based on \(D' \). We refer to such a process as privacy-preserving k-NN (PPkNN) classification over encrypted data in the cloud. Formally, we define the PPkNN protocol as:

\[
PPkNN(D', q) \rightarrow c_q
\]

where \(c_q \) denotes the class label for \(q \) after applying k-NN classification method on \(D \) and \(q \).
a. Homomorphic Addition

\[E_{pk}(a + b) = E_{pk}(a) \star E_{pk}(b) \mod N^2 \]

b. Homomorphic Multiplication

\[E_{pk}(a \star b) = E_{pk}(a)^b \mod N^2 \]
Basic Privacy-Preserving Protocols

All of the below protocols are considered under two-party semi-honest setting. In particular, we assume the exist of two semi-honest parties P_1 and P_2 such that the Paillier’s secret key sk is known only to P_2 whereas pk is treated as public.

1. Multiplication (SM) Protocol: This protocol considers P_1 with input $(E_{pk}(a), E_{pk}(b))$ and outputs $E_{pk}(a \ast b)$ to P_1, where a and b are not known to P_1 and P_2. During this process, no information regarding a and b is revealed to P_1 and P_2.

http://www.ntu.edu.sg/home/rxlu/seminars.htm
Secure Squared Euclidean Distance (SSED) Protocol: In this protocol, P_1 with input $(E_{pk}(X), E_{pk}(Y))$ and P_2 with sk securely compute the encryption of squared Euclidean distance between vectors X and Y. Here X and Y are m dimensional vectors where $E_{pk}(X) = \langle E_{pk}(x_1), \cdots, E_{pk}(x_m) \rangle$ and $E_{pk}(Y) = \langle E_{pk}(y_1), \cdots, E_{pk}(y_m) \rangle$. The output of the SSED protocol is $E_{pk}(|X - Y|^2)$ which is known only to P_1.
Secure Bit-Decomposition (SBD) Protocol: P_1 with input $E_{pk}(z)$ and P_2 securely compute the encryptions of the individual bits of z, where $0 \leq z < 2^l$. The output $[z] = \langle E_{pk}(z_1), \cdots, E_{pk}(z_l) \rangle$ is known only to P_1. Here z_1 and z_l are the most and least significant bits of integer z, respectively.
Secure Minimum (SMIN) Protocol: In this protocol, P_1 holds private input (u', v') and P_2 holds sk, where $u' = ([u], E_{pk}(s_u))$ and $v = ([v], E_{pk}(s_v))$. Here s_u (resp., s_v) denotes the secret associated with u (resp., v). The goal of SMIN is for P_1 and P_2 to jointly compute the encryptions of the individual bits of minimum number between u and v. In addition, they compute $E_{pk}(s_{min}(u, v))$. That is, the output is $([min(u, v)], E_{pk}(s_{min}(u, v)))$ which will be known only to P_1. During this protocol, no information regarding the contents of u, v, s_u, and s_v is revealed to P_1 and P_2.
Basic Privacy-Preserving Protocols

Secure Minimum out of n Numbers ($SMIN_n$) Protocol: In this protocol, we consider P_1 with n encrypted vectors ([d_1, ⋯, d_n]) along with their respective encrypted secrets and P_2 with sk. Here $[d_i] = E_{pk}(d_{i,1}), \cdots, E_{pk}(d_{i,l})$ where $d_{i,1}$ and $d_{i,l}$ are the most and least significant bits of integer d_i respectively, for $1 \leq i \leq n$. The secret of d_i is given by s_{d_i}. P_1 and P_2 jointly compute $[\text{min}(d_1, \cdots, d_n)]$. In addition, they compute $E_{pk}(s_{\text{min}(d_1,\cdots,d_n)})$. At the end of this protocol, the output $([\text{min}(d_1, \cdots, d_n)], E_{pk}(s_{\text{min}(d_1,\cdots,d_n)}))$ is known only to P_1. During the $SMIN_n$ protocol, no information regarding any of d_i’s and their secrets is revealed to P_1 and P_2.

http://www.ntu.edu.sg/home/rxlu/seminars.htm
Secure Bit-OR (SBOR) Protocol: P_1 with input $(E_{pk}(o_1), E_{pk}(o_2))$ and P_2 securely compute $E_{pk}(o_1 \lor o_2)$, where o_1 and o_2 are two bits. The output $E_{pk}(o_1 \lor o_2)$ is known only to P_1.
Secure Multiplication (SM)

\[a \ast b = (a + r_a) \ast (b + r_b) - a \ast r_a - b \ast r_b - r_a \ast r_b \]

