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Abstract—Data analytics systems commonly utilize in-memory
query processing techniques to achieve better throughput and
lower latency. Modern computers increasingly rely on Non-
Uniform Memory Access (NUMA) architectures to achieve scal-
ability. A key drawback of NUMA architectures is that many
existing software solutions are not aware of the underlying
NUMA topology and thus do not take full advantage of the
hardware. Modern operating systems are designed to provide
basic support for NUMA systems. However, default system
configurations are typically sub-optimal for large data analytics
applications. Additionally, rewriting the application from the
ground up is not always feasible.

In this work, we evaluate a variety of strategies that aim to
accelerate memory-intensive data analytics workloads on NUMA
systems. Our findings indicate that the operating system default
configurations can be detrimental to query performance. We
analyze the impact of different memory allocators, memory
placement strategies, thread placement, and kernel-level load
balancing and memory management mechanisms. With extensive
experimental evaluation, we demonstrate that the methodical
application of these techniques can be used to obtain significant
speedups in four commonplace in-memory query processing
tasks, on three different hardware architectures. Furthermore,
we show that these strategies can improve the performance of five
popular database systems running a TPC-H workload. Lastly, we
summarize our findings in a decision flowchart for practitioners.

I. INTRODUCTION

The digital world is producing large volumes of data at

increasingly higher rates. The breadth of applications that

depend on fast and efficient data processing has grown dra-

matically. Main memory query processing systems have been

increasingly utilized to satisfy the growing demands of the

data analytics industry [1]. As hardware moves toward greater

parallelism and scalability, taking advantage of the hardware’s

full potential remains a key challenge for these systems.

NUMA architectures are pervasive in multi-socket and in-

memory rack-scale systems, as well as a growing range

of CPUs with on-chip NUMA. It is clear that NUMA is

ubiquitous and is here to stay, and that software needs to evolve

and keep pace with these changes. Although these advances

have opened a path toward greater performance, the burden of

efficiently leveraging the hardware mostly falls on developers.

NUMA systems include a wide range of CPU architectures,

topologies, and interconnect technologies. As such, there is

no standard for what a NUMA system’s topology looks like.

Due to the variety of NUMA topologies and applications, fine-

tuning an algorithm to a single machine configuration will

not necessarily deliver better performance for other machines.

Furthermore, achieving optimal performance on different sys-

tem configurations can be costly and time-consuming. As a

result, we were motivated to pursue strategies that can improve

performance across-the-board without code tuning.

In an effort to provide a general solution that speeds up

applications on NUMA systems, some researchers have pro-

posed using NUMA schedulers that co-exist with the operating

system (OS). These schedulers monitor running applications

in real-time and attempt to improve performance by migrat-

ing threads and memory pages to address load balancing

issues [2]–[4]. However, some of these approaches are not

architecture or OS independent. For instance, Carrefour [5]

requires an AMD CPU that is based on the K10 architecture,

in addition to a modified OS kernel. Moreover, researchers

have argued that these schedulers may not be beneficial for

multi-threaded in-memory query processing [6].

Lately, researchers have started to pay attention to the

issues affecting query performance on NUMA systems. These

researchers have favored a more application-oriented approach

that involves algorithmic tweaks to the application’s source

code, particularly in the context of query processing engines.

Among these works, some are static solutions that attempted

to make query operators NUMA-aware [7], [8]. Others are

dynamic solutions that focused on work allocation to threads

using work-stealing [9], data placement [10], [11], and task

scheduling with adaptive data repartitioning [12]. These ap-

proaches can be costly and time-consuming to implement,

and incorporating these solutions in commercial database

engines will take time. Regardless, our work is orthogonal to

these efforts, as we explore application-agnostic approaches to

improve query performance.

Main memory query processing systems leverage data par-

allelism on large sets of memory-resident data, thus dimin-

ishing the influence of disk I/O. However, applications that

are not NUMA-aware do not fully utilize the hardware’s

potential [10]. Furthermore, rewriting the application is not

always an option. Solving this problem without extensively

modifying the code requires tools and tuning strategies that

are application-agnostic. In this work, we evaluate the viability

and impact of several key parameters (shown in Table IV)

that aim to achieve this. We demonstrate that significant

performance gains can be achieved by managing dynamic

memory allocators, thread placement and scheduling, memory

placement policies, indexing, and the OS configuration. In

this context, the impact and role of memory allocators have

been under-appreciated and overlooked by researchers. We
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center our investigation around five different memory-intensive

query workloads (shown in Table I) that prominently feature

joins and aggregations, arguably two of the most popular and

computationally expensive workloads used in data analytics.

We selected the open-source MonetDB, PostgreSQL, MySQL,

and Quickstep database systems, as well as a commercial

database system DBMSx for evaluation. These systems were

selected due to their significantly divergent architectures as

well as their popularity.

An important finding from our research is that the default

(out-of-the-box) OS environment can be surprisingly sub-

optimal for high-performance query processing. For instance,

the default Linux memory allocator ptmalloc can significantly

lag behind other alternatives. Furthermore, with extensive

experimental evaluation, we demonstrate that it is possible

to systematically utilize application-agnostic (or black-box)

approaches to obtain speedups on a variety of data analytics

workloads. We show that a hash join workload can achieve a

3× speedup on Machine C (see machine topologies in Figure 1

and specifications in Table II), by replacing the memory

allocator. This speedup can be further improved to 20× by

optimizing the memory placement policy and modifying the

OS configuration. We also show that our findings apply to

other hardware configurations, by evaluating the experiments

on three machines with different hardware architectures and

NUMA topologies. Lastly, we show how database system

performance can be improved by systematically modifying the

default OS configuration and overriding the memory allocator.

For example, we demonstrate that MonetDB’s query latency

in the TPC-H workload can be reduced by up to 43%.

The main contributions of this paper are as follows:

• Categorization and analysis of strategies to improve ap-

plication performance on NUMA systems

• The first study on NUMA systems (to our knowledge)

that explores the combined impact of different memory

allocators, thread and memory placement policies, and

OS-level configurations, on different analytics workloads

• Extensive experimental evaluation, involving different

workloads, indexes and database systems on different

machine architectures and topologies, with profiling and

performance counters, and microbenchmarks

• A decision flowchart (Figure 10) to help practitioners

speed up query processing on NUMA systems with

minimal code modifications

The paper is organized as follows: we provide some back-

ground on the problem and the workloads in Section II. In

Section III we discuss the strategies for improving query

performance on NUMA systems. We present our setup and

experimental results in Section IV. Finally, we discuss related

work in Section V and conclude the paper in Section VI.

