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Abstract—Exploratory data analysis, which is at the heart of
data science workflows, is becoming important due to the rapid
rise in spatio-temporal data volume, and popularity of Web and
mobile mapping applications. Such exploratory data analysis
often involves the user selecting an arbitrary polygon region to
perform a statistical computation on the selected region. Existing
approaches for spatio-temporal data aggregation support rectan-
gular query regions only, and not arbitrary polygons. A recently
proposed system called GeoBlocks supports polygonal queries,
but GeoBlocks was designed for spatial data, not spatio-temporal
data. Another aspect of exploratory data analysis is that the users
often repeatedly perform similar statistical analyses over the same
selected query region. Although the reuse of already computed
answers can improve the response time, existing approaches do
not support this reuse for advanced statistical analysis. Data
Canopy is a recently proposed approach that supports statistics
synthesis by reusing basic aggregates, however, it does not
support spatial or spatio-temporal analysis.

To address the mentioned challenges, we introduce ScanCube,
an exploratory statistical analysis system over any arbitrary
polygonal query region for any time interval. ScanCube also
supports statistics synthesis by reusing a small set of basic
aggregates that are computed and stored a priori. We introduce
two techniques, ScanX1 and ScanX2, for providing a grid-based
polygonal approximation, which offers distance-based bounded
error. Experimental evaluation suggests that ScanCube signifi-
cantly outperforms GeoBlocks.

I. Introduction

Spatial data generates significant value due to the billions of

GPS-enabled devices, which gave rise to many spatial enabled

applications [1]. Such applications can include interactive

mapping applications such as Uber’s Movement platform [2],

where a user can select a static polygon region of interest.

Static regions are limiting, however, for exploring a dataset.

To support ad hoc polygon regions, applications require real-

time response time in the milliseconds [3], but, there are

associated challenges of querying enormous amounts of spatial

data [4]. Summarizing large volumes of data into aggregates

can significantly reduce query workload and provide fast

response time. The storing, indexing and reuse of basic spatio-

temporal aggregates is advantageous as exploratory analysis is

often repetitive. In addition, spatial queries that use a polygo-

nal boundary is computationally heavy and usually involve

a filter step and a refine step. The filter uses a geometric

approximation to filter out objects quickly and the refine step

uses an expensive geometric algorithm to determine if objects

lie within the polygonal boundary [5]. Therefore, using a

geometric approximation for data analysis can significantly
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Fig. 1: Querying a: (a) rectangular region and (b) arbitrary

polygonal region in a exploratory spatial enabled application.

reduce query workload. Two common approaches (Fig. 2) are

the Minimum Bounding Rectangle (MBR) [5], which is the

smallest rectangle that encloses a geometric object and a grid-

based approach, where a polygon region is converted into a

set of unit grid cells overlap the polygon region.

Existing approaches for spatial and spatio-temporal aggre-

gation query processing are designed for querying rectangular

regions. These approaches include aR-tree [6], aRB-tree [7],

Nanocubes [8], and Hashedcubes [9]. Figure 1 illustrates

the difference between querying a rectangular region and a

polygonal region with an example query over the Westmount

suburb in Montreal. The polygonal query window can be

much more specific in selecting a region of interest than the

rectangular window in this example. GeoBlocks [4], a recently

proposed system, employs a distance-based error bound polyg-

onal approximation by using a grid-based approach, which

consists of a hierarchical quadtree decomposition method.

However, this grid-based approach suffers from an expensive

intersection operation. Further, to our understanding, the cre-

ators of GeoBlocks in their paper did not include the overhead

associated with this grid approximation in their overall query

processing evaluation. A polygon rasterization approach by

[10] also offers a distance-based error bound but suffers from

an expensive rasterization process and only supports count

and aggregate sum functions. A scanline method, inspired

by a polygon filling algorithm [11] in the computer graphics

community, supports a grid-based approach on vector polygon

regions with raster dataset by avoiding rasterization or an

expensive point-in-polygon algorithm [12]. To the best of our

knowledge, a scanline based approach has not been consid-

ered for spatial or spatial-temporal aggregation over ad hoc

arbitrary polygons for vector-only data.

