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Abstract.

In the context of a global pandemic, mitigating contagion risk requires
an integrated analysis of global positioning data from location-based ser-
vices and complex disease dynamics varying across geography and de-
mography. However, the mobility datasets have inherent issues of impre-
cision and of being high volume. This is compounded by the challenges
of changing pharmacological and non-pharmacological context of conta-
gion behaviour, geography, demography, public health strategies across
the globe.
In this paper, we propose a comprehensive framework, SCORE, to pro-
vide new analytical tools for public health strategy and planning. We also
propose a novel data structure, DisCoUnt, which serves as a distributed
uncertain trajectory index for moving objects as well as infection event
data. We conduct extensive experiments to demonstrate the scalability
of our query workflow for an infection risk measure over uncertain tra-
jectories.

Keywords: location-based-service applications · mobile data · multi-
dimensional index · Contact Tracing

1 Introduction

As of September 27, 2023, the cumulative positively identified infections due to
COVID-19 (SARS-CoV- 2) had risen to 770,875,433 with a death toll of 6,959,316
as reported by WHO Coronavirus (COVID-19) Dashboard [55]. The original con-
tagion strain showed rapid mutation and exhibited changes in infection propa-
gation, latent period, symptoms and fatality proportions [45]. COVID-19 is not
an isolated phenomenon. In fact, throughout human history a number of major
pandemics affected millions of human beings, and thus changing the course of
human civilization. For instance, the Plague known as the Black Death, during
1346 to 1353 resulted in the death of one third of the entire population of Europe
[44]. Besides Covid-19, in recent years there have been a number of major out-
breaks, including Middle East Respiratory Syndrome coronavirus (MERS-CoV)
[39], the Ebola virus (EVD) [41], and the Zika virus (ZIKV) [42]. Epidemiologists
predict that future outbreaks are highly likely [43].
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Fig. 1: Scalable Contagion Risk Estimation (SCORE) architecture

During the course of a pandemic, such as Covid-19, public health agen-
cies need to conduct real-time infection risk-assessment and develop mitigation
strategies utilising interventions to contain the risk of infection by obstructing
the propagation of contagion. These strategies include effective pharmaceuti-
cal interventions like vaccination strategies as reported by Pritchard et al. [23],
Makhoul et al. [24], Layan et al. [25] and Bian et al. [26]. Non pharmaceutical
interventions (NPIs) have also been effective in mitigating public health risk.
NPIs include community masking, physical distancing, social bubbles, closures or
lockdowns as stated by Abueg et al. [31], Hens et al. [32], Lai et al. [33], Cheng
et al. [34] and de Souza Santos et al. [35].

However, depending on the selection of intervention measures, the time of
implementation and the coverage area of its effects, the efficacy of the intended
outcome may exhibit significant variance. In addition to the technical complex-
ities, executing these interventions requires mobilisation of large amount of re-
sources and has psycho-social consequences. Therefore it is of utmost importance
for public health policy makers to be informed with optimal timely intervention
strategies for a given scenario. And more often than not this involves deter-
mining short-term estimates for multiple different mitigation strategies before
context drifts farther away from initial model assumptions. Contagion modelling
has been an integral part of any decision support system for public health to in-
form their strategies. Contagion modelling utilising ordinary differential equation
(ODE) based disease propagation models abstracts the infection propagation of
contagion over groups of individuals, which is computationally fast but does not
capture spatio-temporal dynamics and demographic heterogeneity. On the other
hand, there are individual level agent based infection propagation models, where
each human’s movement is simulated over a real world geo-spatial area but it is
computationally expensive to model both movement and contagion propagation.
A mid-way approach between these two is to extract a contact network of indi-
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viduals at POIs based on detailed simulation and simulate contagion propagation
over said network, which preserves the heterogeneity of a real-world community.
In other words, contagion modelling may be considered as construction of a risk
of infection map across a geography with reasonable spatial and temporal reso-
lution. We have witnessed efforts in identification of real-world contact networks
with large scale contact tracing efforts from public health agencies.

It has been well established that contact among people due to human mo-
bility plays a significant role in epidemic spreading. The issue of contagion risk
identification and assessment at scale may be formulated as a problem of identi-
fying sufficient spatio-temporal overlaps between moving objects. In other words,
for a given geographic area and overarching temporal bound, we need to filter
moving objects that may have the opportunity to transfer infection inducing
viral load. For e.g. Public Health of Canada defined a temporal overlap of 15
minutes over 24 hours within a proximity of 2 meter for contact identification
and management purposes [2]. Utilisation of mobility data to assess contagion
risk has been explored in the following works [3], [4] [5], [6], [7]. However, these
approaches have limited applicability due to imprecise nature and very high vol-
ume of spatio-temporal data. Cicala et al. [8] note that proximity based contact
tracing (PCT) protocols, which work by logging distances between smartphones
with PCT apps, may estimate the distance with a degree of uncertainty. For one,
Bluetooth Low Energy (BLE)-based PCT techniques use the signal strength for
estimating the distance and two, the individuals may be carrying their smart-
phones further from their position, for instance in their luggage instead of in
their pockets.

