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Abstract—In recent years, due to the advancements in 3D
data technologies, and the rise in 3D spatial applications,
such as metaverse and digital twins, there has been a growing
interest in efficient support of 3D spatial features in database
management systems (DBMS). Processing 3D spatial queries
can be significantly more complex and computationally in-
tensive than traditional 2D spatial queries. Although a few
spatial database benchmarks exist, they support 2D spatial
data. Hence, there is a growing need to develop a benchmark
to evaluate 3D spatial features.

To address the aforementioned need, we have developed
Jackpine3D, a 3D spatial database benchmark. The main goal
of this benchmark is to evaluate the capability of different
database systems in processing 3D spatial queries. The bench-
mark includes a Micro benchmark suite that consists of basic
3D spatial operations, and a Macro benchmark consisting of
a few real-world spatial applications. With our benchmark,
we have evaluated three database systems and compared
their performance. We also identify several gaps for future
researchers to address.

I. INTRODUCTION

The volume of 3D spatial data has been experiencing
rapid growth in recent years. Managing, maintaining, and
analyzing this data has become an important considera-
tion [If]. This growth is fueled by advancements in 3D
technologies, such as LiDAR and photogrammetry, and
their wide applications in urban development, environmen-
tal monitoring, and autonomous systems.

Database management systems (DBMS) play a vital role
in handling and maintaining data in enterprises and various
organizations. There are several features that make database
systems attractive, which include logical and physical data
independence, a popular query language SQL, and sup-
port for various functionalities. Although most databases
support querying spatial data, this is usually limited to
2D spatial data. To our knowledge, only a few database
systems support 3D spatial querying.

In the past, researchers attempted to compare the per-
formance of different database systems by conducting
benchmarking studies. One of these benchmarking efforts
was Jackpine [2]], a spatial database benchmark to compare
the performance of different relational database systems,
including both Micro benchmark and Macro benchmark
workloads. However, Jackpine did not support 3D spatial
data. To our knowledge, there is no existing benchmark
to evaluate database systems on 3D spatial queries. To
fill this gap, we have developed Jackpine3D, a 3D spatial
database benchmark. Jackpine3D shares similar objectives

as the original Jackpine benchmark, such as extendability,
and its system architecture follows a similar organization.

Since Jackpine3D is a spatial database benchmark, its
workloads consist of SQL queries involving 3D spatial
operations. The performance of each database system,
being benchmarked, is quantified by the execution time
of these queries. There are two categories of workloads in
the benchmark: Micro and Macro benchmark workloads.
The Micro benchmark queries include sets of queries that
cover different topological spatial relations and spatial
data analysis operations over different 3D spatial data
types. The Macro benchmark queries are designed to have
real-world applications and serve benchmarking purposes
in three application scenarios: Urban planning, Medical
analysis, and Metaverse. A review of the current literature
on topics, such as smart cities and IoT, Digital twins, and
medical analysis was made to determine suitable queries
for these applications. The queries were designed with
two main objectives: covering 3D spatial functionalities
and representing real-world 3D spatial applications. These
application scenarios are extendable, as researchers and
developers can add new queries or even new scenarios
based on their needs.

The spatial data type of the datasets used in Micro bench-
mark and Macro benchmark workloads is primarily poly-
hedron, which enables representing solid objects precisely.
Besides polyhedron, point cloud, and voxel are two other
popular 3D spatial data types. To explore different types of
3D spatial data representations, including polyhedron, point
cloud, and voxel, Jackpine3D also includes a workload.

During the design and development of this benchmark,
two important considerations were extendibility and com-
prehensiveness. Extendibility is important because 3D spa-
tial data management is still an emerging field, and it is
likely that more database systems with 3D support will
be introduced in the near future. The benchmark is also
intended to be comprehensive so that as many 3D spatial
functionalities as possible across different database systems
could be assessed. To that end, we conducted a survey
of 3D spatial features in relational databases. We found
that 3D spatial support across different database systems
is quite limited. Our observations confirm recent findings
reported by Belussi et al. [3] and Salleh et al. [4]. There
are several database systems that supports 3D data types,
however, they provide a very limited set of operations on
them. Topological relations are used to describe spatial



association between objects, such as intersects, overlaps,
touches and within. Although most databases support 2D
spatial topological relations, they offer limited or no sup-
port for 3D topological relations. Among the databases we
explored, PostgreSQL with PostGIS extension and DB-X
(a major commercial DBMS) offered support for many
3D spatial features. Other database systems either did not
support 3D functionality or had very limited or incomplete
support for 3D. For example, IBM Db2 did not have
full native 3D functionality, as it supported 2.5D. To our
understanding, SQL Server supports 3D point data type,
but there is no support for 3D spatial topological relations.

