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ABSTRACT
With the rapid growth of geo-tagged documents, top-k spatial key-
word search queries (TkSKQ) have attracted a lot of attention and a
number of spatio-textual indexes have been proposed. While some
indexes support real-time updates over continuously generated doc-
uments, they do not support queries that simultaneously consider
temporal relevance, textual similarity ranking and spatial location.
Existing indexes also have limited capability to exploit parallelism.
To address these issues, we introduce a novel parallel index,

called Pastri (PArallel Spatio-Textual adaptive Ranking-based In-
dex), which can be incrementally updated based on live spatio-
textual document streams. Pastri uses a dynamic ranking scheme
to retrieve the top-k objects that are most temporally relevant at
the time of a query execution. We have built a system in which
we integrate Pastri along with a persistent document store and
several thread pools to exploit parallelism at various levels. Experi-
mental evaluation demonstrates that our system can support high
document update throughput and low latency with TkSKQ queries.
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1 INTRODUCTION
The popularity of Location-Based Services (LBS) and social media
use is contributing to deluge of spatio-textual data. Often, the value
of such data depends on the “recency” or “temporal relevance” of
the generated documents. For instance, during a natural disaster,
emergency response teams can act quickly on recently reported
incidents. The high volume and velocity of generated spatio-textual
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documents requires novel approaches to indexing and query pro-
cessing. Spatio-textual queries can be classified [10] into the follow-
ing categories: filter, top-k, collective, and other queries. A top-k
spatial keyword query (TkSKQ) retrieves k objects based on both
the distance of the generated documents (objects) from the query
location and textual relevance.

Due to the popularity of geo-textual search, a number of spatio-
textual indexes have been proposed. In a comprehensive study of
12 of these indexes, Chen et al. [3] report that a few of the indexes
such as [5, 15, 18] support TkSKQ. However, these spatio-textual
indexes do not support real-time data ingestion. Indexing systems
such as I3 [18] and IR-tree [5] are tree data structure based. Such
organization offers limited parallelism, and are generally not scal-
able with update-heavy workloads. In recent times, a number of
indexing approaches have been proposed that focused on efficient
processing of textual streams. Earlybird [1], focused on real-time
text search, but does not support spatial queries. Taghreed [8] can
execute arbitrary queries on microblog streams. It supports a few
types of queries such as spatio-temporal boolean range keyword
search, and top-k frequent keyword query. Taghreed does not sup-
port ranked TkSKQ or a ranking scheme that considers both spatial
and textual relevance. Mercury [9], proposed an in-memory index
for real-time support of top-k spatio-temporal queries on microblog
data streams. Mercury’s ranking scheme, however, only considers
spatial and temporal relevance, not textual relevance. The goals
that we share with systems such as Earlybird and Taghreed, are
high throughput ingestion of spatio-textual streams and ad hoc
(arbitrary) queries with interactive response time. Unlike these sys-
tems, however, our approach supports ad hoc TkSKQ queries and a
ranking scheme that considers spatial and textual relevance, and
temporal recency.
Note that a number of location-aware publish-subscribe sys-

tems have been proposed that support continuous spatio-temporal
queries over data streams. A continuous query is different from an
ad hoc query, as a continuous query needs to be registered first,
and then the answer to that query is evaluated over time on the
the incoming data stream. Some of the indexing approaches to sup-
port continuous queries over spatio-textual data streams include
TaSK [2], AP-Tree [17] and Tornado [11]. These approaches are not
relevant to our system, as we support ad hoc TkSKQ queries on
textual data streams.

To support real-time ingestion of document streams and efficient
TkSKQ over such data, we introduce a parallel index called PASTRI
(PArallel Spatio-Textual adaptive Ranking-based Index) or “Pastri”.
This work extends our previous work [14], in which we introduced
an approximate temporally relevant dynamic ranking scheme for
real-time document streams. Pastri is designed to be highly scalable,
and support parallel document updates and concurrent query exe-
cution. To support high throughput disk-based storage, we present
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a simple yet effective extension to the log-structured merge-tree
(or LSM-tree) [12] that we call pLSM (partitioned LSM-tree) store.
We present three load-balancing algorithms to handle data skew.
Our index can be considered as a hybrid between tree and grid
indexing approaches. The updates are handled by a component
that combines the in-memory grid with inverted lists, along with
an in-memory table which is backed by an in-memory cache and
on-disk storage. Queries are directed to the in-memory tree compo-
nent that can perform efficient circular range search from the query
location. Pastri uses our dynamic ranking measure to calculate a
textual relevance score based on the keywords in a given query in
real-time. This on-the-fly computation of relevance score ensures
that the search returns the most recent relevant objects.