To address the limitations of existing approaches, we propose a decision sup-
port system for public health agencies called SCORE (Scalable COntagion Risk
Estimator). The overall architecture of SCORE is shown in Figure 1. The aims
of SCORE include providing decision support to public health efforts for esti-
mating risk posed by a contagion, for a specific socioeconomic and geographic
context with respect to changing intervention scenarios through individual level
models in combination with real-world trajectory data. Our framework includes
a contagion simulator (as shown in Figure 1) that captures real-world spatio-
temporal complexities of modelling a rapidly changing contagion with respect
to intervention strategies and geo-spatial variance.

The key contributions of this paper are as follows:

• We propose a novel, easy to parallelise distributed spatio-temporal index Dis-
CoUnt, to enable efficient uncertain trajectory indexing as well as infection
data.

• We illustrate how infection data may be dis-aggregated into specific points
of interests (POIs) of a geography utilising contagion simulators.

• Our experimental evaluation demonstrate the efficacy of DisCoUnt in a
distributed environment.

The rest of the paper is organized as follows. In Section 2, we outline the
research questions. We describe our overall architecture of SCORE in Section 3.
We discuss the essential elements of a contagion simulator in Section 4. In Section
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5 we describe in-depth our infection risk query processing and distributed index.
In Section 6 we describe our experimental evaluation. In Section 7 we discuss
the limitations of this paper. In Section 8, we present related work. Finally, we
draw conclusions in Section 9.

2 Research questions

In this paper we focus on the following three questions:

RQ1 How could we combine analyses of infection data and trajectory with an
appropriate spatial resolution?

RQ2 Given an appropriate combination of trajectory and infection data, how
could we define a risk measure for a given moving object?

RQ3 Given the definition of a risk measure of a moving could, how might we
efficiently compute it?

3 SCORE Architecture

As shown in Figure 1, SCORE relies on two sources of data, namely the Contact
network and Uncertain trajectory data pre-processed from Real world mobility
data. It utilises a network based contagion simulator with an appropriate disease
model and the input Contact network to produce a Risk map for a community.
TheData ingestion engine is responsible for distributing Risk map and Uncertain
trajectory store into the available nodes in the distributed network. The proposed
Distributed Contact detection over Uncertain trajectory (DisCoUnt) index is
responsible for distributed execution of a Infection risk query and gathering of
filtered data points. The data points are passed to Infection risk generator for a
final output, which is passed back to Query engine and finally back to the user.

In the next sections we describe each component of our system.

3.1 Mobility simulation

Human mobility simulation entails analysis of available mobility trace datasets
derived from cellular network, location based services, public transportation and
survey to produce a model that can output reasonable movement patterns of a
community. For example, Toronto Area Scheduling Model for Household Agents
(TASHA) is a prototype activity scheduling micro-simulation model to generate
a typical 24-hour workday or schedule for individuals of a household proposed
by Miller et al. [46]. The model has been subsequently validated by Roorda et.
al [47] for the Greater Toronto Area, Canada for the 1996 travel survey data
from which the model is derived from and the comparison with forecast for 2001
travel survey data.

3.2 Contact network

A contact network with respect to network-based individual-level contagion
model is an abstraction that captures the co-locations of individuals for a given
time-step. Here each vertex is an individual and each edge represents an event
of shared time and space. A representative example is show in Figure 2
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Fig. 2: Generation of contact network for 6 individuals from their POI occupancy
data
3.3 Contagion simulator

A contagion simulator that operates on contact networks, infers the propagation
of a contagion based on a disease model, intervention strategies and underlying
health factors associated with the demography and POIs contained within the
geography. Their output includes time series data of infection events across POIs.
We describe parts of a typical network-based contagion simulator relevant to this
framework in Section 4.

3.4 Risk map

Based on the output of a calibrated contagion simulator, the infectious individ-
uals’ POI occupancy data is dis-aggregated across the spatial bounds of a POIs
as discrete tiles.

3.5 Uncertain trajectory store

Given any two-dimensional trajectory data as a sequence of observations o1, o2, ...on,
where each oi is position data and the associated timestamp: oi = (xi, yi, ti), it
may be encoded as uncertain trajectory segments whenever appropriate. In our
framework we choose a shape-based encoding of uncertainty of moving objects
called Beads and Necklaces.

A Bead is a shape-based model for an uncertain trajectory as proposed by
Trajcevski et al. [10]. The construction of a Bead relies on a pair of observation
(oi, oi+1) of a moving object mk and a maximum possible velocity mk may attain
for the particular trajectory segment vimax dictated by real-world constraints.