Jackpine3D Micro benchmark and Macro benchmark
benchmarks leverage several real-world and synthetic 3D
spatial datasets, details of which are in Section [[II-BI}
We chose to evaluate three relational databases with Jack-
pine3D benchmark: DB-X, PostgreSQL (with PostGIS)
and SpatialLite. Despite its limited 3D spatial support,
SpatialLite was included because it extends the SQLite
database with spatial functionalities, and SQLite is the
most widely deployed embedded database engine [J5].
The experimental evaluation of the database systems with
Jackpine3D benchmark contained some interesting find-
ings, which are presented in Section Based on our
evaluation results, there was no single database system
that performed better than other systems. These results
may provide guidance to the database systems developers
regarding opportunities for improvement.

We also conducted a system level analysis of 3D spatial
query execution in PostgreSQL, in terms of TLB (Transla-
tion Lookaside Buffer) and LLC (Last-Level Cache) cache
misses, and provided a detailed breakdown of execution
times spent in the query engine. Based on our bench-
marking experience, we have outlined a number of future
research directions, which would be useful for researchers
and practitioners.

The contributions of our paper are as follows.

o We developed Jackpine3]j]_1 the first benchmark for
evaluating 3D spatial features in relations databases,
supporting different spatial data types including poly-
hedron, point clouds, and voxels.

o We designed comprehensive Micro benchmark queries
and realistic Macro benchmark scenarios (urban plan-
ning, medical, metaverse).

« We evaluated PostgreSQL, DB-X, and SpatiaLite with
detailed performance comparisons. We also analyzed
memory performance of PostgreSQL.

o We identified and presented several future research
directions.

The rest of the paper is organized as follows. Section
discusses related work. Section provides the details
about our benchmark, including data model, datasets and
Micro benchmark and Macro benchmark benchmark work-
loads. Section [[V|contains information on the experimental
setup and in Section [V] we discuss the results of the
experiments. We present some future research directions
for researchers in Section Finally, Section relates
our conclusions.

I Available at https://bigdata.cs.unb.ca/projects/jackpine3d/

II. RELATED WORK

As the importance of 3D processing grows rapidly, so
have the research efforts in database systems and spatial
query processing. This section presents relevant research in
these topics: 3D spatial databases, benchmarking studies,
and specialized 3D query processing systems.

A. 3D Spatial Databases

Research in 3D spatial databases has witnessed a signifi-
cant evolution from 2D traditional databases with many de-
velopments to handle complex geometries and topological
relationships. Ramsey [6]] conducted a study of PostGIS,
an extension of PostgreSQL that enhances its capabilities
to support 3D geometries and point clouds. According
to Kothari et al. [7], Oracle Spatial is a capable 3D
spatial database engine to handle complex spatial queries.
They provided a comparative study of Quadtree and R-tree
indexes in Oracle Spatial.

B. Benchmarking Studies

Researchers proposed multiple database benchmarking
platforms. These benchmarking studies differ in their
methodology and how they evaluate the different databases.
Two well-known benchmarking studies are TPC bench-
marks [8] and DBT [9]. The Transaction Processing Per-
formance Council (TPC) is a non-profit organization that
developed benchmarks tailored to different workload do-
mains, and it has become the industry standard.

In terms of spatial database benchmarking, there have
been several contributions, however, these spatial database
benchmarks mainly focused on 2D operations. B. Simion et
al. discussed how spatial data processing differs remarkably
from regular data processing [10]. One of the best-known
benchmarking studies on spatial data was SEQUOIA
2000 [11]], but this benchmark was studied for 2D data
and investigated raster data. Another benchmark for vector
datasets was VESPA [12], which compared PostgreSQL
and the Rock & Roll deductive object-oriented database.
This benchmark contained many queries, but some doubts
about its ability to cover spatial functionalities remained.
Jackpine benchmark [2] provided a comprehensive assess-
ment for spatial databases but it addressed 2D spatial data.
Van Oosterom et al. [[13]] offered a benchmark for point
cloud data management systems focused on big LiDAR
datasets.

C. Specialized 3D Query Processing

There is a growing need for efficient processing of 3D
spatial queries because of the wide availability of high-
resolution imaging instruments. Notably, the application
of 3D spatial data can be found in numerous industries,
including mineral exploration [14], 3D geographic infor-
mation systems (GIS) [15], and 3D mapping and naviga-
tion [[15[], and recently augmented reality applications [16].
Compared to 2D data projections of 3D objects, 3D data
offers a more precise representation, though it introduces
significantly more complexity in terms of shape details
and surface-based 3D modeling [17]]. Traditional spatial
query processing systems follow the Filter-Refinement
paradigm [18]], which uses approximations of spatial ob-
jects to generate an initial set of candidate results in the
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Fig. 1: An overview of Jackpine3D system architecture.