We implemented a prototype of our system and evaluated it with
a real world Twitter dataset. Our approach delivers high perfor-
mance for a single server class machine with large main memory
and multiple cores, since servers with hundreds of GB or a few TB
are common today. We present a thorough evaluation and show
(see Section 4) that Pastri can ingest and index about 200,000 docu-
ments/second. In contrast, Taghreed [8] reportedly can ingest up
to 32,000 microblogs/second; [8] does not report any query perfor-
mance. Mercury [9] can ingest 64,000 microblogs/second. Query
latencies achieved by Pastri are comparable to those of Mercury
or lower. Furthermore, when compared with two popular spatio-
textual indexes, IR-tree and I3, Pastri’s TkSKQ query performance
is significantly better.

2 RELATEDWORK
First, we describe research on spatio-textual indexing approaches
and then mention previous work on indexing document streams.

2.1 Spatio-textual Index
Depending on the structure of spatio-textual indexes, they can
be classified into three groups: R-tree based indexes, grid-based
indexes and space filling curve based indexes.

The IR-tree [5] is one of the R-tree based approaches that support
TkSKQ. It integrates an R-tree with an inverted file. The S2I [15] in-
dex uses two different approaches for frequent terms and infrequent
terms. For infrequent keywords, all the elements in the inverted file
are stored sequentially for efficient I/O. Otherwise, an aggregated
R-tree (aR-tree) is used for pruning. The I3 index [18] uses a similar
textual partitioning approach as S2I. However, they use a Quadtree
instead of an R-tree for spatial indexing.
SFC-QUAD [4] is one among only a few non-R-tree based ap-

proaches that support TkSKQ. In each inverted list the document
ids are ordered based on their position in a Z-curve. The grid-based
indexes incorporate a grid index with a text index. Among these,
the two most prominent ones are ST & TS [16] and SKIF [7]. The
grid-based approaches can only support boolean range queries, but
not TkSKQ, as noted by [3].

2.2 Indexing spatio-textual data streams
Recent work on real-time search over a massive stream focusses
on the requirement for immediate search with very low latency
updates. The Earlybird [1] system focusses on real-time search of
text, and does not support spatial queries. StreamCube [6] supports

real-time top-k spatio-temporal ranking of hashtags in the Twitter
stream. Unlike Pastri, however, StreamCube does not support user-
defined top-k spatial keyword search.

Taghreed [8] supports several types of queries (e.g. find the top-
k most frequent keywords used within given spatial and tempo-
ral ranges), but it does not support ranked top-k spatial keyword
queries. Mercury [9] supports top-k spatio-temporal queries, but its
ranking scheme is based on spatial and temporal relevance, which
does not consider textual relevance.

Our focus is on supporting ad hoc ranked top-k spatial keyword
queries. Therefore, publish-subscribe approaches [2, 11, 17] that
support continuous spatio-temporal queries over data streams are
not relevant to this discussion. Also, our prior work [13], is not
relevant in this context, as it did not support spatio-textual data.
Present work extends our previous research [14].
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Figure 1: System architecture

3 PASTRI SPATIO-TEXTUAL INDEX
In this section we describe our system organization, internal data
structures and the update and query processing algorithms.

3.1 System organization
Our system has a highly multi-threaded organization. Figure 1
shows the update and query processing workflows. When a new
geo-tagged document, such as a tweet, o = (o.id ,o.l ,o.d ,to ) is re-
ceived from the document stream by our system, it is enqueued
into RQt . The document is retrieved from the queue by one of the
table insert threads in the thread pool TPt . It creates a document
record which is inserted into the table DocumentTable. Upon in-
sertion, a unique record id, RID, is generated by incrementing a
variable with an atomic operation.