II. BACKGROUND

A NUMA system is divided into several NUMA nodes.

Each node consists of one or more processors and their local

memory resources. Multiple NUMA nodes are linked together

using an interconnect to form a NUMA topology. The topology

TABLE I: Experiment Workloads

Workload SQL Equivalent

W1) Holistic Aggregation
(Hashtable-based) [14]

SELECT groupkey, MEDIAN(val)

FROM records

GROUP BY groupkey;

W2) Distributive Aggregation
(Hashtable-based) [14]

SELECT groupkey, COUNT(val)

FROM records

GROUP BY groupkey;

W3) Hash Join [15]
W4) Index Nested Loop Join
(ART [16], Masstree [17],
B+tree [18], Skip List [19])

SELECT *
FROM table1

INNER JOIN table2

ON table1.pk = table2.fk;

W5) TPC-H [20] 22 analytical queries (Q1, Q2, ... , Q22)

of our machines is shown in Figure 1. A local memory

access involves data that resides on the same node, whereas

accessing data on any other node is considered a remote

access. Remote data travels over the interconnect, and may

need to hop through one or more nodes to reach its destination.

Consequently, remote memory access is slower.

In addition to remote memory access, contention is another

possible cause of sub-optimal performance on NUMA sys-

tems. Due to the memory wall [13], modern CPUs are capable

of generating memory requests at a very high rate, which

can easily saturate the interconnect or memory controller

bandwidth [3]. Lastly, the abundance of hardware threads in

NUMA systems presents a challenge in terms of scalability,

particularly in scenarios with many concurrent memory allo-

cation requests. In Section III, we explore strategies which can

be used to mitigate these issues.

A. Experiment Workloads

Our goal is to analyze the effects of NUMA on query

processing workloads, and show effective strategies to gain

speedups in these workloads. We have selected five workloads,

shown in Table I, to represent a variety of data operations that

are common in data analytics and decision support systems.

The implementation of these workloads is described in more

detail in Section IV-B. We now provide some background on

the experiment workloads.

Joins and aggregations are ubiquitous, essential data pro-

cessing primitives used in many different applications. When

used for in-memory query processing, they are notably de-

manding on cache and memory. Joins and aggregations are

integral components in analytical queries and are frequently

used in popular database benchmarks, such as TPC-H [20].

Although we do not evaluate transactional workloads such as

TPC-C, we note that processing many concurrent transactions

in-memory is also taxing on the cache and memory.

A typical aggregation workload involves grouping tuples by

a designated grouping column and then applying an aggregate

function to each group. Aggregate functions are divided into

three categories: distributive, algebraic, and holistic. Distribu-

tive functions, such as the Count function used in W2 (see

Table I), can be decomposed and processed in a distributed

manner. This means that the input can be split up, processed,

and recombined to produce the final result. Algebraic functions

combine two or more distributive functions. For instance,
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Fig. 1: Machine NUMA Topologies (machine specifications in Table II)

Average can be broken down into two distributive functions:

Count and Sum. Holistic aggregate functions, such as the

Median function used in W1, are computed by analyzing the

entire input at once. Although approximation can be used to

accelerate Holistic aggregation, accurate results require the

processing of all input tuples for each group. As a result, these

aggregate functions are typically more expensive in terms of

computing resources. W3 represents a hash join query. As

described in [15], the query joins two tables with a size ratio

of 1:16, which is designed to mimic common decision support

systems. The join is performed by building a hash table on the

smaller table and probing the larger table for matching keys.

W4 is an index nested loop join using the same dataset as

W3. The main difference between W3 and W4 is that W3

builds an ad hoc hash table to perform the join, whereas W4

uses a pre-built in-memory index that accelerates lookups to

one of the join relations. W5 is a database system workload,

using the well-known queries and datasets from the TPC-H

benchmark [20]. We evaluate W5 on five database systems:

MonetDB [21], PostgreSQL [22], MySQL [23], DBMSx,

and Quickstep [24]. In order to analyze query performance

under memory-bound (rather than I/O-bound) situations, we

configure the databases to use large buffer caches where

applicable. Furthermore, we measure multiple warm runs for

each query.

III. IMPROVING QUERY PERFORMANCE ON NUMA

SYSTEMS

Achieving good performance on NUMA systems involves

careful consideration of thread placement, memory manage-

ment, and load balancing. We explore application-agnostic

strategies that can be applied to the data analytics application

in either a black box manner, or with minimal tweaks to

the code. Some strategies are exclusive to NUMA systems,

whereas others may also yield benefits on uniform memory

access (UMA) systems. These strategies consist of: overriding

the memory allocator, defining a thread placement and affinity

scheme, using a memory placement policy, and changing the

operating system configuration. In this section, we describe

these strategies and outline the options used for each one.

A. Dynamic Memory Allocators

Dynamic memory allocators track and manage dynamic

memory during the lifetime of an application. The performance

impact of memory allocators is often overlooked in favor of

exploring ways to tweak the application’s algorithms. It can be

argued that this makes them one of the most under-appreciated

system components. Both UMA and NUMA systems can ben-

efit from faster or more efficient memory allocators. However,

the potential is greater on NUMA systems, as the performance

penalties caused by inefficient memory or cache behavior

can be significantly higher. Key allocator attributes include

allocation speed, fragmentation, and concurrency. Most devel-

opers use the default memory allocation functions to allocate

or deallocate memory (malloc/new and free/delete) and trust

that their library will perform these operations efficiently. In

recent years, with the growing popularity of multi-threaded

applications, there has been a renewed interest in memory al-

locators, and several alternative allocators have been proposed.

Earlier iterations of malloc used a single lock resulting in

serialized access to the global memory pool. Although recent

malloc implementations provide support for multi-threaded

scalability, there are now several competing memory allocators

that aim for faster performance and reduced contention and

memory consumption overhead. We evaluate the following

allocators: ptmalloc, jemalloc, tcmalloc, Hoard, tbbmalloc,

mcmalloc, and supermalloc.