Filter phase and then these candidates are evaluated against
their precise geometries to produce accurate answers in the
Refinement phase.

Several strategies have been introduced to alleviate the
intensive computation involved in the refinement stage at
the intra-geometry level. One such strategy is to construct
spatial indexes on the polyhedron primitives, including
structures like R-tree [19]], Orientable Bounding Box trees
(OBB-trees) [20], to help determine spatial relations be-
tween individual objects.

III. JACKPINE3D BENCHMARK

With Jackpine3D, we aimed to create a benchmark that
could be used to evaluate the performance of different
databases across different 3D spatial operations by execut-
ing SQL queries involving spatial analysis and topological
functions. We also attempted to make the benchmarking
process more engaging to users and researchers by incor-
porating real-world application scenarios. The workloads
in Jackpine3D are categorized into two groups: Micro and
Macro benchmark workloads, consisting of SQL queries
involving 3D spatial operations. More details about them
are provided in sections and respectively.

An overview of the system architecture is provided in
Figure |1l Data records and query workloads get passed on
to the Jackpine3D Driver. From there the next components
are Data Loader that loads the data into each DBMS,
and Query Executor that executes the specific queries by
connecting to each DBMS. After execution of each query,
Jackpine3D Driver returns the query results. After the
completion of all queries an output report can be generated.

A. Spatial Data Models

An important consideration for benchmarking is the sup-
ported data types. Spatial data types are based on geometric
primitives, which encapsulate the conceptual representa-
tion of the underlying spatial objects. Data systems with
geospatial functionalities typically support vector and raster
representations. 2D spatial vector data types include point
(1D), polyline and polygon (2D). 2D spatial raster data
constitute an organization of the spatial domain into a grid
of cells, with each cell containing a value for a specific
feature, such as temperature. While the aforementioned
2D spatial data types have been widely adopted, efficient
representation of 3D spatial data is still an ongoing research
topic [21]]. Three popular 3D spatial data types are: point
cloud, polyhedron and voxel. Voxel is the 3D counterpart of
2D spatial raster data, whereas point cloud and polyhedral
surface can be considered as 3D spatial vector data types.
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Fig. 2: An illustration of different building components and
associated data types.

Point cloud

Fig. 3: An example of different 3D spatial data represen-
tations [25]]

The data type of our primary Micro benchmark dataset is
polyhedron (composed of polyhedral surfaces). Figure
shows an illustration of different spatial data types. Next,
we briefly explain the three 3D spatial data types.

1) Polyhedron: A polyhedron is a 3D geometric struc-
ture composed of flat polygonal faces called polyhedral
surface joined along edges [22]]. A Triangulated Irregular
Network (TIN) is a specific type of polyhedral surface
composed of triangles. Polyhedron is one of the most
precise ways to represent solid objects in 3D space. In
this representation, explicit surface geometry and connec-
tivity is encoded that enables accurate modeling of solid
boundaries and volume. This representation is useful in
applications that require well-defined topology and sur-
faces, such as intersection detection. Figure [2| shows a
simplified model of different building components and their
associated data types, where the data type of the top level
object is polyhedron.

2) Point Cloud: A 3D point cloud is a collection of
data points in a three-dimensional coordinate system, rep-
resenting the 3D shape or external surface of an object.
Point clouds are usually generated using 3D scanning
technologies, such as LiDAR, or photogrammetry. Due to
its simplicity, it is becoming a popular representation of
3D data in many applications.

3) Voxel: Voxels are volumetric pixels organized in a
regular grid in 3D space and do not have gaps among
them [23[]. Similar to point clouds, there are also many
applications for voxels. Applications for voxels include
analysis of medical and scientific data [24] and visualiza-
tion of terrain in games and simulations [23].

B. Micro Benchmark

In this section, we discuss the Micro benchmark work-
loads. The queries in the Micro benchmark are presented
in Table [l The Micro benchmark workloads are intended
to evaluate 3D spatial analysis operations, as well as
3D spatial topological relations. Analysis operations are



TABLE I: Micro benchmark queries

Name

[ Query

Description

Join Queries

Building3DlIntersectsLine

Check if 3D geometries of Roads intersect with Build-
ings

This query involves the Roads table and the
Buildings table

Building3DIntersectsArea

Check if 3D geometries of Arealandmarks intersect with
Buildings

This query involves the Arealandmarks table
and the Buildings table

Building3DDistanceLine

Calculate the 3d distance of Roads with Buildings

This query involves the Roads table and the
Buildings table

Building3DDistanceArea

Calculate the 3d distance of Arealandmarks with Build-
ings

This query involves the Arealandmarks table
and the Buildings table

Building3DDistanceWithinBuilding

Checks if there are Buildings within 10 units distance
of other Buildings

This query involves the Buildings table

Analysis Queries

3D Bounding Box

Calculate the 3D Bounding box of valid geometries

This query involves the Arealandmarks table

Perimeter3D Calculate the perimeter of valid 3D geometries This query involves the Arealandmarks table
Length3D Calculate the Length of valid 3D geometries This query involves the Arealandmarks table
Convex Hull Calculate the Length of valid 3D geometries This query involves the Arealandmarks table
Dimensions Returns the dimensions of valid 3D geometries This query involves the Arealandmarks table