Mathematically, a Bead Bi may be constructed from an observation pair
(oi, oi+1) is an ellipse with the following equation:

(2x− xi − xi+1)
2

vimax
2
(ti+1 − ti)2

+
(2y − yi − yi+1)

2

vimax
2
(ti+1 − ti)2 − (xi+1 − xi)2 − (yi+1 − yi)2

= 1 (1)
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A sequence of Beads B1, B2, ... Bn created from a sequence of observations
o1, o2, ... on+1 is referred to as a Necklace. In [10] the authors recommend
the following strategies to approximate Beads and Necklaces with reasonable
geometric constraints to balance the conflict between imprecision and encoding
and analysis efficiency:

– Large Bound (LB): The entirety of a necklace is bounded by a single
minimal vertical cylinder.

– Individual Bead Bound (IBb): Each Bead Bi is approximated by a circle
with their radius ri as the semi-major axis of the underlying Ellipse. The ri
is dependent on the choice of vimax, the maximum possible velocity between
observations oi and oi+1.

– Uniform Bead Bound (UBb): Similar to IBb, each Bead Bi is approxi-
mated by a circle with their radius ri as the semi-major axis of the underlying
Ellipse. But the choice of vimax, is constant as the maximum possible velocity
between any two points oi and oi+1.

Y

T

X
O1 = (x1, y1, t1) with 

velocity v1

O2 = (x2, y2, t2) with 
velocity v2

The top and bottom spatial 
surfaces may be 
approximated as an ellipse 
as described in Equation 1

Actual Shape 
of uncertain 
3D volume 
based on 
velocity 
constraints

Approximated 
Shape of 
uncertain 3D 
volume based 
on velocity 
constraints

t1

t2

Fig. 3: Approximating trajectory segments as ellipses extruded over T axis as
proposed by Trajcevski et al. [10]

Please note, even with the least lossy bead encoding such as, Individual
Bead Bound, the spatial bound of a moving object can be approximated by
an ellipse across the time bound of two subsequent observations, as shown in
Figure 3. For a detailed consideration of pruning strategies we refer the reader
to Section III-B of the paper by Trajcevski et al [10]. For example of IBb Bead
Necklace based on real-world trajectory data as provided by Yuan et al. [11],
please refer to Figures 5 and 6. Note that, although the spatial bounds of beads
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Fig. 4: Approximating spatial bound of Beads from ellipses to circles as proposed
by Zhang et. al in [1]

Fig. 5: A necklace with approximated
circular beads distorted on Equirect-
angular projection with GIS mobility
trace data provided by Yuan et al.
[11]

Fig. 6: Same necklace as shown in
Figure 5 projected on Cartesian
plane

are approximated as circles from ellipses as shown in Figure 4, they appear as
ellipses due to distortions introduced by cartographic projection.

3.6 Combining Risk map and Uncertain trajectory store

Taking a similar approach to model spatial-congestion in different POIs as il-
lustrated by Alix et al. [21], we chose the discrete tiles for infectious individual
POI occupancy to be hexagonal with appropriate resolution for humans. Next
we approximate the spatial bounds of hexagons with its corresponding circum-
scribed circle or circumcircle to get a cylinder in X × Y × T space. This is a
data structure equivalent to our encoding of an uncertain trajectory. Thus, a
Bead may be utilised to store both data points of real-world mobility as well as
space-time occupancy of infectious individuals in a POI. Please note, although
the trajectory data of humans are technically in 3 spatial and 1 temporal di-
mensions, most of human activities may be considered to be taking place on
2D planes with connectors like stairs or elevators and therefore without loss of
generality we may consider the human trajectories as points in in X × Y × T
space.

3.7 Data ingestion engine and Partitioned data store

The Data ingestion component of the framework is responsible for creating a
Partitioned data store for data points of both Riskmap and Uncertain trajectory
store. Two partitioning heuristics are discussed in Section 5.
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3.8 Infection risk query

This query involves the identification of infection risk associated with a moving
object present in the Uncertain trajectory store.

For example, given a scenario “How risky is to visit this mall?” one may
translate it into a SQL-like query as follows:

INFECTION_RISK(*) FROM UNCERTAIN_TRAJECTORY_STORE, SIMULATION_STORE,

WHERE RISK_MAP = SIMULATION_STORE.RISK_MAP,

UNCERTAIN_TRAJECTORY_BEADS = UNCERTAIN_TRAJECTORY_STORE.BEADS AND

POLYGON == "MALL_01" AND

TIME BETWEEN YESTERDAY AND TODAY

The details of infection risk query processing is described in Section 5.

3.9 Query engine

A query engine is the component responsible for interpreting a user’s query into
a query plan along with execution details taking into account the indices and
possible speedups. Here, the proposed query engine augment interprets a spatio-
temporal query and produces a query execution plan using DisCoUnt index

3.10 DisCoUnt index

This is our proposed novel distributed index, which facilitates efficient search
and retrieval from Partitioned data store. In particular, the index is designed to
support scalable evaluation of infection risk queries. This is described in Section
5.2.