1) ptmalloc (pthreads malloc): The standard memory al-

locator that ships with most Linux distributions. ptmalloc

aims to attain a balance between speed, portability, and

space-efficiency. It supports multi-threaded applications by

employing multiple mutexes to synchronize and protect access

to its data structures. The downside of this approach is the

possibility of lock contention on the mutexes. In order to

mitigate this issue, ptmalloc creates additional regions of

memory (arenas) whenever contention is detected. Allocated

memory can never move between arenas. ptmalloc employs a

per-thread cache for small allocations. This helps to further

reduce lock contention by skipping access to the memory

arenas when possible.

2) jemalloc (Jason Evans malloc) [25]: First appearing as

an SMP-aware memory allocator for the FreeBSD operating

system, jemalloc was later expanded and adapted for use as a

general purpose memory allocator. When a thread requests

memory from jemalloc for the first time, it is assigned

a memory allocation arena. Arena assignments for multi-

threaded applications follow a round-robin order. In order to

further improve performance, this allocator also uses thread-

specific caches, which allows some allocation operations to

completely avoid arena synchronization. Lock-free radix trees
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TABLE II: Machine Specifications

System Machine A Machine B Machine C

CPUs/
Model

8×Opteron
8220

4×Xeon
E7520

4×Xeon
E7-4850 v4

CPU Frequency 2.8GHz 2.1GHz 2.1GHz

Cores/Threads 16/16 16/32 32/64

Last Level Cache 2MB 18MB 40MB

4KB TLB
Capacity

L1:32×4KB
L2:512×4KB

L1:64×4KB
L2:512×4KB

L1:64×4KB
L2:1536×4KB

2MB TLB
Capacity

L1:8×2MB
-

L1:32×2MB
-

L1:32×2MB
L2:1536×2MB

NUMA Nodes 8 4 4

NUMA
Topology

Twisted
Ladder

Fully
Connected

Fully
Connected

Relative
NUMA Node

Memory
Latency

Local: 1.0
1 hop: 1.2
2 hop: 1.4
3 hop: 1.6

Local: 1.0
1 hop: 1.1

Local: 1.0
1 hop: 2.1

Interconnect
Bandwidth

2GT/s 4.8GT/s 8GT/s

Memory
Capacity

16GB/node
128GB Total

16GB/node
64GB Total

768GB/node
3TB Total

Memory Clock 800MHz 1600MHz 2400MHz

Operating System Ubuntu 16.04 Ubuntu 18.04 CentOS 7.5

Linux Kernel 4.4 4.15 3.10

track allocations across all arenas. jemalloc attempts to reduce

memory fragmentation by packing allocations into contiguous

blocks of memory and re-using the first available low address.

This allocator maintains allocation arenas on a per-CPU basis

and associates threads with their parent CPU’s arena. We use

jemalloc version 5.1.0 for our experiments.

3) tcmalloc (thread-caching malloc) [26]: Developed by

Google and included as part of the gperftools library, its goal

is to provide faster memory allocations in memory-intensive

multi-threaded applications. tcmalloc handles small allocations

using thread-private caches that do not require locking. Large

allocations use a central heap that is organized into contiguous

groups of pages called “spans”. Each span stores multiple

allocations of a particular size class. However, applications

that use many different size classes may waste memory due

to under-utilization of the memory spans. The central heap

uses fine-grained locking on a per-span basis. As a result, two

threads requesting memory from the central heap can do so

concurrently, as long as their requests fall in different class

categories. We use tcmalloc from gperftools release 2.7.

4) Hoard [27]: A standalone cross-platform allocator re-

placement designed specifically for multi-threaded applica-

tions, Hoard’s main design goals are to provide memory

efficiency, reduce allocation contention, and prevent false

sharing. At its core, Hoard consists of a global heap (the

“hoard”) that is protected by a lock and accessible by all

threads, as well as per-thread heaps that are mapped to each

thread using a hash function. Hoard uses heuristics to detect

temporal locality and fill cache lines with objects that were

allocated by the same thread, thus reducing false sharing. We

evaluate Hoard version 3.13 in our experiments.

5) tbbmalloc: The tbbmalloc allocator is included as part

of the Intel Thread Building Blocks (TBB) library [28]. This

allocator pursues better performance and scalability for multi-

threaded applications, and generally considers increased mem-

ory consumption as an acceptable tradeoff. Allocations in

tbbmalloc are supported by per-thread memory pools. If the

allocating thread is the owner of the target memory pool, no

locking is required. If the target pool belongs to a different

thread then the request is placed in a synchronized linked list,

and the owner of the pool will allocate the object. We used

version 2019 Update 4 of the TBB library for our experiments.

6) supermalloc [29]: This malloc replacement synchro-

nizes concurrent memory allocation requests using hardware

transactional memory (HTM) if available, and falls back

to pthread mutexes if HTM is not available. supermalloc

prefetches all necessary data while waiting to acquire a lock

in order to minimize the amount of time spent in the critical

section. It uses homogeneous chunks of objects for allocations

smaller than 1MB, and supports larger objects using operating

system primitives. Given a pointer to an object, its corre-

sponding chunk is tracked using a lookup table. This lookup

table is implemented as a large 512MB array, which takes

advantage of the fact that most of its virtual memory will

not be committed to physical memory by the OS. For our

experiments, we use the latest publicly released source code,

which was last updated in October 2017.

7) mcmalloc (many-core malloc) [30]: This allocator fo-

cuses on mitigating multi-threaded lock contention by reduc-

ing calls to kernel space, dynamically adjusting the memory

pool structures, and using fine-grained locking. Similar to

other allocators, mcmalloc uses a global and local (per-thread)

memory pool layout. It monitors allocation requests, and

dynamically splits its global memory pool into two categories:

frequently used memory chunk sizes, and infrequently used

memory chunk sizes. Dedicated homogeneous memory pools

are created to support frequently used chunk sizes. Infrequent

memory chunk sizes are handled using size-segregated mem-

ory pools. mcmalloc reduces system calls by batching multiple

chunk allocations together. We use the latest mcmalloc source

code, which was updated in March 2018.