TABLE II: Macro benchmark queries

Name (Scenario)

Query

Description

Subway Station Location (Urban

Finding suitable locations for subway station

Selects 5 sampled subway locations with

Planning)

the closest nearby locations within 25m
based on 3D distance.

Emergency Routes (Urban Planning)

Finding suitable evacuation routes in case of emergency

Finds 5 sampled locations with lowest
building density and largest clearance ra-
dius within 100m for optimal evacuation
routes.

Future Expansion (Urban Planning)

Finding Idea areas for city expansion

Finds 5 sampled locations with low build-
ing density (< 50) and their distances
to nearby buildings within 500m for city
expansion analysis.

Cancerous Analysis-Intersection
(Medical Analysis)

Intersections of healthy and cancerous cells

Analyzes all intersection points between
healthy and cancerous cell structures
across the entire dataset to identify
tumor-tissue boundary interfaces and cel-
lular interaction patterns.

Perimeter3D (Medical Analysis)

Perimeter3D (for cancerous cells)

Calculates 3D perimeter measurements
for all cancerous cells in the dataset to
assess overall tumor growth patterns.

Length3D (Medical Analysis)

Length3D (for cancerous cells)

Computes 3D Length for all cancerous
cell regions in the complete dataset to
assess total tumor volume and cellular
density distribution.

Bridge Analysis (Metaverse) Metaverse bridge analysis

Finds 5 sampled Metaverse locations
with over 5 connection points and longest
bridge spans within 100m for virtual
bridge planning.

Garden Analysis (Metaverse) Metaverse city planning

Finds 5 sampled Metaverse locations
with highest clear space and space score
within 150m for virtual garden planning

used to determine basic spatial or geometric features,
such as Length and Convex Hull. Topological relations
delineate spatial association between objects given the
underlying topological constraints. For 2D spatial data,
a standard set of topological relations adopted by the
Open Geospatial Consortium (OGC) are supported by most
database systems. These topological relations are based on
a formal model called the Dimensionally Extended Nine-
Intersection Model (DE-9IM) [26] and they include topo-
logical relations such as, Equals, Intersects, Touches, Con-
tains and Overlaps. Based on these, the original Jackpine
benchmark [2] incorporated a minimal set of topological
relations for 2D objects.

However, when it comes to 3D spatial topological re-
lations, DBMSs still offer very limited or no support.
Existing formal models, such as DE-9IM, struggle to
distinguish detailed interactions involving 3D object(s),
for instance, whether objects meet or overlap at vertices,
edges, or faces. To address these issues, formal models,

such as 25 Intersection model [27] and 36 Intersection
model [28] have been proposed in recent years. However,
there is no formal model for 3D topological relations that
is widely adopted and this is an ongoing research area.
Due to these constraints, Jackpine3D includes those 3D
topological relations that are commonly supported at this
time.

1) Datasets: The primary dataset used in the Micro
benchmark is from Open City Model [29] in which the
main repository contains data for 125 million buildings
across different states and counties in the United States.
From that, the data corresponding to Riverside County in
California was chosen as the baseline dataset. We uploaded
the data for the buildings from there into the Buildings
table. This dataset contained 776318 records.

To perform join queries with buildings table we created
two other tables as explained next. A 2D dataset was
obtained from TIGER [30] (US Census Bureau’s geo-
graphic spatial data) to build a second table (Roads3d



. Extended Reality (XR) applications. These applications are
. expected to usher many novel use cases.

The first query in this workload scenario involved a
bridge analysis query in which 5 sampled locations suit-
able for bridge construction are chosen. The other query
involved a garden analysis query to assist with city plan-

* ning, which finds the five most ideal locations for placing

~ gardens.