The table is backed by a partitioned LSM-tree store (described in
Section 3.3) on disk. Moreover, there is also an in-memory cache to
store most recent documents. So, an insert operation on the Doc-
umentTable, causes a document record to be inserted into the in-
memory cache and then onto the disk. Next an entry is created
with the RID which is enqueued in one of the queues in RQx . An
index update thread from thread pool TPi dequeues the record and
processes it. The index update process is described in section 3.4.
Our system can handle many concurrent queries. When a new

query is submitted into the system, it is enqueued in RQq . Then
it is picked up by one of the threads in the thread pool TPq and
processed by it. The query processing is outlined in section 3.5.
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Figure 2: Structure of Pastri index
3.2 Index structure
As shown in Figure 2, our index, Pastri, can be considered as a
hybrid between tree and grid indexing approaches. It organizes the
spatial domain as a grid (GRID) by dividing it into regular sized
grid cells. The cells of GRID are indexed by an STR R-tree.
For each cell an inverted list (ILIST ) is maintained for the doc-

uments that are indexed at that cell. Whenever a new document
object is received, the corresponding cell is determined from its
location (i.e. o.l .lat , o.l .lon). The ILIST is a concurrent hash table, in
which the key is a word id and value is a list of tuples. Each word id
corresponds to the numeric identifier in the global word dictionary
(DICT ). Each tuple consists of 3 entries: the document id, the term
frequency - the number of times a word appears in that document,
and the timestamp when the document was generated.

The dictionary, DICT, is a global data structure. In addition, there
are three global data structures: an inverse document frequency
table (IDFT ), a per document term table (PDTT ) and a global docu-
ment counter (DC). Any time a new document object is indexed,
the counter DC is incremented. The IDFT keeps track of inverse
document frequency for each word i.e. the number of unique docu-
ments in which a word appears. The PDTT data structure is used
to maintain a concise representation of each document. It is a con-
current hash table in which the key is a document id and value is a
compressed bitmap (CBMAP). A position in the bitmap, p, is set if
a word appears in the document whose document id in DICT is p.
CBMAP is compressed to be memory efficient.

3.3 Storage organization
Since the DocumentTable is backed by a persistent disk-resident
storage, a key consideration to improve the parallel performance
is how to minimize disk I/Os. The log-structured merge-tree (or
LSM-tree) [12] is an insert efficient data structure that provides
indexed access to files in the form of key-value pairs. A known
drawback of the LSM-tree is that it does not scale well with multiple
CPU cores.
To address the scalability issue of the LSM-tree, we introduce

a simple but effective extension that we call partitioned LSM-tree
store or pLSM store (shown in Figure 1). The pLSM store consists
of multiple LSM-trees {Pi |1 ≤ i ≤ p}, each with a dedicated queue
and an insert thread. When a new insert requests comes for an
object o ∈ O , the pLSM store internally maps o into a partition i
and inserts it into the corresponding queue. The dedicated insert

Table 1: Twitter datasets
Dataset Num. of Average num. Max num. Average
name tuples of keywords of keywords document length
200k 200,000 5.08 30 25.58
2mi 2,000,000 5.06 70 25.55
20mi 20,000,000 5.70 70 28.89

thread then inserts o into partition i . In section 4.2.2, we show that
insert throughput with pLSM store scales well.

3.4 Index update processing
To update the index with a new document object, first its location
field o.l is used to determine which grid cell it belongs to. Then
the corresponding inverted list object, ILIST, is updated by register-
ing a new entry for each word in that document. The global data
structures IDFT, PDTT and DC are updated.