8) Memory Allocator Microbenchmark: We now describe a

multi-threaded microbenchmark that we use to gain insight on

the relative performance of these memory allocators. Our goal

is to answer the question: how well do these allocators scale

up on a NUMA machine? The microbenchmark simulates

a memory-intensive workload with multiple threads utilizing

the allocator at the same time. Each thread completes 100

million memory operations, consisting of allocating memory

and writing to it, or reading an existing item and then

deallocating it. The distribution of allocation sizes is inversely

proportional to the size class (smaller allocations are more

frequent). We use two metrics to compare the allocators:

execution time and memory allocation overhead. The exe-

cution time gives an idea of how fast an allocator is, as

well as its efficiency when being used in a NUMA system

2375-026X (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication or
redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e 
(s

)

Number of threads

ptmalloc jemalloc tcmalloc Hoard
tbbmalloc mcmalloc supermalloc

(a) Multi-threaded Scalability

1.
00

3

1.
00

5

1.
00

5

1.
00

6

1.
00

7

1.
00

5

1.
00

6

1.
00

6

1.
00

7

1.
00

8

1.
01

0

1.
01

1

1.
01

1

1.
01

0

1.
01

0

1.
00

6

1.
00

7

1.
00

6

1.
02

5

1.
82

5

1.
00

6

1.
00

6

1.
00

7

1.
57

8

1.
74

1

1.
13

1 2.
13

1 3.
46

5 4.
97

5 6.
57

7

1.
00

6

1.
00

7

1.
00

7

1.
00

7

1.
00

7

0
1
2
3
4
5
6
7

1 2 4 8 16

M
em

or
y 

O
ve

rh
re

ad
 

(u
se

d/
re

qu
es

te
d)

Number of Threads

ptmalloc jemalloc tcmalloc Hoard tbbmalloc mcmalloc supermalloc

(b) Memory Consumption Overhead

Fig. 2: Memory Allocator Microbenchmark - Machine A

by concurrent threads. In Figure 2a, we vary the number of

threads in order to see how each allocator behaves under

contention. The results show that tcmalloc provides the fastest

single-threaded performance, but immediately falls behind the

competition once the number of threads is increased. Hoard

and tbbmalloc show good scalability and outperform the other

allocators by a considerable margin. In Figure 2b, we show

each allocator’s overhead. This is calculated by measuring

the amount of memory allocated by the OS (as maximum

resident set size), and dividing it by the amount of memory

that was requested by the microbenchmark. This experiment

shows considerably higher memory overhead for mcmalloc as

the number of threads increases. Hoard and tbbmalloc are

slightly more memory-hungry than the other allocators, which

highlights jemalloc as a low memory overhead alternative with

decent performance. We omit supermalloc and mcmalloc from

subsequent experiments due to their poor performance in terms

of scalability and memory overhead respectively.

B. Thread Placement and Scheduling

Defining an efficient thread placement strategy is a well-

known and essential step toward obtaining better performance

on NUMA systems. By default, the kernel thread scheduler

is free to migrate threads created by the program between

all available processors. The reasons for doing so include

power efficiency and balancing the heat output of different

processors. This behavior is not ideal for large data analytics

applications and may result in significantly reduced query

throughput. The thread migrations slow down the program due

to cache invalidation, as well as a likelihood of moving threads

away from their data. The combination of cache invalidation,

loss of locality, and non-deterministic behavior of the OS

scheduler, can result in fluctuating runtimes (as shown in

Figure 3 with 16 threads). Binding threads to processor cores

can solve this issue by preventing the OS from migrating

threads. However, deciding how to place the threads requires

careful consideration of the topology and workload.

A thread placement strategy details the manner in which

threads are assigned to processors. We explore two strategies

for assigning thread affinity: Dense and Sparse. A Dense

thread placement involves packing threads in as few processors

as possible. The idea behind this approach is to minimize

remote access distance and maximize resource sharing. In

contrast, the Sparse strategy attempts to maximize memory

bandwidth utilization by spreading the threads out among the
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processors. There are a variety of ways to implement and

manage thread placement, depending on the level of access to

the source code and the library used to provide multithreading.

Applications built on OpenMP can use the OMP PROC BIND

and OMP PLACES environment variables in order to set a

thread placement strategy.

To demonstrate the impact of affinitization, we evaluate

workload W1 from Table I. The workload involves building a

hash table with key-value pairs taken from a moving cluster

distribution. Figure 3 depicts 10 consecutive runs of this

workload on Machine A. The runtime number of the default

configuration (no affinity) is expressed in relation to the affini-

tized configuration. The results highlight the inconsistency

of the default OS behavior. In the best case, the affinitized

configuration is several orders of magnitude faster, and the

worst case runtime is still around 27% faster. In order to gain

a better understanding of how each configuration affects the

workload, we use the perf tool to measure several key metrics.

The results, depicted in Table III, show that the operating

system migrates the worker threads many times during the

course of the workload. The Sparse affinity configuration

prevents migration-induced cache invalidation, which in turn

reduces cache misses. Furthermore, the affinitized configura-

tion increases the ratio of local memory accesses.

In Figure 4 we evaluate the Sparse and Dense thread affinity

strategies on workload W1, and vary the number of threads.

We also vary the dataset (see Section IV-B) in order to ensure

that the distribution of the data records is not the defining

factor. The goal of this experiment is to determine if threads

benefit from being on the same NUMA node against utilizing

a greater number of the system’s memory controllers. The
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TABLE III: Profiling thread placement - W1 on Machine A -

Default (managed by OS) vs Modified (Sparse policy)

Performance Metric Default Modified Percent Change

Thread Migrations 33196 16 −99.95%

Cache Misses 1450M 972M −32.95%

Local Memory Accesses 367M 374M +2.06%

Remote Memory Accesses 159M 108M −31.95%

Local Access Ratio 0.70 0.78 +10.77%

Sparse policy achieves better performance when the workload

is not using all available hardware threads. This is due to the

threads having access to additional memory bandwidth, which

plays a major role in memory-intensive workloads. When

all hardware threads are occupied, the two policies perform

almost identically. Henceforth, we use the Sparse configuration

(when applicable) for all our experiments.

C. Memory Placement Policies

Memory pages are not always accessed from the same

threads that allocated them. Memory placement policies are

used to control the location of memory pages in relation

to the NUMA topology. As a general rule of thumb, data

should be on the same node as the thread that processes

it and sharing should be kept to a minimum. However, too

much consolidation can lead to congestion of the interconnects

and contention on the memory controllers. The numactl tool

applies a memory placement policy to a process, which is

then inherited by all its children (threads). We evaluate the

following policies: First Touch, Interleave, Localalloc, and

Preferred. We also use hardware counters to measure the ratio

of local to total (local + remote) memory accesses.