3.11 Infection risk generator

This component computes the probability of infection risk with respect to the
retrieved data points of a Infection risk query. Details of infection risk measure
and its computation is described in Section 5.1.

4 Contagion simulator

A detail discussion of contagion simulation in general or even network-based
stochastic contagion simulation in specific is out of scope for this paper. There-
fore, here we briefly discuss how an individual level network based geo-spatial
contagion simulator combines demography data, geo-spatial data and disease
models.

4.1 Combining demography and geo-spatial data

Due to privacy and security issues being among the primary concerns, the res-
olution of trajectory or trajectory traces of humans is limited and may not be
suitable to determine the

spatio-temporal overlaps required for infection propagation. Therefore one
technique to generate human mobility data that captures the variations of the
age distribution and the network of POIs is to simulate it via human mobility
models. A simiplified description of this process is outlined below.
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Step 1 First, a statistically similar individual level population data is synthe-
sised based on the available aggregated census and labour data for a
community.

Step 2 In parallel, road-network and POI data are extracted for the same
community from sources like OpenStreetMaps.

Step 3 A mobility simulation is performed with a relevant time-step, say 24
hour, with the data obtained in Step 1 and Step 2 to obtain move-
ment patterns of the individuals.

This movement pattern data is transformed into individual occupancy data
consisting of POIs and finally transformed into a contact network.

4.2 Infectious disease modelling as compartments

Over the years, several infectious disease models have been proposed. According
to Keeling et al. [48], in these models, individuals of a population are put into
compartments in relation to the contagious disease, which are denoted by labels
such as, Susceptible: individuals who may get infected, Infectious: individuals
who may infect susceptible individuals, Latent : an individual who is infected
but not yet infectious, Removed : Individuals who are not participating in the
propagation of disease due to immunity or death and so on. At any given time, a
person may be in exactly one of the compartments. One of the simplest of con-
tagion models comprises of three compartments, namely Susceptible, Infectious
and Recovered and is called the SIR model.

For our simulation purview, we invert this perspective. That is, we do not
consider mixing of groups of individuals (as compartments) and investigating the
parameters from the real world to fit into the measures of central tendencies.
Instead we simulate the movement of the population to the best of our abilities
and capture the POI occupation events as an emergent property of the simulation
to generate the contact network. Then we simulate disease propagation on that
network, without loosing individual variations of health statuses and keeping a
portion of the geo-spatial heterogeneity.

4.3 Interpreting infection propagation

Irrespective of the design of an infectious disease model, it must always contain
a mechanism of transition from a non-infectious state to an infectious state. As
per the mechanistic model of viral load transmission by Challenger et al. [49],
each infectious individual may be thought of as a emitters of air-born virus by
virtue of exhalation. If and only if there is sufficient transfer of said virus (a.k.a
viral load) from an infectious to susceptible individual, there is a possibility that,
infection may spread to the susceptible individual. This interaction is modelled
as a infection probability function f , which in the simplest case is proportional
to the shared time t between a pair of susceptible and infectious individual in a
POI.
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Fig. 7: Simulation of the effect of school clo-
sure on the infection propagation in a com-
munity from [38]

Fig. 8: Simulation of relative
infection counts with respect
to the venue types in a com-
munity from [38]

4.4 Example outputs of contagion simulation without calibration
from [38]

As part of separate research activities on contagion simulation over real-world
communities in [38] we have utilised CitiSketch am[56] to generate representa-
tive contact networks. The figures are example outputs of infection spread in a
community of 4602 individuals from the Campbellton region of New Brunswick,
Canada. The demography and labour data were procured from Statistics Canda
[57] and the Road network and POIs from OpenStreetMap [58] respectively.

Figure 7 shows relative infection risk with school closure as a mitigation
strategy. Figure 8 illustrates the relative infection risks for venue types.

Upon calibration, an individual level contagion simulator can provide POI
level occupancy data of expected number of infectious individuals for an out-
break.

5 Infection risk query processing

Before we begin to describe the query workflow in-depth, we answer RQ2 with
the following definitions.

5.1 Infection risk measure

Taking inspiration from Zhang et al. [1], we approach to define the probabil-
ity of transmission of contagion from an infectious individual described by an
occupancy encoding bead to a susceptible individual described by an uncertain
trajectory encoding bead as follows:

We begin with the premise that two beads B1 and B2 describing object O1

and O2 respectively have spatio-temporal overlap with area of spatial intersec-
tion ρ12 and maximum possible time overlap of τ . Let us also assume that the
probability of finding an object within the spatial bound defined by a bead is
uniform and remains constant across time.

Definition 1 Probability of spatial contact This probability may be decom-
posed into three events as follows:
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– P (E1) : When sampled at random the probability of O1 to lie within spatial
intersection.

– P (E2) : When sampled at random the probability of O2 to lie within spatial
intersection.

– P (E3) : Given the a priori probabilities of E1 and E2, the probability that
the sampled points are at most δ distance apart.