Most of the existing spatial data systems lack efficient

storage, index or reuse of basic spatio-temporal aggregates
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Fig. 2: Two types of spatial approximations: (a) Minimum

Bounding Rectangle (purple) and (b) grid-based approxima-

tion (orange).

to support descriptive and advanced statistical operations for

processing large volumes of data. In addition, many of the

existing in-memory or disk-based approaches only support

a very limited number of functions or consider spatial data

only. GeoBlocks is focused on spatial aggregation, and does

not directly support spatio-temporal aggregation in their paper.

Supporting spatio-temporal data is important, as the temporal

dimension is integral to being able to measure and understand

change over time. Nanocubes, SmartCube and Hashedcubes

support spatio-temporal aggregates but only support count

aggregates. The aRB-tree and ST-Cube [13] are disk-based

approaches that support spatio-temporal aggregates, but ST-

Cube is also limited to a count aggregate. A rich ecosystem

of libraries in R and Python supports a variety of libraries;

however, many of these libraries do not support processing

of large volumes of data and must be used in conjunction

with database systems by means of database connectors. Even

then, statistical functions are computed from scratch each

time, resulting in lost opportunities to speed up query pro-

cessing [14]. Many statistical equations are composed of basic

aggregates or statistical functions (see Table I). Hence, there

is an opportunity to pre-compute a set of basic aggregates,

called pre-aggregates, and reuse them to synthesize complex

statistics, which can speed up exploratory data analysis signifi-

cantly. Data Canopy [14] uses temporal aggregates as building

blocks to support complex descriptive statistics and machine

learning algorithms such as linear regression. Data Canopy,

however, does not support statistical composition with spatial

or spatio-temporal aggregates. Note that although GeoBlocks

supports aggregation queries over polygonal regions, it does

not support complex statistical synthesis and it only supports

basic statistics (min, max, sum, count and mean).

We propose ScanCube, a novel pre-aggregation based ap-

proach that supports real-time exploratory data analysis with

spatio-temporal aggregation queries over arbitrary ad hoc

polygonal regions for vector data. Similar to GeoBlocks,

our approach guarantees an error bounded answer. On the

other hand, In our experimental evaluation of ScanCube, we

report the end-to-end query latency by including the cost of

polygonal approximation. GeoBlocks does not include the cost

of polygonal approximation in their evaluation. Our approach

consists of four main features. First, we develop an efficient

way to approximate the polygonal region by introducing

two novel polygon approximation algorithms: ScanX1 and

ScanX2. We demonstrate that these algorithms are signifi-

cantly faster than the algorithm utilized in GeoBlocks. Sec-

ond, we pre-compute and store basic aggregates to accelerate

spatio-temporal queries involving descriptive and dependence

statistics. Our pre-aggregation system is implemented using

a grid index in which the geographic space is decomposed

into unit cells for which pre-aggregates are computed and

stored. The user can determine the granularity of the cell.

Third, we can support the synthesis of a rich set of statistical

functions by reusing a set of basic aggregates for each cell.

As shown in Table I, these include basic distributive statistics,

standard descriptive statistics (e.g. standard deviation and

sample covariance), geographic statistics (e.g. mean center

and standard distance), and advanced statistics (e.g. sample

correlation, simple linear regression). Moreover, unlike Data

Canopy, we support such statistics composition over arbitrary

query polygons.

We conducted a systematic experimental evaluation of our

system ScanCube with real world datasets, NYC Taxi and

USA Tweets. Our results reveal that our approach achieves

significantly better performance than GeoBlocks, which claims

to be the first system to support ad hoc polygonal queries.

In the best case ScanCube performs 16× faster compared

to the GeoBlocks approach with end-to-end spatial polygonal

queries.

II. Contributions

The main contributions of this thesis are as follows:

• A novel approach called ScanCube that supports spatio-

temporal aggregation query on ad hoc arbitrary polygon

regions with precision guarantee.

• Two new polygon approximation algorithms, ScanX1

and ScanX2, for efficient polygonal approximations that

significantly accelerate query run-time.

• The synthesis of advanced statistical measures by storing,

indexing and reusing basic aggregates.

III. Related Work

In this section, we present previous works that are related to

our research.

A. Spatial and Spatio-temporal Point Index

Many data structures have been proposed to support indexing

of spatial and spatio-temporal data. Index structures, such as

the R-tree [15], build a hierarchy of MBRs that organize the

spatial objects such as points at the leaf level. Another category

of spatial index structures partitions the spatial domain such

that the spatial objects are distributed among the partitions

based on a specific criterion. Examples of such indexes are

the quadtree [16] and k-d. Grid-based indexes [17] and space-

filling curve indexes also leverage spatial partitioning.