3.4.1 Load-balancing and handling skew. The objective of load-
balancing is to minimize the variation in the number of geo-tagged
documents processed by the update processing threads. We ex-
plore 3 load-balancing algorithms: Round-robin, Work-stealing,
and Affinity. The Round-robin load-balancing approach inserts the
next document record into a queue in RQx in a round-robin fashion.
Then any index insert thread from the thread pool TPi just picks
up the next record from its associated queue. In the Work-stealing
approach, threads in TPi are not associated to any queue in RQx ;
rather, each thread actively inspects every queue in RQx for an
available record to process. With the Affinity approach, a mapping
of grid cells to index insert threads, Gcell2ThreadMapping, is cre-
ated by an offline algorithm AffinityAssignment (skipped due to
space constraint), such that the standard deviation of the object
density of each thread is less than a threshold. AffinityAssignment
performs a density sampling of each cell periodically by calcu-
lating the number of documents originating from a grid cell in
previous iterations. Then an index insert thread from the TPi just
processes those records that belong to the grid cells as determined
by Gcell2ThreadMapping.

3.5 Query processing
For a TkSKQ query q, the index is used to perform a circular range
search in which the point of origin isq.l and the initial search radius
r . For each cell returned by the index, the corresponding inverted
list ILIST is consulted to compute the ranking. This involves first
computing the textual relevance score for each document that has
a match for one of the query keywords. Then, for each of those
documents, the spatial relevance score and the combined score is
calculated. A priority queue PQueue is used to maintain the current
top-k documents. If the combined score of a document is less than
the score of the k-th document in PQueue , it is enqueued.

4 EVALUATION
In this section we evaluate our system in various settings.

4.1 Experimental setup
We conducted our performance evaluationwith three Twitter datasets.
The details are presented in Table 1. The experiments were con-
ducted on a machine with 128 GB memory, 16 AMD Opteron pro-
cessing cores, running Red Hat Enterprise Linux 4.8 64-bit.
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4.2 Update Performance

4.2.1 Load-balancing algorithm. We evaluate the impact of the
three load-balancing algorithms (Work-stealing, Affinity and Round-
robin) on the update throughput of Pastri. To isolate different con-
tributing factors, we fixed the number of partitions in pLSM store to
1. In Figure 3, we plot the observed update throughput with Twitter
20mi dataset as we vary the number of index update threads. As can
be seen, Affinity achieves the best throughput in all cases. We also
conducted experiments (omitted) by varying the number of grid
cells to 64, 256, 1024 and 4096 cells. We found that the throughput
remains relatively stable regardless of the grid resolution.

4.2.2 pLSM store partitions. We vary the number of partitions
in the pLSM store, while fixing the grid resolution to 1024 and the
load-balancing algorithm to Affinity. Figure 4 shows the update
throughputs with the three Twitter datasets. As can be seen, Pastri
achieves high update throughput. For instance, the throughput is
about 200,000 documents/second with 2mi and 20mi datasets.

4.3 Query performance
4.3.1 Query throughput (parallel performance). We executed 1

million TkSKQ queries with Pastri while varying the number of
query execution threads 1, 2, 4, 6, 8, 10, 12, 14 and 16. Figure 6 (in
log scale) demonstrates that the query throughputs scale well with
the number of threads. For instance, the throughput is 2573 queries
per second with 16 threads for dataset 20mi.

4.3.2 Query latency. Since IR-tree and I3 index do not support
parallel query execution, we only compare single threaded query
performance of Pastri against them. The average latencies of 1000
TkSKQ queries with Pastri, IR-tree and I3 index for the Twitter
datasets are shown in Figure 5. To plot these charts, each of the
1000 queries were executed with these parameters: query selectivity
20%, number of keywords 5 and query radius 100 km. As can be
seen, Pastri significantly outperforms the other two. Pastri’s single
threaded query latency is one to two orders of magnitude faster

than that of I3 index, and at least two orders of magnitude faster
than that of IR-tree. Even with the largest dataset 20mi, the average
latency with Pastri is less than 5 milliseconds.

5 CONCLUSION
We have presented a system for processing continuously gener-
ated document streams. It incorporates a novel spatio-textual index,
Pastri, that retrieves most temporally relevant documents using a
dynamic ranking scheme. Pastri is a parallel spatio-textual index
that exploits concurrency to accelerate update and query perfor-
mance. With extensive experimental evaluation we demonstrate
that our system offers superior performance over existing indexing
approaches supporting top-k spatial keyword search queries.
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