Fig. 4: A 3D illustration of the buildings dataset, which
showcases the buildings in Riverside county in California.

table). We combined elevation information from a LiDAR
dataset [31] with this 2D dataset to convert it into a 3D
dataset. Similarly, another TIGER dataset was used to cre-
ate Areal.andmarks3d table, by combining the original 2D
data with elevation information from a LiDAR dataset [31].
A summary of the Micro benchmark datasets is shown in
Table

C. Macro Benchmark

This section presents the Macro benchmark workloads.
It includes three different real-world workload scenarios,
which are explained in detail in the next sections. The
queries in the Macro benchmark are presented in Table [I]

1) Medical Analysis: In this workload scenario, the
aim was to include queries with real-world applications
in medical data analysis. The design of these queries
was inspired by a study [32]. A tumor dataset from the
National Institute of Cancer [33] was obtained, and using
that dataset, a synthetic dataset generator produced a set of
10000 3D cancerous and healthy cells.

A set of analysis queries, such as Length (3D) and
Perimeter (3D) were implemented to analyze cancerous
cells and other join queries, such as intersection, to help
understand the relationship between healthy cells and can-
cerous cells.

2) Urban planning and management: Urban planning
and management are important for developers and city
planners. In this workload scenario, queries were designed
that could help the stakeholders in a city to analyze the
infrastructure and the citizens’ needs or plan for potential
development plans for the future, such as city expansion.
For this workload, the dataset used was the open city model
dataset [29]] for Riverside County.

The queries for this workload scenario involved finding
the most suitable areas for a subway station. Parameters,
such as, population density and good access to roads and
landmarks were used to help someone find the top five
optimal areas for a potential subway station. Also similar
queries for finding optimal areas for fire stations, and
finding good areas for city expansion were included in this
workload.

3) Metaverse and Extended Reality (XR): In this work-
load scenario, queries related to Metaverse and Extended
Reality (XR) are explored. Recent advances in 3D game
engine software and devices, such as Microsoft Hololens
and Meta Quest have opened the door for developing

IV. EXPERIMENTAL SETUP

This section describes the details of the experimental
setup. The machine we used was an Intel Core 17-7700
CPU (3.60 GHz) with 16 GB of memory and 240 GB
disk, running Ubuntu 20.04 LTS. The database systems we
evaluated in our benchmark were PostgreSQL, DB-X, and
SpatialLite. We installed these databases in their default
configuration without any performance optimization. All
the tables in these databases have spatial columns. The
configuration parameters of each database is shown in
Table

The benchmark utilizes a Java Database Connectivity
(JDBC) connection pool to connect to the databases. To
avoid network delay being included in the query execution
times, we ran the benchmark on the same machine as
the databases. During each benchmark scenario execution,
a warm-up run was first performed, followed by three
successive iterations and taking the average of the three
runs.

A. Data Loading

To import data from files corresponding to the datasets
into database tables, loading tools and other methods were
used. For PostgreSQL, GDAL’s ogr2ogr tool was used.
For DB-X, a shapefile parser [34] was used to parse the
datasets and then we created a JDBC data loader to load the
parsed data into the database tables. To compare these two
methods, ogr2ogr was significantly faster (roughly 1/20th
the execution time) than the JDBC approach. For DB-X, the
process of uploading data took more effort because, besides
parsing the datasets and converting them into CSVs, some
preprocessing to CSVs had to be performed for the data
to be compatible with DB-X SDO.GEOMETRY, which
enabled us to perform spatial operations on the data. For
SpatialLite, similar to PostgreSQL, a native tool exist,
which is called spatial-tool. Also, similar to PostgreSQL
for SpatialLite, the process of data uploading was straight-
forward and did not require any preprocessing. For DB-X
a JDBC data loader was then created to read the CSVs
and create a connection to the database. Afterwards, a
table was created in the database and then the table was
populated by inserting data records from the CSV file.
For the buildings table, which was the largest table, the
process of uploading data took about 70 minutes using
this JDBC data loader. The process was much faster for
other tables, which were relatively smaller. For PostgreSQL
and SpatialLite, the process was much faster and took
approximately three minutes for the buildings table. For
other tables, which were smaller than the buildings, it took
several seconds to upload the data.



TABLE III: Database tables used for micro and macro benchmarks

Database Table Geometry Cardinality

Buildings Polyhedral Surface 776318

ArealLandmarks (TIGER) MultipolygonZ 8090

Roads (TIGER) MultipolygonZ 58448

SyntheticCells MultipolygonZ 10000
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Fig. 5: Pairwise spatial joins between buildings, roads and arealandmarks data tables (N/A: Not Available).

TABLE IV: Database configuration parameters

Database Version | Data (GB) | Bufferpool (MB)
SpatialLite | 3.45.1 4.2 2
PostgreSQL | 16.9 4.2 8192
DB-X 21c 4.2 368

V. BENCHMARKING RESULTS

In this section, the results of the benchmarking experi-
ments are presented. The results show comparison between
PostgreSQL, DB-X, and SpatialLite in terms of query
execution time. The elapsed time of each query from the
workloads was measured and then reported. There are
some differences between the mentioned databases. One
of them is the index that they use. DB-X uses R-tree
spatial indexing, while PostgreSQL uses GiST indexes
for spatial operations. SpatialLite, built on SQLite with
spatial extensions, uses R*Tree indexes but on the other
hand, when compared to PostgreSQL and DB-X, it is not
typically considered a full-fledged database. Also, available
3D operations and features in SpatialLite were minimal
compared to both PostgreSQL and DB-X. However, be-
cause of its unique advantage of being lightweight and very
quick deployment time, it may be useful in some spatial
applications.