Several spatio-temporal indexes have been proposed, owing

to the recent popularity of location-based services (LBS).

Approaches such as the STR-tree [18] and MV3R-tree [19]

are based on the R-tree, whereas, BBx index [20] and ST2B-

tree [21] are B-tree based techniques.
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TABLE I: Overview of functions that ScanCube can support

and the role of aggregates or functions as a building block to

synthesize statistics.
Name Equation Basic Aggregates

∑

x
∑

y
∑

xy
∑

x
2∑

y
2
xminxmax

Basic Distributive Statistics

Sum
∑

x ✓

Min xmin ✓

Max xmax ✓

Mean (avg)
∑

x

n
✓

Geographic Statistics

Mean
Center (mc)

∑
xi

n
,

∑
yi

n
✓ ✓

Standard
Distance (sd)

√

√

√

√

√

√

√

√

√

∑

x
2
− n ·mc(x)2

n

+
∑

y
2
− n ·mc(y)2

n

✓ ✓ ✓ ✓

Standard Descriptive Statistics

Root Mean
Square (rms)

√∑
x2

n
✓

Variance (var)
∑

x2

i
−n·avg(x)2

n
✓ ✓

Standard
Deviation (std)

√∑
x2

i
−n·avg(x)2

n
✓ ✓

Sample
Covariance
(cov)

∑
xi·yi
n

−

∑
xi·

∑
yi

n2 ✓ ✓ ✓

Advanced Statistics

Simple Linear
Regression (slr)

cov(x,y)
var(x)

, avg(x), avg(y) ✓ ✓ ✓ ✓

Sample
Correlation (cor)

n
∑

xiyi−
∑

xi

∑
yi

√

n

∑

x
2
i − (

∑

xi)2

·

√

n

∑

y
2
i − (

∑

yi)2

✓ ✓ ✓ ✓ ✓

B. Spatial and Spatio-temporal Index for Aggregation

Grouping and summarizing data into aggregates are basic data

analysis operations. Spatial index structures, such as the R-

tree, quadtree and grid-based indexes, are the foundation of

building and indexing spatial aggregates. The aggregate R-

tree (aR-tree) [6] is built by aggregating values at each node

of an R-tree. The aR-tree, however, stores all records at the

leaf nodes and is not suitable for an in-memory approach for

large volumes of data. The aggregate Point-tree (aP-tree) [22]

converts data points into key-time intervals, which are stored

in a multi-version B-tree (MVB-tree) along with aggregate

information. GeoBlocks [4] uses Hilbert space-filling curve to

compute and store pre-aggregate data at different resolutions.

For spatio-temporal aggregation, only a few indexing ap-

proaches have been proposed. The aggregate RB-tree (aRB-

tree) [7] is such an index that is an extension of the aR-

tree. It stores additional B-trees at each node of the R-tree

for more exact precision on the temporal dimension. The

aggregate multi-version RB-tree (aMVRB-tree) [7] adopts the

multi-version R-tree (MVR-tree) as a host index.

C. Polygonal Approximation

Spatial approximation is a term used to describe the abstraction

(or simplication) of geometric objects including data points

and complex geometric shapes such as polygons. For complex

geometric shapes like polygons, the MBR is commonly used in

the filter and refine approach [5]. The MBR, however, does not

provide a meaningful approximation as points that lie within

the MBR may in fact be quite far away [10]. The MBR is an

example of a rectangular region. Many existing approaches,

such as Nanocubes, Smartcube, aR-tree, Hashedcubes, and ST-

Cube only support rectangular query windows.

GeoBlocks’ authors claim their approach to be the first

approach that supports arbitrary polygonal query regions in the

context of vector data by using a unit grid-like approximation.