Note that, for any given \(x \in Z_N \), \(N - x \) is equivalent to \(-x\) under \(Z_N \).
Secure Multiplication (SM)

Algorithm 1 SM($E_{pk}(a), E_{pk}(b)) \rightarrow E_{pk}(a \cdot b)$

Require: P_1 has $E_{pk}(a)$ and $E_{pk}(b)$; P_2 has sk

1: P_1:
 (a). Pick two random numbers $r_a, r_b \in \mathbb{Z}_N$
 (b). $a' \leftarrow E_{pk}(a) * E_{pk}(r_a)$
 (c). $b' \leftarrow E_{pk}(b) * E_{pk}(r_b)$; send a', b' to P_2

2: P_2:
 (a). Receive a' and b' from P_1
 (b). $h_a \leftarrow D_{sk}(a')$; $h_b \leftarrow D_{sk}(b')$
 (c). $h \leftarrow h_a * h_b \mod N$
 (d). $h' \leftarrow E_{pk}(h)$; send h' to P_1

3: P_1:
 (a). Receive h' from P_2
 (b). $s \leftarrow h' * E_{pk}(a)^{N-r_b}$
 (c). $s' \leftarrow s * E_{pk}(b)^{N-r_a}$
 (d). $E_{pk}(a \cdot b) \leftarrow s' * E_{pk}(r_a * r_b)^{N-1}$

http://www.ntu.edu.sg/home/rxlu/seminars.htm
Secure Squared Euclidean Distance (SSED)

Algorithm 2 SSED\((E_{pk}(X), E_{pk}(Y)) \rightarrow E_{pk}(|X - Y|^2) \)

Require: \(P_1 \) has \(E_{pk}(X) \) and \(E_{pk}(Y) \); \(P_2 \) has \(sk \)
1: \(P_1 \), for \(1 \leq i \leq m \) do:
 (a). \(E_{pk}(x_i - y_i) \leftarrow E_{pk}(x_i) * E_{pk}(y_i)^{N-1} \)
2: \(P_1 \) and \(P_2 \), for \(1 \leq i \leq m \) do:
 (a). Compute \(E_{pk}((x_i - y_i)^2) \) using the SM protocol
3: \(P_1 \) computes \(E_{pk}(|X - Y|^2) \leftarrow \prod_{i=1}^{m} E_{pk}((x_i - y_i)^2) \)
We assume that P_1 has $E_{pk}(z)$ and P_2 has sk, where z is not known to both parties and $0 \leq z < 2^l$. Given $E_{pk}(z)$, the goal of the secure bit-decomposition (SBD) protocol is to compute the encryptions of the individual bits of binary representation of z. That is, the output is $[z] = \langle E_{pk}(z_1), \cdots, E_{pk}(z_l) \rangle$, where z_1 and z_l denote the most and least significant bits of z respectively. At the end, the output $[z]$ is known only to P_1. During this process, neither the value of z nor any z_i’s is revealed to P_1 and P_2.
Secure Minimum (SMIN)

the basic idea of the proposed SMIN protocol is for P_1 to randomly choose the functionality F (by flipping a coin), where F is either $u > v$ or $v > u$, and to obliviously execute F with P_2. Since F is randomly chosen and known only to P_1, the result of the functionality F is oblivious to P_2. Based on the comparison result and chosen F, P_1 computes $[\min(u, v)]$ and $E_{pk}(s_{\min(u,v)})$ locally using homomorphic properties.
Secure Minimum (SMIN)

Algorithm 3 SMIN(u', v') → ([min(u, v)], $E_{pk}(s_{min(u,v)})$)

Require: P_1 has $u' = ([u], E_{pk}(s_u))$ and $v' = ([v], E_{pk}(s_v))$, where $0 \leq u, v < 2^l$; P_2 has sk

1: P_1

(a) Randomly choose the functionality F
(b) for $i = 1$ to l do:

- $E_{pk}(u_i \ast v_i) \leftarrow SM(E_{pk}(u_i), E_{pk}(v_i))$
- $T_i \leftarrow E_{pk}(u_i \oplus v_i)$
- $H_i \leftarrow H_i^{-1} \ast T_i; r_i \in R \mathbb{Z}_N$ and $H_0 = E_{pk}(0)$
- $\Phi_i \leftarrow E_{pk}(-1) \ast H_i$
- if $F : u > v$ then $W_i \leftarrow E_{pk}(u_i) \ast E_{pk}(u_i \ast v_i)^{N-1}$ and $\Gamma_i \leftarrow E_{pk}(v_i - u_i) \ast E_{pk}(r_i); \hat{r}_i \in R \mathbb{Z}_N$
 else $W_i \leftarrow E_{pk}(v_i) \ast E_{pk}(u_i \ast v_i)^{N-1}$ and $\Gamma_i \leftarrow E_{pk}(u_i - v_i) \ast E_{pk}(r_i); \hat{r}_i \in R \mathbb{Z}_N$
- $L_i \leftarrow W_i \ast \Phi_i^i; r_i' \in R \mathbb{Z}_N$

(c) if $F : u > v$ then: $\delta \leftarrow E_{pk}(s_u - s_u) \ast E_{pk}(\hat{r})$
 else $\delta \leftarrow E_{pk}(s_u - s_v) \ast E_{pk}(\hat{r})$, where $\hat{r} \in R \mathbb{Z}_N$
(d) $\Gamma' \leftarrow \pi_1(\Gamma)$ and $L' \leftarrow \pi_2(L)$
(e) Send δ, Γ' and L' to P_2
Secure Minimum (SMIN)

2: P_2:

(a). Decryption: $M_i \leftarrow D_{sk}(L'_i)$, for $1 \leq i \leq l$

(b). If $\exists j$ such that $M_j = 1$ then $\alpha \leftarrow 1$

else $\alpha \leftarrow 0$

(c). If $\alpha = 0$ then:

- $M'_i \leftarrow E_{pk}(0)$, for $1 \leq i \leq l$
- $\delta' \leftarrow E_{pk}(0)$

else

- $M'_i \leftarrow \Gamma'_i \ast r_N$, where $r \in_R \mathbb{Z}_N$ and is different for $1 \leq i \leq l$
- $\delta' \leftarrow \delta \ast r'_N$, where $r'_\delta \in_R \mathbb{Z}_N$

(d). Send $M', E_{pk}(\alpha)$ and δ' to P_1
Secure Minimum (SMIN)

3. P_1:

 (a) $\overline{M} \leftarrow \pi^{-1}_i(M')$ and $\theta \leftarrow \delta' \ast E_{pk}(\alpha)^{N-r}

 (b) $\lambda_i \leftarrow \overline{M}_i \ast E_{pk}(\alpha)^{N-r_i}$, for $1 \leq i \leq l$

 (c) \textbf{if} $F : u > v$ \textbf{then:}

 - $E_{pk}(s_{\min(u,v)}) \leftarrow E_{pk}(s_u) \ast \theta$
 - $E_{pk}(\min(u,v)_i) \leftarrow E_{pk}(u_i) \ast \lambda_i$, for $1 \leq i \leq l$

 \textbf{else}

 - $E_{pk}(s_{\min(u,v)}) \leftarrow E_{pk}(s_v) \ast \theta$
 - $E_{pk}(\min(u,v)_i) \leftarrow E_{pk}(v_i) \ast \lambda_i$, for $1 \leq i \leq l$
Secure Minimum (SMIN)

- Compute the encrypted bit-wise XOR between the bits u_i and v_i as $T_i = E_{pk}(u_i \oplus v_i)$ using the formulation:

$$T_i = E_{pk}(u_i) \cdot E_{pk}(v_i) \cdot E_{pk}(u_i \cdot v_i)^{N-2}$$

- Compute an encrypted vector H by preserving the first occurrence of $E_{pk}(1)$ (if there exists one) in T by initializing $H_0 = E_{pk}(0)$. The rest of the entries of H are computed as $H_i = H_{i-1}^T \cdot T_i$. We emphasize that at most one of the entry in H is $E_{pk}(1)$ and the remaining entries are encryptions of either 0 or a random number.

- Then, P_1 computes $\Phi_i = E_{pk}(-1) \cdot H_i$. Note that “−1” is equivalent to “$N - 1$” under \mathbb{Z}_N. From the above discussions, it is clear that $\Phi_i = E_{pk}(0)$ at most once since H_i is equal to $E_{pk}(1)$ at most once. Also, if $\Phi_j = E_{pk}(0)$, then index j is the position at which the bits of u and v differ first (starting from the most significant bit position).
Secure Minimum (SMIN)

- If $F: u > v$, compute

$$W_i = E_{pk}(u_i) \times E_{pk}(u_i \times v_i)^{N-1}$$
$$= E_{pk}(u_i \times (1 - v_i))$$
$$\Gamma_i = E_{pk}(v_i - u_i) \times E_{pk}(\hat{r}_i)$$
$$= E_{pk}(v_i - u_i + \hat{r}_i)$$