Modern Linux systems employ a memory placement policy

called First Touch. In First Touch, each memory page is

allocated to the first node that performs a read or write

operation on it. If the selected node does not have sufficient

free memory, an adjacent node is used. This is the most

popular memory placement policy and represents the default

configuration for most Linux distributions. Interleave places

memory pages on all NUMA nodes in a round-robin fashion.

In some prior works, memory interleaving was used to spread

a shared hash table across all available NUMA nodes [9],

[31], [32]. In Localalloc, the memory pages are placed on

the same NUMA node as the thread performing the allocation.

The Preferred policy places all newly allocated memory pages

on a single node that is selected by the user. This policy will

fall back to using other nodes for allocation when the selected

node has run out of free space and cannot fulfill the allocation.

D. Operating System Configuration

In this section, we outline two key operating system mech-

anisms that affect NUMA applications: Virtual Memory Page

Management (Transparent Hugepages), and Load Balancing

Schedulers (AutoNUMA). These mechanisms are enabled out-

of-the-box on most Linux distributions.

1) Virtual Memory Page Management: OS memory man-

agement works at the virtual page level. Pages represent

chunks of memory, and their size determines the granularity of

which memory is tracked and managed. Most Linux systems

use a default memory page size of 4KB in order to minimize

wasted space. The CPU’s TLB caches can only hold a limited

number of page entries. When the page size is larger, each

TLB entry spans a greater memory area. Although the TLB

capacity is even smaller for large entries, the total volume of

cached memory space is increased. As a result, larger page

sizes may reduce the occurrence of TLB misses. Transparent

Hugepages (THP) is an abstraction layer that automates the

process of creating large memory pages from smaller pages.

THP is not to be confused with Hugepages, which depends

on the application explicitly interfacing with it and is usually

disabled by default. We use the global THP toggles on our

Linux machines to configure its behavior.

2) Automatic NUMA Load Balancing: There have been

several projects to develop NUMA-aware schedulers that

facilitate automatic load balancing. Among these projects,

Dino [2] and AsymSched [4] do not provide any source code,

and Numad [33] is designed for multi-process load balancing.

Carrefour [3] provides public source code, but requires an

AMD CPU based on the K10 architecture (with instruction-

based sampling), as well as a modified operating system

kernel. Consequently, we opted to evaluate the AutoNUMA

scheduler, which is open-source and supports all hardware

architectures. AutoNUMA was initially developed by Red Hat

and later on merged with the Linux kernel. It attempts to

maximize data and thread co-location by migrating memory

pages and threads. AutoNUMA has two key limitations: 1)

workloads that utilize data sharing can be mishandled due to

the unnecessary migration of memory pages between nodes,

2) it does not factor in the cost of migration or contention,

and thus aims to improve locality at any cost. AutoNUMA has

received continuous updates, and is considered to be one of the

most well-rounded kernel-based NUMA schedulers. We use

the numa balancing kernel parameter to toggle the scheduler.

IV. EVALUATION

In this section we describe our setup and evaluate the effec-

tiveness of our strategies. In Section IV-A we outline the hard-

ware/software specifications of our machines. Section IV-B

describes the datasets, implementations, and systems used. We

analyze the impact of the OS configuration in Section IV-C. In

Section IV-E we evaluate these techniques on database engines

running TPC-H queries. We explore the effects of overriding

the default system memory allocator in Section IV-D. Finally,

we summarize our findings in Section IV-F.

A. Experimental Setup

We run our experiments on three different machines based

on different architectures. This is done to ensure that the

applicability of our findings is not biased to a particular

system’s characteristics. The NUMA topologies of these ma-

chines are depicted in Figure 1 and their specifications are
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TABLE IV: Experiment Parameters (bolded = system defaults)

Parameter Values

Experiment
Workload

W1) Holistic Aggregation [14]
W2) Distributive Aggregation[14]
W3) Hash Join [15]
W4) Index Nested Loop Join using: 1)ART [16],
2)Masstree [17], 3)B+tree [18], 4)Skip List [19]
W5) TPC-H Queries (Q1 to Q22) [20]

Thread Placement
Strategy

None (OS scheduler is free to migrate threads),
Sparse, Dense

Memory
Placement Policy

First Touch, Interleave, Localalloc, Preferred

Memory Allocator ptmalloc, jemalloc, tcmalloc, Hoard, tbbmalloc

Dataset
Distribution

Moving Cluster (default for W1), Sequential
(default for W3 and W4), Zipfian (default for
W2), TPC-H (W5)

Database System
(W5)

MonetDB [21], PostgreSQL [22], MySQL [23],
DBMSx, Quickstep [24]

OS Configuration AutoNUMA on/off, Transparent Hugepages

(THP) on/off

Hardware System Machine A, Machine B, Machine C

outlined in Table II. We used LIKWID [34] to measure each

system’s relative memory access latencies, and the remainder

of the specifications were obtained using product pages, spec

sheets, and Linux system queries. Now we outline some of

the key hardware specifications for each machine. Machine A

is an eight socket AMD-based server with a total of 128GB

of memory. As the only machine with eight NUMA nodes,

machine A provides us with an opportunity to study NUMA

effects on a larger scale. The twisted ladder topology shown

in Figure 1a is designed to minimize inter-node latency with

three HyperTransport interconnect links per node. As a result,

Machine A has three remote memory access latencies, depend-

ing on number of hops between the source and the destination.

Each node contains an AMD Opteron 8220 CPU running at

2.8GHz and 16GB of memory. Machine B is a quad-socket

Intel server with four NUMA nodes and a total memory

capacity of 64GB. The NUMA nodes are fully connected, and

each node consists of an Intel Xeon E7520 CPU running at

1.87GHz with 16GB of memory. Lastly, Machine C contains

four sockets populated with Intel Xeon E7-4850 v4 processors.

Each processor constitutes a NUMA node with 768MB of

memory, providing a total system memory capacity of 3TB.

The NUMA nodes of this machine are fully connected.