GeoBlocks uses a hierarchical quadtree decomposition of a

geographic space to retrieve a set of grid cells that overlap a

polygon region. This polygon approximation method suffers

from computation overhead in that every grid cell must be

checked for containment. To our understanding, the overhead

associated with GeoBlocks’ polygonal approximation is not

included in GeoBlocks paper for the overall query execution

latency, and the main contribution of GeoBlocks is a caching

system to support quick retrieval of aggregates. Therefore, the

evaluation presented in GeoBlocks paper cannot be considered

to be an end-to-end query evaluation. Polygonal approximation

is also utilized in the zonal statistics problem where the

underlying data is of raster form and the polygonal boundary

is of vector form. In such cases, where two representations

of data exist, a conversion of one data type to the other is

needed. A spatial system that supports vector data, requires

vectorizing the raster data into many points and suffers from

needing to perform a point-in-polygon check [12]. Similarly,

a raster system requires vectorizing the polygon into many

pixels, which can be quite expensive at higher resolutions [12].

ScanCube, similar to [12], also avoids any expensive geometric

containment operations in our polygonal approximation by

using two new algorithms ScanX1 and ScanX2. Note that the

focus of the work in [12] was to address the zonal statistics

problem, which is specific to raster data, whereas our focus is

spatio-temporal aggregation on ad hoc polygonal regions and

complex statistical synthesis on vector-only data.

D. Data Systems for Statistical Analysis

Statistical analysis is central to data analysis processes. Several

libraries and frameworks have been developed that support

such statistical analysis. For instance, sophisticated libraries

are supported by R and Python. An issue with these systems is

that they do not support the reuse and composition of statistics

from already calculated statistics (or pre-aggregates). As a

result, every time a statistical function is evaluated, it must be

computed from scratch. This can be time-consuming and hence

not suitable for exploratory data analysis. To address these

challenges, Data Canopy [14] was introduced, which enables

computing and caching several basic aggregates a priori.

Data Canopy only supports temporal aggregates, however, and

does not consider spatial or spatial-temporal aggregation. Our

system, ScanCube, is the first system that enables composition

of statistics over an ad hoc arbitrary polygonal query region,

by reusing a set of basic aggregates that are computed ahead

in advance of ad hoc query processing.

IV. Problem statement

We define spatio-temporal polygonal aggregation query.
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Definition 1:

R is a spatio-temporal relation and each record r ∈ R is a

tuple (g, t, a0, a1, ...ak), where ai are the set of attributes, t is

the timestamp of the tuple and g is the geometry specification

of the record. The geometry specifies the set of m vertices i.e.

g = {vj |j = 1, 2, ..m}. When g is a point object, m=1 and it

consists of a single vertex v1 = (x1, y1) that corresponds to

the location of the point.

Given an arbitrary polygonal query region QP , a time

interval QT , and an aggregate function F , where QP specifies

a set of vertices {vq1, vq2, ..., vqm} and QT denotes a query

time interval [ts, te], a spatio-temporal polygonal aggregation

query reports an aggregated measure Agg(QP , QT , F,R.ai)
on attribute R.ai for the geometric objects inside a region

that intersects QP during QT . Formally,

Agg(QP , QT , F,R.ai) = F{r.ai|r.g intersects QP

and r.t ∈ QT }, ∀r ∈ R
(1)

Additional filter conditions can be incorporated in the above

definition that would filter out records based on a non-spatio-

temporal predicate. The spatio-temporal polygonal aggregate

query can be specified using a SQL syntax as follows:

1 select F(R.ai) from R

2 where R.g intersects QP and R.t in QT

3 [ and additional_filter_condition]

V. ScanCube

We introduce ScanCube that enables fast exploratory analysis

through spatio-temporal querying on large volumes of data

by supporting the storage, indexing and reuse of basic spatio-

temporal aggregates in main-memory. In the following sec-

tions, we discuss the overall system organization of ScanCube

by describing the spatio-temporal index, and the construction

and storage of spatio-temporal aggregates. Next, we present

our polygonal approximation algorithms (Section V-C). We

then discuss the query processing by first describing the grid-

based polygonal approximation method and then retrieval

of aggregates to compute basic aggregate functions (Section

V-D). Lastly, we discuss the synthesis of descriptive statistics

(Section V-E).

A. Spatio-temporal Aggregates

Spatio-temporal aggregates are aggregations that share a spa-

tial and temporal extent [23]. To build spatio-temporal aggre-

gates, we must partition data by both spatial and temporal

dimensions. For spatial partitioning, we use a 2-dimensional

grid index, which divides a space into equi-width square cells.