A. Micro Benchmark

This section presents the results of Micro benchmark
queries. They are grouped into two categories: join queries
and analysis queries.

1) Join Queries: The first category of the results in-
cludes five pairwise spatial join queries among polyhedral
surface and MultipolygonZ objects. MultiPolygonZ is a 3D
geometry data type representing a collection of multiple
polygons, each with X, Y, and Z (elevation) coordinates
to enable modeling of surfaces with elevation in spatial
databases. One of the topological predicates is “3DIn-
tersects”, which identifies if two geometries intersect in

3D space. This function was executed on two scenar-
ios between buildings and arealandmarks and buildings
and roads. The results are plotted in Figure In the
first two experiments involving Building3DIntersectsLine
and Building3DIntersectsArea (refer to Figure [5(a) and
Figure [5[b), PostgreSQL performed better than DB-X.
SpatialLite did not have the functions needed for these
experiments.

The next topological function in this workload was
3DDistanceWithin, which returns two objects that are
within a given distance. The respective results are
shown in Figure 5] The queries involved were Build-
ing3DDistanceLine and Building3DDistanceArea and also
Building3DDistanceWithinBuilding. SpatialLite was also
included in these two experiments. In these experiments,
DB-X had a much lower (25%) execution time than
PostgreSQL. In all cases the highest execution time was
for SpatialLite by far (10-20x more execution time than
PostgreSQL). This is not surprising because SpatialLite’s
3D spatial capabilities are quite limited.

2) Analysis Queries: Next, we investigated a few spatial
analysis functions. Figure [6| shows the elapsed times of
these queries. The functions used in these queries were
for spatial analysis, and unlike the previous join queries,
they involve only one table. Some of the functions include
Perimeter3D that measures the 3-dimensional perimeter
of the geometry, Length3D that returns the 3-dimensional
length of a geometry, and a few other analysis functions.
For the Perimeter3D, PostgreSQL had a 15% lower exe-
cution time than DB-X, which was also observed in the
operation Length3D. The difference in execution times
in these analysis functions was notably more significant
than the difference in execution times in the previous join
queries (3D intersection and distance within), which is
important to highlight. Another observation was that for
operation Length3D, SpatialLite had a much lower exe-
cution time than DB-X and PostgreSQL. In the following
query, Dimensions, which returns the dimensions of the
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Fig. 6: Spatial analysis operations (N/A: Not Available).

geometry (which, in our case, is 3D), it was interesting
that PostgreSQL had a much higher execution time when
compared to DB-X, since in the rest of the analysis queries,
PostgreSQL had a lower execution time than DB-X. The
following query for evaluation was the 3D Bounding Box,
which returned the bounding boxes that fully bounded the
geometries of the data objects. In this query, similar to
the queries of Perimeter3D and Length3D, the difference
in execution time was quite notable, and PostgreSQL had
a 14% lower execution time than DB-X. PostgreSQL also
performed better than DB-X on the Convex Hull query that
returns the 3D convex hull of a geometry.

Surprisingly, queries in this workload scenarios showed
significant differences in their performance across
databases, which demonstrates the merit of benchmarking.

B. Macro Benchmark

In this section, the analysis of the results from running
Macro benchmark queries is discussed, along with the
insights gained from them.

1) Urban Planning and Management: The urban plan-
ning and management was the first workload scenario to
evaluate. Initially, our plan was to run the benchmark
queries on all the records in the corresponding tables.
However, when the queries were run, it became clear that
the execution time would be quite high, thus necessitating
an adjustment to our approach. So instead, an approach
was devised to consider a grid space on the dataset based
on longitude and latitude and reduce the cardinality of
the query resultset by performing a deterministic random
sampling of records from the associated tables. By doing
that, the execution time was reduced quite considerably.
The results are shown in Figures [7(a), [7{b) and [7[c). In

this workload scenario, DB-X outperformed PostgreSQL in
terms of execution time. The difference in execution times
between the two was quite notable across the three different
queries. One possible reasons that likely contributed to this
was the use of the 3DDistanceWithin function in those
queries. We observed earlier that this function in Post-
greSQL had an unusually high execution time compared
to similar functions, and this might be the reason that,
despite conducting deterministic sampling, the execution
time of those queries in PostgreSQL was much higher than
in DB-X. The deterministic random sampling approach was
adopted for the rest of the Macro benchmark workload
scenarios.