Our experiments are coded in C++ and compiled using

GCC 7.3.0 with the -O3 and -march=native flags. Likewise,

all dynamic memory allocators and database systems are

compiled from source. Machines B and C are owned and

maintained by external parties and are based on different Linux

distributions. The experiments are configured to utilize all

available hardware threads on each machine.

B. Datasets and Implementation Details

In this section, we outline the datasets and code used for

the experiments. Unless otherwise noted, all workloads operate

on datasets that are stored in memory resident data structures,

hence avoiding any I/O bottlenecks.

The aggregation workloads (W1 and W2) evaluate a typi-

cal hash-based aggregation query, based on a state-of-the-art

concurrent hash table [35], which is implemented as a shared

global hash table [14]. The datasets used for the aggregation

workloads are based on three different data distributions:

Moving Cluster (default), Sequential, and Zipfian. Each dataset

consists of 100 million records with a group-by cardinality of

one million. In the Moving Cluster dataset, the keys are chosen

from a window that gradually slides. The Moving Cluster

dataset provides a gradual shift in data locality that is similar

to workloads encountered in streaming or spatial applications.

In the Sequential dataset, we generate a series of segments that

contain multiple number sequences. The number of segments

is equal to the group-by cardinality, and the number of records

in each segment is equal to the dataset size divided by

the cardinality. This dataset mimics transactional data where

the key incrementally increases. In the Zipfian dataset, the

distribution of the keys approximates Zipf’s law. We first

generate a Zipfian sequence with the desired cardinality c

and Zipf exponent e = 0.5. Then we take n random samples

from this sequence to build n records. The Zipfian distribution

is used to model many big data phenomena, such as word

frequency, website traffic, and city population.

The join workloads (W3 and W4) evaluate a typical join

query involving two tables. W3 is a non-partitioning hash join

based on the code and dataset from [15]. The dataset contains

two tables sized at 16M and 256M tuples, and is designed to

simulate a decision support system. W4 is an index nested loop

join that uses the same dataset as W3. We evaluated several in-

memory indexes for this workload: ART [16], Masstree [17],

B+tree [18], and Skip List [19]. ART [16] is based on the

concept of a Radix tree. Masstree [17] is a hybrid index

that uses a trie of B+trees to store keys. B+tree [18] is a

cache-optimized in-memory B
+
tree. Skip List is a canonical

implementation of a Skip List [19].

We use the TPC-H workload (W5) to investigate how our

strategies can benefit database systems. This entails some

limitations, as databases are complex systems with less flex-

ibility compared to microbenchmarks and codelets. Although

there are many available database systems that are TPC-H

compliant, we note that comparing an extensive variety of

systems is beyond the scope of this paper. We evaluate W5 on

the MonetDB [21] (version 11.33.3), PostgreSQL [22] (version

11.4), MySQL [23] (version 8.0.17), DBMSx, Quickstep [24]

(latest Github version as of October 2019) database systems.

MonetDB is an open-source columnar store that uses memory

mapped files with demand paging and multiple worker threads

for its query processing. PostgreSQL is a widely-used open-

source row store that supports intra-query parallelism using

multiple worker processes and a shared memory pool for com-

munication. We configured PostgreSQL with a 42GB buffer

pool. MySQL is an open-source row store that remains highly

popular. DBMSx is a commercial hybrid row/column-store

with a parallel in-memory query execution engine. Quickstep

is an open-source hybrid store with a focus on in-memory

analytical workloads. W5 uses version 2.18 of the TPC-
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Fig. 5: Effect of AutoNUMA load balancing and THP page merging on memory placement policies and allocators - W1

H dataset specifications. We evaluate the impact of the OS

configuration on each database system, using all 22 queries

and a dataset scale factor of 20. Additionally, we use Queries

5 and 18 to show the impact of utilizing different memory

allocators, as both queries involve a combination of joins and

aggregations.

The experimental parameters are shown in Table IV. We

use the maximum number of hardware threads supported by

each machine. In W1-W4, we measure the average workload

execution time using the timer from [15]. In W5, we use the

built-in query timing features of each database system.

C. Operating System Configuration Experiments

In this section, we evaluate three key OS mechanisms

that affect NUMA behavior: NUMA Load Balancing (Au-

toNUMA), Transparent Hugepages (THP), and the system’s

memory placement policy. The experiments demonstrate each

parameter’s affect on query performance. We also examine

how these variables are affected by other experiment parame-

ters, such as hardware architecture, and the interaction between

THP and memory allocators.

1) AutoNUMA Load Balancing Experiments: In Figures 5a

and 5b, we evaluate W1 and toggle the state of AutoNUMA

Load Balancing between On (the system default) and Off.

The results in Figure 5a show that AutoNUMA slows down

the runtime for the First Touch, Interleave, and Localalloc

memory placement policies. In most cases, AutoNUMA’s over-

head dominates any performance gained by migrating threads

and memory pages. The best runtime is obtained by applying

the Interleave policy and disabling AutoNUMA. If AutoNUMA

is enabled, the best approach is to apply the Interleave

policy, which may be useful for scenarios where superuser

access is unavailable. We observed similar behavior for the

other workloads and machines. AutoNUMA had a significantly

detrimental effect on runtime. The best overall approach is to

use memory interleaving and disable AutoNUMA. The Local

Access Ratio (LAR) shown in Figure 5b specifies the ratio

of memory accesses that were satisfied with local memory

[3] compared to all memory accesses. AutoNUMA attempts to

increase LAR without considering other costs, such as moving

threads and memory, or memory controller contention. Due to

this, the First Touch policy with AutoNUMA enabled (system

default) is 86% slower than Interleave without AutoNUMA,

despite a higher LAR measurement. In summary, we obtain

significant speedups using a modified OS configuration, and

note that LAR is not necessarily an accurate predictor of

performance on NUMA systems.

2) Transparent Hugepages Experiments: Next we evaluate

the effect of the Transparent Hugepages (THP) configuration,

which automatically merges groups of 4KB memory pages

into 2MB memory pages. As shown in Figure 5c, THP’s im-

pact on the workload execution time ranges from detrimental

in most cases to negligible in other cases. As THP alters the

composition of the operating system’s memory pages, support

for THP within the memory allocators is the defining factor on

whether it is detrimental to performance. tcmalloc, jemalloc,

and tbbmalloc are currently not handling THP well. We hope

that future versions of these memory allocators will rectify

this issue out-of-the-box. Although most Linux distributions

enable THP by default, our results indicate that it is better to

disable THP for high performance data analytics.