Temporal partitions are also equal in size in that they have

the same time span. Both spatial and temporal partitioning

are configurable. For example, a user can adjust the level of

precision of the approximation result by configuring the cell

edge length. A user can also configure the granularity of the

time span by hours, days, weeks, months or years. ScanCube

is flexible in that users determine the level of granularity both

for spatial and temporal dimensions. Users can also choose

to build one or multiple cubes at a time to allow for drill-

down and roll-up operations. To store the spatio-temporal

aggregates that share both spatial and temporal extent, we

use a 3-dimensional cube. The cube is a common multi-

dimensional structure that allows grouping of data with one

or more dimensions together. Figure 3 (c) shows the cube,

where one face of the cube represents the spatial partitions

and the other the temporal partitions. The build and retrieval

of spatio-temporal aggregates depend on the spatio-temporal

index, which is discussed next.

B. Spatio-temporal Index and Aggregate Construction

The spatio-temporal index is responsible for building spatio-

temporal aggregates and indexing the 3-dimensional cube

used for storing pre-aggregates. To build the spatio-temporal

aggregates, we first configure the cell edge length of our 2-

dimensional spatial grid indexes and determine the time span

for the temporal partitions. We read data in chronological

order, and build one spatial grid index for each temporal

partition. We use a grid mapping function to map data points

to a grid cell and for each grid cell, we collect a number of

basic aggregates on various measures (Fig. 3 (c)). For any new

data points being mapped to a cell, we update the previous

basic aggregates to include the new data point. To index the

3-dimensional storage cube, we again use the grid index to

access or map specific cells and use a segment tree to index the

temporal partition intervals. Figure 3 (b) illustrates a segment

tree. A node in the segment tree consists of the start and end

time of a time span along with the corresponding indices in the

cube’s temporal dimension. A segment tree is an ideal structure

for indexing time intervals, as to query a segment tree, one

only needs to find the corresponding start and end node of

the query interval and then include all temporal partitions that

lie in between. The use of spatio-index to query processing is

discussed in Section V-D.

C. Polygonal Approximation

We propose two new algorithms called ScanX1 and ScanX2 for

polygon approximation that enable spatio-temporal polygonal

aggregation querying. Our polygon approximation algorithms

are inspired by a scanline polygon filling algorithm used in

computer graphics to render objects [11]. We first describe

the key aspects of the baseline scanline algorithm and then

describe our new algorithms ScanX1 and ScanX2. The baseline

algorithm that we use has the following steps, which are

summarized in Figure 4. In Step 1, we prepare an edge table

for a polygon and sort the edges by their maximum y value as a

pre-processing step. The slope is pre-computed and recorded

in the edge table along with the minimum and maximum y

values of the polygon during this step. In Step 2, using our

spatial grid index, we determine the maximum and minimum

row by using our grid mapping function with minimum and

maximum y values of our polygon (Fig. 4(a)). In Step 3, we

begin by processing each row in a top to bottom manner by

casting a horizontal ray (i.e. scanline) from the centre of each
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Fig. 3: A overview of the organization, index and query

processing of ScanCube. (a) A query begins by querying

an ad hoc polygonal region and applying a polygonal grid-

based approximation. (b) The system utilizes the temporal

index (segment tree) to retrieve the range of temporal slices

in the 3-dimensional cube that satisfy the query time window

criterion. In this example, the query time window is 1pm

to 3pm. (c) Lastly, we use the polygonal approximation to

map and retrieve specific pre-aggregates per spatio-temporal

aggregate, illustrated as a unit cube.

(a) (b) (c) 

Fig. 4: Steps of the baseline polygon approximation algorithm

(a) First, find maximum and minimum y values. (b) Second,

find all x-intercepts of each horizontal ray cast (i.e. scanline)

in a top to bottom manner. (c) Third, retrieve boundary cells

(in pink) and cells that lie between boundary pairs.

grid cell starting from the maximum row as illustrated by a

orange horizontal line in Figure 4 (b). For each row, we find

the polygon edges that intersects a scanline by iterating over

all edges whose maximum y value is greater or equal to the

y value of the scanline. In Figure 4 (b), these are marked

by a purple cross (x) to indicate the points at which the line

intersects an edge. The x-intercept of an intersecting edge is

calculated and added to an active edge table. Once all edges

for a scanline are found, we sort the active edge table by

the x-intercept value per row in ascending order. Before each

new iteration of a scanline, we check the active edge table

Algorithm 1: ScanX1 Algorithm

Input : A 2d array edges, a Grid grid, numbers
ymax, ymin, startIdx, endIdx and minEdge,
and 4d array storage.