2) Medical Analysis: For the medical analysis workload
scenario, a set of join and analysis queries was imple-
mented. Multiple experiments were made to determine a
suitable number of cells from the synthesized cell generator
for our queries. The results of the experiments are shown
in Figures [7(d), [7(e) and [7[f). The queries that were tested
in this scenario consisted of a join query (3DIntersection
of healthy and cancerous cells) and a couple of analysis,
namely, Perimeter3D and Length3D. For the join query
involving the intersection operation, the execution time of
PostgreSQL was lower than DB-X (approximately 20% of
the execution time of DB-X). For the Perimeter3D query,
the difference in execution time between PostgreSQL and
DB-X was quite considerable (higher than the previous
intersection query), and also for the Length3D query exe-
cution time in PostgreSQL was lower.

3) Metaverse and Extended Reality (XR): In this work-
load scenario, the queries were designed for visibility
analysis, height analysis, and navigation in Metaverse. Like
the previous scenarios (urban planning and management),
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since 3D operations are computationally intensive for these
queries, a deterministic random sampling approach was
used to reduce the resultset cardinality of the queries.
The results from these queries, as shown in Figures [7(g)
and E[h), also exhibited that queries on DB-X had a
lower execution time than on PostgreSQL. The difference
in execution times between DB-X and PostgreSQL was
relatively high and unusually higher than previous queries
and experiments. As mentioned earlier, a likely reason for
this was the use of the 3DDistanceWithin function, which
had a high execution in PostgreSQL leading to much higher
execution time in PostgreSQL than in DB-X.

C. 3D Spatial Data Types

In addition to the Micro benchmark and Macro bench-
mark workloads, we wanted to evaluate the performance
of databases due to different 3D spatial data types. To
that end, experiments were conducted on different 3D
spatial representations, polyhedral surface (polyhedron),
point cloud and voxel, introduced earlier. The extent of
these experiments was not as broad as in previous sections.
However, expanding the scope of these experiments and
doing more analysis on these different representations of
3D could be a good future direction for researchers and a
good direction for expanding this benchmark.

The Buildings dataset utilized in the Buildings3d table
uses polyhedral surface (polyhedron) to represent 3D spa-
tial objects. For these experiments, we converted the poly-
hedral surface into point cloud and voxel. For conversion to
voxel, the work of Li et al. was found to be very useful,
in which the authors explained voxel data management
in PostgreSQL. After the conversion, experiments were
conducted on these data types by running a few queries
involving spatial operations. Some operations on these data
types included Length3D and Perimeter3D. As shown in
Figure [8] for both of these operations, the execution time
for voxel was lower than that of point cloud. Both data
types are efficient in representation and processing. The
queries with polyhedron (polyhedral surface) took longer
than the others, because this data type is used to represent
3D objects precisely. On the other hand, this demonstrates
the need for further research to improve query execution
performance with polyhedron data.

D. Memory Performance Analysis (TLB and LLC Misses)

Understanding why some queries perform sub-optimally
necessitates going beyond their execution times and inves-
tigating low-level system behavior. One critical aspect in-
fluencing performance is how the queries interact with the
system memory hierarchy. To explore this, we conducted
a detailed memory performance analysis using the Linux
perf tool. This analysis focused on TLB (Translation
Lookaside Buffer) misses and LLC (Last Level Cache)
misses to uncover potential memory bottlenecks. These
experiments were conducted only with PostgreSQL, as
it is a mature open-source database with good available
documentation. We plotted the results in Figure [9} Next,
we discuss these results.

1) Query Performance Variation: An interesting but not
unexpected trend from the TLB and LLC miss results is
that there was a high degree of variation among the four
queries on PostgreSQL:

¢ Queryl (Dimensions): 22,663 TLB misses, 131,318
LLC misses (moderate performance)



e Query2 (Convex Hull): 78,789 TLB misses (worst
performance), 176,976 LLC misses

e Query3 (Bounding Box): 39,393 TLB misses, 97,490
LLC misses (best performance)

e Query4 (Building3DIntersectsArea): 76,146 TLB
misses, 374,527 LLC misses (worst performance)

2) Memory Access Efficiency: All four queries gener-
ated substantial LLC cache misses, which indicate that
PostgreSQL’s spatial query execution struggles with mem-
ory locality. The number of TLB misses shows frequent
page table lookups because of scattered memory access
patterns , while the high number of LLC misses indicates
the working sets exceed last-level cache capacity.

3) Spatial Index Utilization: The varying miss rates
across all these queries suggest that PostgreSQL’s spatial
indexing effectiveness is query-dependent. Some of the
operations seem to benefit more from R-tree or GiST
indexing than others, which leads to inconsistent memory
access across different operations.