3) Hardware Architecture Experiments: Here we show how

the performance of data analytics applications running on

different machines with different hardware architectures is

affected by the memory placement strategies. For all ma-

chines, the default configuration uses the First Touch mem-

ory placement, and both AutoNUMA and THP are enabled.

The results depicted in Figure 5d show that Machine A is

slower than Machine B when both machines are using the

default configuration. However, using the Interleave memory

placement policy and disabling the operating system switches

allows Machine A to outperform Machine B by up to 15%.

Machine A shows the most significant improvement from

operating system and memory placement policy changes, and

the workload runtime is reduced by up to 46%. The runtime

for Machine C is reduced by up to 21%. The performance

improvement on Machine B is around 7%, which is fairly

modest compared to the other machines. Although Machines

B and C have a similar inter-socket topology, the relative

local and remote memory access latencies are much closer

in Machine B (see Table II). Henceforth, we keep AutoNUMA

and THP disabled for our experiments, unless otherwise noted.
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Fig. 6: Comparison of memory allocators - variable workload, memory placement policy, and machine

D. Memory Allocator Experiments

In Section III-A8, we used a memory allocator microbench-

mark to show that there are significant differences in both

multi-threaded scalability and memory consumption overhead.

In this section, we explore the performance impact of overrid-

ing the system default memory allocator on four in-memory

data analytics workloads.

1) Hashtable-based Experimental Workloads: In Figure

6, we show our results for the holistic aggregation (W1),

distributive aggregation (W2), and hash join (W3) workloads

running on each of the machines. In addition to the memory

allocators, we vary the memory placement policies for each

workload. The results show significant runtime reductions

on all three machines, particularly when using tbbmalloc in

conjunction with the Interleave memory placement policy. The

holistic aggregation workload (W1) shown in Figure 6a to 6c

extensively uses memory allocation during its runtime to store

the tuples for each group and calculate their aggregate value.

Utilizing tbbmalloc reduced the runtime of W1 by up to 62%

on Machine A, 83% on Machine B, and 72% on Machine C,

compared to the default allocator (ptmalloc). The results for

the join query (W3) depicted in Figures 6g to 6i also show

significant improvements, with tbbmalloc reducing workload

execution time by 70% on Machine A, 94% on Machine B,

and 92% on Machine C. The distributive aggregation query

(W2) shown in Figure 6d to 6f speeds up by 44%, 27%, and

28% on Machines A, B, and C respectively. This speedup

is almost entirely due to the Interleave memory placement

policy. Although W2 is not allocation-heavy and does not gain

much benefit from a faster memory allocator, it can still be

accelerated using a more efficient memory placement policy.

2) Impact of Dataset Distribution: The performance of

query workloads and memory allocators can be sensitive to the

access patterns induced by the dataset distribution. The three

tested datasets have the same number of records, but differ

in the way the record keys are distributed (see Section IV-B

for more information). In our previous experiments, we used

the Heavy Hitter dataset as the default dataset for W1. In

Figure 6j, we vary the dataset distribution to investigate its

impact on different memory allocators. The results show that

tbbmalloc continues to produce the largest speedups on both

the Zipf and Sequential datasets. We also observe this trend

on Machines B and C, but omit them due to space constraints.

3) Effect on In-memory Indexing: In W4, we investigate

index nested loop join query processing with different in-

memory indexes. The type of index used to accelerate the

nested loop join workload (W4) plays a key role in determin-

ing its speed. We evaluate four in-memory indexes: ART [16],

Masstree [17], B+tree [18], and Skip List [19]. As the index is

pre-built, the workload is relatively light in terms of number

of memory allocations during the join phase, hence factors

such as scan/lookup times, materialization, and locality play

a greater role. For each index, we vary the memory allocator

and memory placement policy and measure the join time. The

results, depicted in Figures 7a to 7c, show that runtime can

be significantly improved for most of the tested indexes. In

Figure 7a, we show that ART’s join time can be substantially

improved using the jemalloc or tbbmalloc allocators. A key

characteristic of ART is that it uses variable node sizes

and a variety of compression techniques for its trie, thus

requesting a greater variety of size classes from the memory

allocator, compared to the other allocators. In Figures 7b and
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Fig. 7: Index nested loop join workload (W4) - variable memory allocators and memory placements - Machine A

7c Masstree and B+tree show a notable improvement with the

Hoard allocator. Both indexes rely on grouping many keys per

node, which is favorable for Hoard’s straightforward global

heap approach. Skip List breaks the trend as the only index that

runs fastest with ptmalloc. Finally, we summarize the results

in Figure 7e, which depicts each index’s build and join times

using their fastest configuration. The results show that we were

able to speed up the two fastest indexes (ART and B+tree)

despite their inherent lack of NUMA-awareness.

E. Database Engine Experiments

In this section, we evaluate the TPC-H workload (W5)

on five database systems: MonetDB, PostgreSQL, MySQL,

DBMSx, and Quickstep. Investigating NUMA strategies on

database systems is more challenging compared to stan-

dalone in-memory microbenchmark workloads, as there is

considerably more complexity involved in storing and loading

the data and great care must be taken to ensure that disk

I/O and caching do not skew the results. To ensure fair

and consistent results, we clear the page cache using the

proc/sys/vm/drop caches command before running each query,

disregard the first (cold) run, and measure the mean runtime

for five additional runs. In a similar vein to our previous

experiments, we evaluate the impact of the OS configuration,

memory placement policies, and memory allocators. Due to an

issue with PostgreSQL producing severely sub-optimal plans

for queries 17 and 22, we evaluate modified versions of these

two queries which use joins instead of nested queries. All other

database systems run the original versions of queries 17 and

22. We used the following parameters to speed up W5: First

Touch memory placement, AutoNUMA disabled, THP disabled

(for all except DBMSx), and the tbbmalloc memory allocator.