Since the events are independent of each other the resulting probability is as
follows:

Pspace(B1 ∩B2) = P (E1) · P (E2) · P (E3) (2)

B1
B2

B1

B2

Fig. 9: Schematic describing probability of spatial contact and temporal overlap
between beads

Without loss of generality, consider the two Beads in Figure 9. Here, B1 is
translated to (0, 0) and has a radius of R with B2 at d distance with radius r.
Then, by construction, we have the following results:

P (E1) =
ρ12
πR2

1

first object is on the overlapping area (3)

P (E2) =
ρ12
πr21

second object is on the overlapping area (4)

max(P (E3)) =
πδ2

ρ12
both of them are “close enough” (5)

And the spatial area of intersection ρ may be computed as follows:

ρ12 = r2 cos−1(
d2 + r2 −R2

2dr
)

+R2 cos−1(
d2 +R2 − r2

2dr
)

−
1

2

√

(−d+ r +R)(d+ r −R)(d− r +R)(d+ r +R)

(6)
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Putting it all together, we have the following probability of spatial contact
between the objects O1 and O2 described by two beads B1 and B2 with a threshold
of minimum distance of effective contact as δ.

Pspace(B1 ∩B2) =
ρ12
πR2

1

·
ρ12
πr21

·
πδ2

ρ12

=
ρ12 · πδ

2

πR2
1 · πr

2
1

(7)

Definition 2 Probability of infection propagation

Let us also assume that this pair (O1, O2) is a pair of susceptible and infectious
objects with a maximum possible temporal overlap be τ12.
A mechanistic model of infection transmission may be generalised as a function
of time overlap t between two individuals in close proximity with a minimum
cutoff time tmin: f(t, tmin). Therefore, the final probability may be decomposed
into two events as follows:

– Pspace(B1 ∩B2) : A priori probability of spatial contact.
– P (transmit12) : f(τ12, tmin)

Therefore the probability of infection from O1 to O2, for any OI who is in-
fectious and OS who is susceptible is as follows:

P (OI infects
−−−−−→

OS) = Pspace(B1 ∩B2) · P (transmit12)

=
ρ12 · πδ

2

πR2
1 · πr

2
1

· f(τ12, tmin)
(8)

Thus we have a risk measure for a single space-time overlap. When extended
for an complete uncertain trajectory of a moving object with multiple beads we
have the following definition.

Definition 3 Infection risk measure for a susceptible moving object Oi with
a trajectory Ti may be defined as follows:

– Let Ti be decomposed into a Necklace of Beads as
Ni = [Bi1, Bi2..., Bik]

– Let the set of all infectious beads be Sinf = Binf1, Binf2, ...Binfm

– Then, we find the set of all the overlap of pairs of objects from Sinf and Ni

as Soverlap.
– Any object s ∈ Soverlap is a pair of beads (Bi, Bj) | Bi ∈ Ni, Bj ∈ Ninf

– Then to compute the overall infection risk of Oi with respect to Ti, we must
compute every P (Oj infects

−−−−−→
Oi) for each (Bi, Bj) ∈ Soverlap

5.2 DisCoUnt index

To accommodate efficient search over a partitioned Bead store we took inspira-
tion from UTM-tree proposed by Zhang et al. [1]. UTM-tree is constructed by
extending a metric-index M-tree [12] by including the radius of a bead as part of
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the data point and including it in the metric distance function for space based
pruning and including a range-tree, proposed by Bentley et al. [50] for time based
pruning in a single traversal of the resultant tree. However, UTM-tree, like that
of a M-tree relies on a bottom-up insertion approach. This step ensures a height-
balance and overlap reduction of the nodes of the tree and therefore subsequent
spatial indexing efficiency. Therefore, it is prudent to partition the trajectories
according to children or sub-trees of a node to ensure efficiency in parallel or
distributed context. However, the tree creation process is bottom up, resulting
in shuffling of trajectories among partitions making it unsuitable for partition
based scaling up as is. Also, UTM-tree, like M-tree, utilises ball-type partition-
ing that introduces overlaps between sibling nodes (nodes that are at the same
depth) with overlaps that may not be effectively mitigated as it is dependent on
stochastic selection of routing objects during tree creation. This in turn poses
a non-deterministic challenge of selection of partitions for further data inser-
tion, which may cause data replication across partitions raising memory cost
of indexing to an unsatisfactory degree. Although, it is possible to partition
the trajectory segments before constructing individual UTM-tree indices out of
each partition, the resultant data structure would be a hybrid index, for which
ensuring overall efficiency would become a multi-part challenge. Instead, we con-
sidered alternative candidates for indexing based on the systematic evaluation
of metric-space indices by Chen et al. [13] of range query on main-memory. The
highest ranking technique reported was Multiple Vantage Point tree (MVPT)
[14], followed by Extreme Pivot Table (EPT*) [15], Bisector Tree (BST) [16]
and Geometric Near-Neighbour Access tree (GNAT) [17] and its variants. Since
MVPT and partitioning of BST and EPT also utilises ball partitioning, it posed
similar challenges to that of an M-tree in a setting of a distributed cluster of
nodes. To support efficient uncertain trajectory indexing and infection data, we
propose a novel distributed spatio-temporal index DisCoUnt, Next we describe
the components of this index.