- If $F: v > u$, compute:

$$W_i = E_{pk}(v_i) \times E_{pk}(u_i \times v_i)^{N-1}$$
$$= E_{pk}(v_i \times (1 - u_i))$$
$$\Gamma_i = E_{pk}(u_i - v_i) \times E_{pk}(\hat{r}_i)$$
$$= E_{pk}(u_i - v_i + \hat{r}_i)$$
Secure Minimum out of n Numbers \((SMIN_n)\)

Algorithm 4 SMIN_n([d_1], \ldots, [d_n]) \rightarrow [d_{\min}]

Require: \(P_1\) has \(([d_1], \ldots, [d_n])\); \(P_2\) has sk

1. \(P_1:\)
 1. \([d'_i] \leftarrow [d_i], \text{ for } 1 \leq i \leq n, \text{ and } \text{num} \leftarrow n\)
2. \(P_1\) and \(P_2\), for \(i = 1\) to \(\lceil \log_2 n \rceil\):
 1. \(\text{for } 1 \leq j \leq \left\lfloor \frac{\text{num}}{2} \right\rfloor:\)
 - if \(i = 1\) then:
 - \([d'_{2j-1}] \leftarrow \text{SMIN}([d'_{2j-1}], [d'_{2j}])\)
 - \([d'_{2j}] \leftarrow 0\)
 - else
 - \([d'_{2i(j-1)+1}] \leftarrow \text{SMIN}([d'_{2i(j-1)+1}], [d'_{2ij-1}])\)
 - \([d'_{2ij-1}] \leftarrow 0\)
 2. \(\text{num} \leftarrow \left\lfloor \frac{\text{num}}{2} \right\rfloor\)
3. \(P_1\) sets \([d_{\min}]\) to \([d'_1]\)
Secure Bit-OR (SBOR)

Suppose P_1 holds $(E_{pk}(o_1), E_{pk}(o_2))$ and P_2 holds sk, where o_1 and o_2 are two bits not known to both parties. The goal of the SBOR protocol is to securely compute $E_{pk}(o_1 \lor o_2)$. At the end of this protocol, only P_1 knows $E_{pk}(o_1 \lor o_2)$. During this process, no information related to o_1 and o_2 is revealed to P_1 and P_2. Given the secure multiplication (SM) protocol, P_1 can compute $E_{pk}(o_1 \lor o_2)$ as follows:

http://www.ntu.edu.sg/home/rxlu/seminars.htm
P_1 with input $(E_{pk}(o_1), E_{pk}(o_2))$ and P_2 involve in the SM protocol. At the end of this step, the output $E_{pk}(o_1 \ast o_2)$ is known only to P_1. Note that, since o_1 and o_2 are bits,

$E_{pk}(o_1 \ast o_2) = E_{pk}(o_1 \land o_2)$.

$E_{pk}(o_1 \lor o_2) = E_{pk}(o_1 + o_2) \ast E_{pk}(o_1 \land o_2)^{N-1}$
Basic scheme

Algorithm 5 $Sk\text{NN}_b(E_{pk}(T), Q) \rightarrow \langle t'_1, \ldots, t'_k \rangle$

Require: C_1 has $E_{pk}(T)$; C_2 has sk; Bob has Q

1: Bob:
 (a). Compute $E_{pk}(q_j)$, for $1 \leq j \leq m$
 (b). Send $E_{pk}(Q) = \langle E_{pk}(q_1), \ldots, E_{pk}(q_m) \rangle$ to C_1

2: C_1 and C_2:
 (a). C_1 receives $E_{pk}(Q)$ from Bob
 (b). for $i = 1$ to n do:
 • $E_{pk}(d_i) \leftarrow \text{SSED}(E_{pk}(Q), E_{pk}(t_i))$
 (c). Send $\{\langle 1, E_{pk}(d_1) \rangle, \ldots, \langle n, E_{pk}(d_n) \rangle\}$ to C_2

3: C_2:
 (a). Receive $\{\langle 1, E_{pk}(d_1) \rangle, \ldots, \langle n, E_{pk}(d_n) \rangle\}$ from C_1
 (b). $d_i \leftarrow D_{sk}(E_{pk}(d_i))$, for $1 \leq i \leq n$
 (c). Generate $\delta \leftarrow \langle i_1, \ldots, i_k \rangle$, such that $\langle d_{i_1}, \ldots, d_{i_k} \rangle$ are the top k smallest distances among $\langle d_1, \ldots, d_n \rangle$
 (d). Send δ to C_1
Basic scheme