1 Function ScanX1(edges, grid, ymin, startIdx,
endIdx, minEdge, storage) : double

2 max row← get_rmax(ymax, grid)
3 min row← get_rmin(ymin, grid)
4 numrows← max row- min row
5 active edges← [numrows +1][]
6 sortchecker← [numrows +1]
7 I ← minEdge
8 cur row← 0
9 read_edges_clockwise (i, edges.length- 1,

active edges, sortchecker, cur row)
10 read_edges_clockwise (0, i, edges,

active edges, sortchecker, cur row)
11 return active edges

12 Function read_edges_clockwise (start, end,
edges,active edges, sortchecker, cur row)

13 while start <= end do
14 scanline← get_scanline(cur row)
15 if edges [start ].y2 > edges [start ].y1 then
16 while edges [i].y2 >= scanline do
17 if is_within_range(edges [start

]) then add edge
18 x← get_x_intercept(edge

[start ], scanline, start)
19 add_edge(x, edges [start ],

active edges, sortchecker)

20 cur row← cur row + 1
21 scanline←

get_scanline(cur row)

22 else
23 while edges [i].y2 <= scanline do
24 if is_within_range(edges [start

]) then add edge
25 x← get_x_intercept(edges

[start ], scanline, start)
26 add_edge(x, edges [start ],

active edges, sortchecker)

27 cur row← cur row- 1
28 scanline←

get_scanline(cur row)

29 start← start + 1

for polygon edges that are valid for the new iteration and

add the edges with a new x-intercept value to the new row

being processed. In Step 3 (Figure 4(c)), we use pairings of x-

intercept values to determine boundary query cells using a grid

mapping function. In Figure 4 (c), boundary cells are outlined

in pink. Every aggregate value from cells that lie between two

boundary cells is retrieved along with the aggregate values

from boundary query cells.

ScanCube improves the scanline algorithm for the purpose

of our application by skipping the initial sorting of edges of

a polygon.

1) ScanX1: ScanX1 avoids the baseline algorithm’s pre-

processing step of sorting edges by their maximum y and

iterates over edges in a clock-wise fashion independent of

the maximum y value. Like the baseline, ScanX1 includes

a pre-processing step, which consists of building an edge

table, pre-computing the slope and storing the maximum and

minimum y values. ScanX1 further stores the position of the
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edge with the smallest starting y value, as this edge determines

the order in which to begin reading the polygon edges. ScanX1

(Algorithm 1) begins by first retrieving the minimum and

maximum rows similar to the baseline Scanline Algorithm 1

(lines 3-4). ScanX1 also initializes a 2-d active edge table

to store all active edges for every row within the maximum

and minimum row range (line 6) and a 1-d array sort-checker

to flag rows that need to sort active edges (line 7). ScanX1

differs from the baseline in that instead of adopting a top-down

approach to cast new scanlines per row, we read the polygon

edges in a clock-wise manner and scanlines are generated

based on the direction of the edge (lines 9-10). If an edge is

going upwards, we find all x-intercepts of rows that the edge

occupies by generating scanlines in a bottom-to-top manner for

each row (lines 15-21). A similar idea is applied if the edge

is going downwards (lines 23- 28). Before any x-intercept is

added to the respective active edge row, we check to determine

if the previous x-intercept value is smaller. If not, we flag the

sort-checker for that row to indicate a sort will be needed.
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Fig. 5: ScanCube polygon approximation algorithms: a)

ScanX1 b) ScanX2. ScanX1 begins to read the edge with

the smallest starting y value, while ScanX2 begins with any

arbitrary edge.

By reading the polygon in a clock-wise manner, we avoid

the pre-processing sort. We illustrate this in Figure 5 (a).

ScanX1 begins to read edge A and generates a scanline for

r1. As the scanline intersects edge A, we find the x-intercept

and add it to the active edge row a1. Since edge A is going in

an upward direction, we then move up a row and generate a

scanline for r2. As edge A does not intersect the scanline from

r2, we iterate to the next edge, edge B and follow a similar

procedure. Edge B does intersect r2. We then add edge B to

a2. Since edge B is going upward, we generate a scanline for

r3 and see that B also intersects this scanline. We add edge

B to the active edge row a3. The process repeats for edge C

and then proceeds back in a downward direction for edges D,

E and F.