4) Overall Assessment: PostgreSQL demonstrates poor
cache efficiency for some spatial workloads with high vari-
ability. The system appears to load and process geometric
data in ways that are not optimized for cache hierarchy,
and this could be further improved.

E. Execution Time Breakdown

In this section, an analysis regarding the query execution
time breakdown of different PostgreSQL operations is
provided. These statistics are plotted in Figure Next
we discuss these results.

1) Query-Specific Bottlenecks: To better understand the
internal behavior of different spatial queries, we conducted
a second set of performance profiling analyses using the
Linux perf tool. This allowed us to identify which
operations dominated execution time and where specific
overheads originated. Each of the spatial queries shows dis-
tinct performance characteristics. ConvexHull is geometry-
computation heavy (48.65%), Dimension is validation-
dominated (82.93%), Bounding Box suffers from high
decompression costs (29.26%), and 3DDistance incurs a
large proportion of overhead in non-primary operations
(58.42%), suggesting significant time spent on ancillary
computation and data handling. Decompression overhead
refers to unpacking compressed geometric data before pro-
cessing them, while validation includes verifying geometric
integrity and spatial reference conformance.

The Bounding Box query operations show the highest
decompression cost at 29.26% of execution time, indicating
compressed geometric data creates significant performance
bottlenecks for certain spatial operations compared to
other operations. Bounding Box and 3DDistanceWithin
queries show substantial I/O overhead (34.63% and 42.3%
respectively) indicating that these operations need more
data movement or result materialization than geometry
data processing. The varying performances seen in these
operations show operation-specific inefficiencies in Post-
greSQL’s spatial processing and show opportunities to
reduce decompression overhead for bounding operations
and minimize ancillary costs for distance calculations.

VI. FUTURE RESEARCH DIRECTIONS
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Due to rising popularity of spatial applications, such as
Location-Based Services (LBS), mapping and navigation,
urban planning, environmental management, and emer-
gency response, most relational database systems support
2D spatial features. However, these database systems offer
limited or no 3D spatial support. Hence, there are signif-
icant opportunities for research, and some of them have
been identified through our benchmarking effort.

o Formal model for 3D topological relations. While for
2D spatial data, DE-9Im was adopted by database
systems to implement spatial topological relations,
there is yet no widely adopted formal model for 3D
spatial topological relations Although models, such
as 25 Intersection model and 36 Intersection
model have been proposed, there is still signifi-
cant rooms for improvement.

e Support for 3D spatial features. As revealed in
our benchmarking study, most of the database sys-
tems do not support 3D spatial data types, such
as polyhedron, spatial analysis functions or spatial
topological relations. The databases that do support
3D spatial features, their current offering is quite lim-
ited. For instance, PostgreSQL currently only supports
ST_3DIntersects topological relation and that too for
a few 3D geometry types only.

o Efficient execution of 3D spatial queries. Spatial
queries are resource intensive to process, and a
two step Filter-Refinement approach is utilized by



database systems. Due to their complexity, 3D spa-
tial queries involving topological relations are even
more expensive. As we found in our experimental
evaluation, for some of the queries it was too time
consuming to process all data, leading us to resort to
a deterministic sampling. Recently researchers have
proposed a Filter-Progressive-Refine approach, which
performs progressive compression of 3D objects [17].
However, this approach has some limitations and there
is a significant opportunity in this area.

o Efficient indexing and access methods for 3D spatial
queries. To improve the performance of the Filter
step of the two step Filter-Refinement, database sys-
tems use spatial index structures like R-tree [19],
Quadtree [[7] or their variants. However, they are not
optimized for indexing 3D objects. Although, a few
techniques, such as Orientable Bounding Box trees
(OBB-trees) [20]], have been proposed, they are yet to
be adopted for a Filter-Progressive-Refine paradigm.
Moreover, how to efficiently store and retrieve multi-
ple levels of details of objects of different 3D spatial
data types, such as polyhedron and voxel, is an open
research topic.

VII. CONCLUSION

Due to recent technological advancements, the volume
of 3D spatial data has been experiencing rapid growth.
Because of this and their wide application and availability,
the support for 3D spatial data and functionality across dif-
ferent database systems, is vital. In this paper, we proposed
Jackpine3D benchmark, the first 3D spatial database bench-
mark. Jackpine3D comprises Micro benchmark workloads
containing basic spatial topological relations and data
analysis functions, and Macro benchmark workloads that
include several real-world application scenarios.

We evaluated three relational database systems with
Jackpine3D. Based on our observations, we observed that
execution times of 3D queries are generally long. We have
outlined a number of future research directions for the
research community.
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