4: C_1:
 (a) Receive δ from C_2
 (b) for $1 \leq j \leq k$ and $1 \leq h \leq m$ do:
 - $\gamma_{j,h} \leftarrow E_{pk}(t_{i,j,h}) \cdot E_{pk}(r_{j,h})$, where $r_{j,h} \in_R Z_N$
 - Send $\gamma_{j,h}$ to C_2 and $r_{j,h}$ to Bob

5: C_2:
 (a) for $1 \leq j \leq k$ and $1 \leq h \leq m$ do:
 - Receive $\gamma_{j,h}$ from C_1
 - $\gamma'_{j,h} \leftarrow D_{sk}(\gamma_{j,h})$; send $\gamma'_{j,h}$ to Bob

6: Bob:
 (a) for $1 \leq j \leq k$ and $1 \leq h \leq m$ do:
 - Receive $r_{j,h}$ from C_1 and $\gamma'_{j,h}$ from C_2
 - $t'_{j,h} \leftarrow \gamma'_{j,h} - r_{j,h}$ mod N
Fully Secure kNN Protocol

Algorithm 6 $SkNN_m(E_{pk}(T), Q) \rightarrow \langle t'_1, \ldots, t'_k \rangle$

Require: C_1 has $E_{pk}(T)$ and π; C_2 has sk; Bob has Q

1. Bob sends $E_{pk}(Q) = \langle E_{pk}(q_1), \ldots, E_{pk}(q_m) \rangle$ to C_1
2. C_1 and C_2:
 (a). C_1 receives $E_{pk}(Q)$ from Bob
 (b). for $i = 1$ to n do:
 - $E_{pk}(d_i) \leftarrow \text{SSED}(E_{pk}(Q), E_{pk}(t_i))$
 - $[d_i] \leftarrow \text{SBD}(E_{pk}(d_i))$
3. for $s = 1$ to k do:
 (a). C_1 and C_2:
 - $[d_{\text{min}}] \leftarrow \text{SMIN}_n([d_1], \ldots, [d_n])$
 (b). C_1:
 - $E_{pk}(d_{\text{min}}) \leftarrow \prod_{\gamma=0}^{l-1} E_{pk}(d_{\text{min},\gamma+1})^{2^{l-\gamma-1}}$
 - if $s \neq 1$ then, for $1 \leq i \leq n$
 - $E_{pk}(d_i) \leftarrow \prod_{\gamma=0}^{l-1} E_{pk}(d_i,\gamma+1)^{2^{l-\gamma-1}}$
 - for $i = 1$ to n do:
 - $\tau_i \leftarrow E_{pk}(d_{\text{min}}) * E_{pk}(d_i)^{N-1}$
 - $\tau_i' \leftarrow \tau_i^{\pi'}$, where $\tau_i \in_R \mathbb{Z}_N$
 - $\beta \leftarrow \pi(\tau')$; send β to C_2
c. C_2:
- Receive β from C_1
- $\beta'_i \leftarrow D_{sk}(\beta_i)$, for $1 \leq i \leq n$
- Compute U_i, for $1 \leq i \leq n$:
 - if $\beta'_i = 0$ then $U_i = E_{pk}(1)$
 - else $U_i = E_{pk}(0)$
- Send U to C_1

d. C_1:
- Receive U from C_2 and compute $V \leftarrow \pi^{-1}(U)$
- $V'_{i,j} \leftarrow \text{SM}(V_i, E_{pk}(t_{i,j}))$, for $1 \leq i \leq n$ and $1 \leq j \leq m$
- $E_{pk}(t'_{s,j}) \leftarrow \prod_{i=1}^{n} V'_{i,j}$, for $1 \leq j \leq m$
- $E_{pk}(t'_{s}) = \langle E_{pk}(t'_{s,1}), \ldots, E_{pk}(t'_{s,m}) \rangle$

e. C_1 and C_2, for $1 \leq i \leq n$:
- $E_{pk}(d_{i,\gamma}) \leftarrow \text{SBOR}(V_i, E_{pk}(d_{i,\gamma}))$, for $1 \leq \gamma \leq l$

The rest of the steps are similar to steps 4-6 of SkNN_b
Thank you

Rongxing’s Homepage:
http://www.ntu.edu.sg/home/rxlu/index.htm

PPT available @: http://www.ntu.edu.sg/home/rxlu/seminars.htm

Ximeng’s Homepage:
http://www.liuximeng.cn/