2) ScanX2: ScanX2 differs from ScanX1 and the baseline

algorithms in that there is no pre-processing step as polygon

edges are processed on-the-fly. Like ScanX1, ScanX2 iterates

over the polygon edges in a clock-wise manner. However,

ScanX2 does not start by reading the edge with the smallest

starting y value, but rather at any arbitrary edge of the polygon.

ScanX2 also initializes a 2-d array of active edges table and

a 1-d sort-checker. The ScanX2 algorithm for retrieving all x-

intercepts is identical to ScanX1 (line 9) with the exception of

keeping track of the maximum and minimum rows processed,

as this was not determined in a pre-processing step and is

required later to map out the grid approximation to the cube.

As shown in Figure 5 (b), ScanX2 begins to read the

polygon at edge C and follows a similar approach previously

described for Figure 5 (a).

3) Distance-based Bounded Error: ScanCube’s polyg-

onal approximation offers a distance-based error bound.

Distance-based error bound means that the error is determined

by the distance of two geometric objects usually measured

by the Hausdorff distance [10]. In an approach that supports

only rectangular query windows, a polygonal query region

has to be converted into an MBR. However, with an MBR

based approximation, there is no way to determine whether

points lie outside or inside of a geometric boundary without

a point-in-polygon test and consequently no way to determine

which portion of data points contribute to an error. A grid-

based approximation, on the other hand, provides us with

some information on which data points contribute to exact

results (i.e. inner grid cells) and that potentially contribute to

error (i.e. boundary grid cells) [10]. Moreover, with such an

approach, we can ensure that points that contribute to errors

are within a certain distance by setting the edge length of grid

cells. ScanCube use a grid-based approach, where the cell edge

length determines the error-bound. We can determine for any

boundary cell that the error is within a distance of
√

ε2
1
+ ε2

2

where ε1 and ε2 are cell edge length. A smaller edge length

contributes to a better precision for boundary cells while inner

grid cells can be any size as they do not contribute to any error.

D. Query Processing

The steps for our spatio-temporal polygonal aggregate process-

ing are described in Algorithm 2 and are illustrated in Figure 3.

Such a query begins by processing an ad hoc polygonal region

(Fig. 3(a)), followed by applying our polygonal approximation

methods (line 4), which populate our active edge table with

all x-intercepts that are used to find boundary cells. The

active edge table is later used to map boundary edges to

the spatial dimensions of Figure 3(c). Before retrieving the

corresponding pre-aggregates, the temporal index or segment

tree, is utilized to obtain the corresponding cube indices for

the start and end time points of the query interval (line 5) (see

Fig. 3(b)). In Figure 3, we queried 1pm to 3pm, which returns

indices representing t1 and t2 respectively. To process and

combine results from the basic aggregates, we first initialize

accumulators, which act as storage for intermediate results.

Essentially, an accumulator stores the
∑

i aggi of a primitive

basic aggregate with the exception of xmin and xmax, which

does not require a sum. In line 6, we call our function to

process the active edges row by row and pass in our initialized

accumulators. For each row, we determine if a sort is needed

by checking the sort-checker (line 11). To process a row we
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Algorithm 2: Spatio-temporal Polygonal Aggregata-
tion Query

Input : A 2d array edges, numbers start, end and
querytype as functiontype, a Grid grid, 3d
array storage and a segment tree tree.

1 Function spatio-temporal_aggregate
(edges, start, end, grid, storage, functiontype,
tree) : double

2 accumlators← init_accumulators
(functiontype)

3 results, startIdx, endIdx, cur row, numrows← 0
4 active edges← get_polygonal_approx

(edges, querytype, cur row, numrows)
5 probe_segment_tree (start, end, startIdx,

endIdx, tree)
6 get_all_cell_aggs (cur row, active edges,

, sortchecker, numrows, startIdx, endIdx,
accumlators)

7 results← process_function (accumlators,
functiontype)

8 return results
9 Function get_all_cell_aggs (cur row,

active edges, grid, sortchecker, numrows,
startIdx, endIdx, accumlators) : double

10 for cur row <= numrows + 1 do
11 if sortchecker [cur row] == true then sort
12 sort_active_by_x(active edges)

13 get_cell_aggs(max row, active edges,
storage, startIdx, endIdx, accumlators)