The membership of Beads and DisCoUnt node, and their attributes from an
example index instance are shown in Figure 10.

Fig. 10: An example DisCoUnt index instance visualised with JSON tree visu-
aliser [36]
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DisCoUnt node structure The following parameters are sufficient for tree
construction and pruning both spatial and temporal ranges.

– Bead : Contains full information of an Uncertain Trajectory segment:
• mid : moving object id
• x, y, radius : spatial range of radius, centred on (x, y)
• tstart, tend : temporal range

– min dist : minimum distance to its member set
– max dist : maximum distance to its member set
– *t max : maximum of all t ends of its member set
– *t min : minimum of all t starts of its member set
– member set : set of member DisCoUnt nodes
– range table : set of member DisCoUnt nodes

The fields marked with an asterisk are introduced to keep a temporal range
tree like secondary index structure for efficient temporal pruning during spatio-
temporal range query computation.

5.3 Distance function for symmetric range in metric space

Since we are dealing with distances between symmetric ranges of space, the
distances between tWo Beads, B1 and B2 may be defined as equations 9, 10 and
11 below and illustrated in Figure 11:

c2c dist(B1, B2) =
√

(x2 − x1)2 + (y2 − y1)2 (9)

min dist(B1, B2) = max(0, c2c dist(B1, B2)− r1 − r2) (10)

max dist(B1, B2) = c2c dist(B1, B2) + r2 (11)

Here, min dist is a stand-in for overlap detection and therefore has the “sym-
metry” property, i.e.:
min dist(B1, B2) = min dist(B2, B1)
But it, does not follow “triangle inequality” for all B1, B2.
Therefore, we need max dist, which does follow “triangle-inequality”:
max dist(B1, B2) ≥ max dist(B1, B3) +max dist(B2, B3).
This is true by construction as, r2, r3 ≥ 0 and c2c dist(B1, B2) is Euclidean
distance between (x1, y1) and (x2, y2).

Please note, min dist does not strictly have the “identity” property, since
any two overlapping pair of Beads yields a 0 and neither does max dist as,
max dist(B1, B2) > 0 for all r2 > 0.

For split point selection and membership assignment, we utilise the min dist
between DisCoUnt nodes and construct the DisCoUnt index. And, utilisemax dist
for relative range based pruning and as a stand-in for maintaining minimum
bounding circle for member set of a Bead. Thereby making sure during each
operation, only one kind of distance calculation is performed.

5.4 Algorithmic Complexity of a single index construction

In this section we discuss the algorithmic complexity of our proposed index,
particularly, the space and time complexity.
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Fig. 11: Max and min spatial distances between two Beads

Space Complexity Space complexity of DisCoUnt is the same as the data
structure structure GNAT. It is as reported by the author of GNAT in [17] the
space complexity is O(nk2 +Ns) where

1. n: number of nodes.
2. k2: the average of the squares of the degrees.
3. N : number of data points (in a partition).
4. s: maximum space requirement for a data point.

Time Complexity Time complexity of DisCoUnt construction is the same as
GNAT. The time complexity for a completely balanced GNAT [17], is:O(NklogkN),
where k is the average degree (N/n).

Please note, our approach does not change the number of distance calcula-
tions. Hence, the O of space and time complexity of index building is the same
in spite of accounting for maintaining an orthogonal range tree like structure for
temporal comparison.

5.5 Bead overlap detection query

The spatio-temporal range search starts from the root node of a DisCoUnt index;
it utilises the pre-computed distance and temporal range information present
the current node and its siblings range table with respect to the query bound
to prune the sub-trees. Please note, bead overlap detection through a spatio-
temporal range search is accomplished by setting the querying each Bead of a
susceptible moving object and looking for overlaps with an infectious moving
object or vice versa.

This process is detailed in Algorithm 1.
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The double-range search is an extension of the simplified algorithm described
in section 4.1 of the author of GNAT in [17] and re-framed by authors of EGNAT
[52] in Algorithm 1. Since we added one additional computation per candidate so-
lution and pivot point, it does not adversely effect the time complexity of search.
Furthermore, Kimmo Fredriksson in their pre-print submission [51] states that
for range-searching in a GNAT, for any surviving non-pruned pivot point with-
out further child nodes, the search algorithm takes a O(k) distance comparison
in average, where k is the average degree. In our case it would be another O(k)
for the time overlap comparison, but given sufficiently larger k, the complexity
of searching within a DisCoUnt node will still be O(k).