In Figure 8, we present the speedups obtained across all 22

TPC-H queries for each of the database systems. The results

show that MonetDB’s query latencies improved by up to

43%, with an average improvement of 14.5%. In comparison,

the gains for PostgreSQL are less consistent. Query latency

improved by up to 27.6%, but the average improvement is

3% and seven queries take slightly longer to complete. We

believe these variances are due to PostgreSQL’s rigid multi-

process query processing approach, which sometimes opts to

use only one worker process and thus fails to fully utilize the

hardware. MySQL’s query latency is reduced by up to 49%

with an average reduction of 12%. Lastly, we observe that

DBMSx query latency improved by up to 43% with an average

of 21%. Lastly, Quickstep query latency speeds up by up to

40% and an average of 7%. All five database systems obtained

speedups from modifying the default OS configuration.

Next we investigate the effect of memory allocator overrid-

ing on MonetDB. To do so, we select queries 5 and 18 due to

their usage of both joins and aggregation. The results, shown

in Figure 9a, indicate that tbbmalloc can provide an average

query latency reduction of up to 11% for Query 5, and 20%

for Query 18, compared to ptmalloc. As with other memory

allocator experiments, we measure the average of five runs.

F. Summary

The strategies explored in this paper, when carefully ap-

plied, can significantly speed up query processing workloads

without the need for source code modification. The effec-

tiveness and applicability of these strategies to a workload

depend on several factors. Figure 10 shows a strategic plan

for practitioners. The flowchart outlines a systematic guide to

improving performance on NUMA systems, along with some

general recommendations. We base these recommendations on

our extensive experimental evaluation using multiple machine

architectures and workloads. Starting with thread management,

we showed that thread affinitization can be critical for NUMA

systems, but more importantly how a Sparse placement

approach can maximize performance in situations that are

memory-bandwidth-bound. We then showed that the default

OS configuration can have a significant detrimental effect on

query performance. The overhead of AutoNUMA and THP was

demonstrated to be too costly for high performance data an-

alytics workloads. Although superuser privileges are required

to modify AutoNUMA and THP, we observed that optimizing

the memory placement policy (such as using Interleave) can

mostly mitigate their negative impact. We also investigated

dynamic memory allocators using a microbenchmark. The

microbenchmark results showed that there are considerable

differences between the allocators, both in terms of scalability

and efficiency. In our evaluation, we demonstrated that these

differences translate into real gains in analytical query process-

ing workloads, although the performance gains depend on the
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way the workloads allocate memory. For example, allocation-

heavy workloads, such as the hash join (W3) benefited the

most, whereas the index nested loop join (W4) exhibited

smaller gains due to the prebuilt index. Although we have

shown that tbbmalloc frequently outperformed its competi-

tors on different machines and workloads, we recommend

experimentation with new/updated memory allocators before

selecting a solution.

V. RELATED WORK

The rising demand for high performance parallel computing

has motivated many works on leveraging NUMA architectures.

We now outline existing research that is relevant to our work.

In [36], Kiefer et al. evaluated the performance impact

of NUMA effects on multiple independent instances of the

MySQL database system. Popov et al. [37] explored the

combined effect of thread and page placement using super-

computing benchmarks running on NUMA systems. They ob-

served that co-optimizing thread and memory page placement

can provide significant speedups. Durner et al. [38] explored

the performance impact of dynamic memory allocators on a

database system running TPC-DS. The authors obtained signif-

icant speedups utilizing jemalloc and tbbmalloc, which agrees

with our findings. In this paper, we evaluate a broader and

newer range of allocators, and additional NUMA parameters,

indexes, datasets, databases, and workloads.

Some prior work has pursued automatic load balancing

approaches that can improve NUMA system performance in

an application-agnostic manner. These approaches generally
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focus on improving performance by altering the process and/or

memory placement. Some examples include Dino [2], Car-

refour [3], AsymSched [4], Numad [33], and AutoNUMA [33].

These schedulers have been shown to improve performance

in some cases, particularly on systems running multiple inde-

pendent processes. However, some researchers have claimed

that these schedulers do not provide much benefit for multi-

threaded query processing applications [6], [7].

A different approach involves either extensively modifying

or completely replacing the OS. This is done with the goal of

providing a custom tailored environment for the application.

Some researchers have pursued this direction with the goal of

providing an OS that is more suitable for large database appli-

cations [39]–[41]. Custom operating systems aim to reduce the

burden on developers, but their adoption has been limited. In

the past, researchers in the systems community proposed a few

new OSes for multicore architectures, including Corey [42],

Barrelfish [43] and fos [44]. Although none were widely

adopted by the industry, we believe these efforts underscore

the need to investigate the impact of system and architectural

aspects on query performance.

Some researchers have favored an application-oriented ap-

proach that fine-tunes query processing algorithms to the

hardware. Wang et al. [8] proposed an aggregation algorithm
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for NUMA systems, based on radix partitioning. The authors

also proposed a load balancing algorithm that focuses on inter-

socket task stealing, and prohibits task stealing until a socket’s

local tasks have been completed. Leis et al. [9] presented a

NUMA-aware parallel scheduling algorithm for hash joins,

which uses dynamic task stealing in order to deal with dataset

skew. Schuh et al. [7] conducted an in-depth comparison of

thirteen main memory join algorithms on a NUMA system.

Our work is orthogonal to these approaches and they can

benefit from applying the application-agnostic strategies that

we have suggested.

VI. CONCLUSION

In this work, we have outlined and investigated several

application-agnostic strategies to speedup query processing on

NUMA machines. Our experiments on five analytics work-

loads have shown that it is possible to obtain significant

speedups by utilizing these strategies. We also demonstrated

that current operating system default configurations are gen-

erally sub-optimal for in-memory data analytics. Our results,

surprisingly, indicate that many elements of the default OS

environment, such as AutoNUMA, Transparent Hugepages,

default memory allocator (eg. ptmalloc), and the OS thread

scheduler, should be disabled or customized for high perfor-

mance analytical query processing, regardless of the hardware

generation. We have also demonstrated that memory allocator

performance on NUMA systems can be a major bottleneck and

that this under-appreciated topic is ripe for investigation. We

obtained large speedups for our query processing workloads

by overriding the default dynamic memory allocator with

alternatives such as tbbmalloc.

As our approach does not target a specific NUMA topology,

we have shown that our findings can be applied to systems with

different architectures. As hardware architectures continue to

advance towards greater parallelism and greater levels of

memory access partitioning, we hope our results and decision

flowchart can help practitioners to accelerate data analytics.
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