Algorithm 1: Range Search to detect bead overlap

Input : P , query
Output: R : set of overlapping Beads

1 Let P be the list of root level DisCoUnt nodes
2 query contains both spatial and temporal bound to search
3 Randomly select a split point p ∈ P

4 Check if p spatio-temporally overlaps with query, then add to R

5 d← dist(query, p) r ← query.spatial range relative range← [d− r, d+ r]
t← query.temporal range while q ∈ P − p do

6 if relative range ∩ range(p,Dq) = φ then

7 Remove q from P

// Space Pruning

8 if t ∩ [q.t min, q.t max] = φ then

9 Remove q from P

// Time Pruning

10 Double Range Search for each Dp for p left in P

11 return R

5.6 Partitioning strategies

To gauge the efficiency gain of the index, the following partitioning strategies
were considered:

1. Clustered: Beads closest to a split point were assigned to the same index.
2. Round-robin: Beads that would have been part of the same partition in the

clustered strategy are allocated across all available partitions in round-robin
fashion.

3. Random: Random allocation of Beads for comparison.

5.7 Infection risk query processing

For SCORE, we build two DisCoUnt instances, one for indexing uncertain tra-
jectories and the other for indexing risk maps. Since every infection risk query
has a implicit spatio-temporal range, of say a city or a town, depending upon
the scope of the risk map, we decompose the query as follows:
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Step 1 Gather all the trajectory Beads in the overarching query range of the
relevant moving object id i as Si.

Step 2 Gather all the risk map Beads in the same range Sinf .
Step 3 Pass the sets to infection risk generator to detect pair-wise overlap
Step 4 Compute probability of infection propagation for each overlap and

return the result set to the user.

Fig. 12: Schematic diagram describing the gathering of trajectory Beads in blue
and risk Beads in red within the scope of range query outlined in green

A simplified spatial description of Step 1 and Step 2 is presented in Figure
12, where the overarching spatial query range is outlined in green. The hexagonal
tiled occupancy data has been approximated to its corresponding circle. The
trajectory beads are constructed as Individual Bound Beads to encode movement
with variable velocity in between trajectory observations. The result set Si and
Sinf are passed to the infection risk generator to detect pair-wise overlap. This
is the proposed solution to RQ3.

6 Experimental evaluation

In this section DisCoUnt index is evaluated, firstly in a single machine and
secondly on a cluster of machines. We chose to perform these experiments on
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synthetic data for both trajectory and infection risk map. The synthetic data
was generated to evaluate effects of varying data distribution, data volume, data
partitioning, and query selectivity on the proposed index that we expect to find
in real-world mobility data and risk maps.

6.1 Experiment setup

The components of SCORE system and DisCoUnt index were implemented in
Python 3. First, the experiments involving standalone DisCoUnt index were
conducted on a single machine with Intel(R) Core(TM) i7-10875H CPU @ 2.3
GHz running Ubuntu 20.04.2 LTS x86 64-bit OS with 32 GB RAM. An uncertain
trajectory data store was generated for testing by increasing data volumes from
1K to 1M Beads.

Fig. 13: Time complexity of single DisCoUnt index. Please note that there are
separate logarithmic time axes for building and querying on the left and right
side respectively

The results of searching in parallel DisCoUnts for partitioned data store in a
local machine shows clear efficiency gain over a single index as shown in Figure
14.

Second, a two instance DisCoUnt index was set-up over a partitioned bead
store with an associated risk map of 20% of total number of trajectory Beads
in a cluster of 4 machines with Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
running Ubuntu 14.04.5 LTS x86 64-bit OS with 8 GB RAM. The machines
were networked via wired Ethernet TP-LINK(R) TL-SG1005D Gigabit Switch.
Initial implementation of DisCoUnt was extended for processing of query in a
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Fig. 14: Low selectivity, parallel query on 1000000 Beads showing expected
speedup on increasing partitions

Fig. 15: Query time vs. number of
nodes in cluster for 100K Beads Fig. 16: Query time vs. No of Beads

distributed environment utilising Dask [37]. Specifically, the Actor API of Dask,
which enables stateful computation at worker nodes. Please note that for the
scope of this paper, we conclude our evaluation at gathering the relevant Beads
from the partitioned store and do not proceed with computing the overlaps
and the subsequent probabilities. Since the Infection risk measure calculation as
described by Definition 3 is a sum of multiplications with a sampling of PRNG,
it is expected to not exceed the delay of data transfer over network and affect
the evaluation metrics.

6.2 Effect of data distribution

In this experiment, we vary the number of nodes as 1, 2, 3 and 4, and we
report the corresponding query execution times in Figure 15. The figure shows
an increase in efficiency of query execution with an increase in the number of
nodes. However, it is not clear how many nodes may be needed to outweigh the
delays introduced due to data transmission over a network.
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Fig. 17: Query time vs. Partitioning
strategy for 100K Beads across 4 nodes

Fig. 18: Query time vs. Query selectiv-
ity of High (0.6), Medium (0.3) and
Low (0.04) for 100K Beads across 4
nodes

6.3 Effect of data volume (number of beads)

We vary the number of beads from 10k to 100k and measure the query execution
time. Figure 16 shows expected trend in increase in query execution time with
respect to data volume, similar to that of a non-networked implementation of
DisCoUnt.

6.4 Effect of partitioning heuristics

For this experiment, the trajectory Beads and the risk maps beads were parti-
tioned separately with respect to two sets of split points. We evaluate the impact
of the partitioning strategies (i.e. clustered, random and round robin, mentioned
in Section 5.6) on the query execution time. The result in Figure 17 suggests that
the clustering partitioning scheme works slightly better than random allocation
of Beads and the round-robin scheme performs worse.

6.5 Effect of query selectivity

In this experiment, we vary the query selectivity and evaluate its impact on the
query execution time keeping the data volume constant at 100K Beads. We used
three selectivity values: low, medium and high with selectivity of 0.04, 0.3 and
0.6 respectively. Therefore the query results of low medium and high selectivity
would contain 400 Beads, 30K Beads and 60K Beads respectively. Figure 18
demonstrates that query execution time is linearly proportional to volume of
result. This is to be expected for a networked environment of our experimental
setup where over 90% of the total query execution time is spent transferring
query result from worker nodes.

7 Discussions and future work

In this section we discuss the limitations of the experimental evaluation, the
scope of SCORE, and future lines of enquiry.

• Our experiments on the distributed DisCoUnt index demonstrates that it
has the potential to scale similar to its parallel variant as shown in Figure
14. However, as shown in Figure 15 we will need additional experiments to
determine optimum multi-machine configuration.
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• The experiments are performed on synthetic data that varies query load and
data volume. Although it is representative of worst case scenarios, performing
similar suite of experiments on real-world trajectory store remains as a future
work.

• At a framework level, comparing the accuracy and efficiency of SCORE
would require multiple data sources for a well-documented outbreak of a
particular contagion in a specific community. It would also require a cali-
brated contagion simulator. Calibration of a contagion simulator is out of
scope of this paper and by extension a full framework evaluation of SCORE
remains as future work.

Please note, in this paper we focus on a “uncertain proximity detection”
framework and the key definitions, algorithms, and data structures to compute
it in a distributed context. This enables the proposed SCORE architecture to
use outputs of any mechanistic or proximity based disease modelling system.

8 Related work

The literature surveyed during the course of this research were found to focus
on a part of the problems we aim to tackle through the SCORE architecture. In
this section, we mention some of the relevant research.

Authors of [3], [4], [5] and [6] have utilised mobility data to produce outputs
analogous to the proposed Risk map, however the spatial resolution of their anal-
ysis spans areas as large as entire cities and districts. Hence, these models do not
incorporate individual level mobility. Alix et al. [21], also represents single POIs
with multiple hexagonal tiles, as in SCORE. They also assign spatial dispersion
within a POI with respect to different categories of POI. Similarly, Anastasiou
et al. [7], also spatially divide a POI into square tiles rather than hexagonal tiles.
They run micro-simulation of expected movement of individuals within a POI
with respect to ingress, exists and other architectural features. They aggregate
them to produce regions of high-congestion and assign predictive risk scores fu-
ture trajectory plans. However, both risk measures only take into account the
occupancy data of individuals and not the disease dynamics of the contagion
question, nor the expected changes due to intervention measures.

An et al. [53] explore agent based contagion simulation but they consider
their spatial boundaries to be at the scale of countries and the co-location data
was inferred from synthetic contact networks instead of real-world mobility data.
Lee et al. [54] propose an efficient graph transformation to simulate reactive and
preventative vaccination strategies. Their spatial resolution was of an adminis-
trative division of a US state and their co-location graph of choice was of routers
and P2P file sharing network. We believe that approaches like these would bene-
fit from distributed index, DisCoUnt proposed by us. At the time of writing this
manuscript, we did not find any previous work that integrates calibrated individ-
ual level agent based contagion modelling using real-world mobility data, with
uncertain trajectory analysis to assess infection risk as an overarching frame-
work.
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9 Conclusion

In this paper, we propose a holistic framework called SCORE that combines
simulated disease propagation model with real-world trajectory data to facilitate
infection risk analysis for a community. We formally define a probability measure
of spatial contact given a pair of uncertain trajectory segments. We combine this
probability of spatial contact with a mechanistic model of infection transmission
to define the probability of infection risk. We propose a novel index DisCoUnt,
to efficiently search and retrieve data points to calculate infection risk measure
for a moving object given their trajectory. Finally, we demonstrate with our
experimental results that ours is a viable approach for computing infection risk
measure using a distributed data store. However, our approach is incumbent on
the calibration of an agent based contagion simulator, which is a non-trivial task.
Our future directions include the exploration of different partitioning techniques
and conducting a comparative evaluation of alternate candidates for distributed
spatio-temporal indices.
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