14 return accumlators
15 Function get_cell_aggs (active edges, storage,

startIdx, endIdx, grid, accumlators) : double
16 i← 0
17 previous← -1
18 while i < active edges do
19 col1, col2← get_column(grid, i,

active edges)
20 if col1 == previous then increment col1
21 col1← col1 + 1

22 for col1 <= col2 do
23 for startIdx <= endIdx do
24 update_accumulator (storage

[startIdx ][max row][col1],
accumlators)

25 previous← col2
26 i← i + 2
27 return

call our function get cell aggs in line (13). This function

processes every pair of x-intercepts by finding the boundary

columns with our grid mapping function and retrieves the

aggregates for the boundary cells and cells that lie between

boundary cells, which are then processed by one or more

accumulators.

E. Synthesizing Statistics

Many statistical formulas can be synthesized from a set of

basic statistical functions or basic aggregates. For example,

to compute the spatial statistic mean centre [24], we use the
∑

x and
∑

y coordinates and divide each by the count n, as

shown in Table I. In addition, many statistical equations are

the building blocks for other statistics. For example, the mean

centre is used to compute the standard distance, which is the

spatial equivalent of the standard deviation [24]. We illustrate

in Figure 6 the general process of statistical synthesis. To
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Fig. 6: Steps in synthesizing statistics from basic aggregates.

(a) Rows are processed one at a time. (b) Spatio-temporal

aggregates are then processed one at a time by the aggregate

ingestion processor. Basic aggregates are extracted and passed

to their respective accumulator. (c) Final outputs of accumula-

tors are collected and passed to a statistical function processor

for statistic composition.

TABLE II: Experimental setup - approaches and their labels.
Approach
[Label used in charts]

Query
window

Query
type

PH-tree
[phtree]

Rectangle Spatial

Aggregate R-tree
[artree]

Rectangle Spatial

GeoBlocks without caching
[GBlock]

Polygon Spatial

ScanCube with scanline
[Base]

Polygon
Spatial/
Spatio-temporal

ScanCube with ScanX1
[SC1]

Polygon
Spatial/
Spatio-temporal

ScanCube with ScanX2
[SC2]

Polygon
Spatial/
Spatio-temporal

begin, as mentioned previously, we pre-compute and store a set

of basic aggregates for data that share a spatial and temporal

extent. During the query processing, a) we process each spatio-

aggregate cube (unit-cube) one at a time and extract specific

aggregate values depending on the function to be passed to

their respective accumulator. b) Each accumulator acts as a

combiner to store intermediate results. Once all aggregate

unit cubes are processed, we then collect all values from

the accumulators, which are passed to a function processor.

c) The function processor acts as the statistical equation

constructor. In other words, the accumulator values are the

ingredients needed for the function processor to compute the

final results. The function processor only processes functions

that are commutative or associative, that is, count, sum, min,

max and product functions [14]. Further, the function processor

may include one or more intermediate steps when dealing with

statistics, which are built on the output of other statistics like

the standard distance. Essentially, a function processor output

can be the input to a new function processor.

VI. Experimental Evaluation

The following sections describe our experimental setup,

dataset, query set, pre-processing step, and performance eval-

uation of the index construction and query execution.
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TABLE III: ScanCube and GeoBlocks corresponding grid

resolution represented by a grid cell edge length in metres.
ScanCube GeoBlock

4000m 4000-5000m

267m 281-306m

133.5m 140-153m

67.7m 70-77m

33.4m 35-38m

16.5m 18-19m

A. Experimental Setup

1) Approaches Evaluated: In our evaluation, we com-

pare ScanCube performance with GeoBlocks, as well as two

systems that the authors of GeoBlocks evaluated in their

paper: aR-tree and PH-tree. Since ScanCube supports two

new polygon approximation algorithms, ScanX1 and ScanX2,

we show results for both of them, when applicable, and

include them in the overall spatio-temporal polygonal query

processing, which we refer to as SC1 and SC2 respectively.

Table II shows the approaches we evaluate, where the text

inside the square brackets are the labels used in the charts

to represent the corresponding approach. Table IV shows a

summary of the experiments we conducted and their details.

2) Dataset: We use a vector dataset for our experiments,

called NYC Taxi, which consists of point data representing

taxi trips from New York [25]. A baseline size of 10 million

records is used in all experiments. The dataset includes infor-

mation such as pick-up and drop-off location, passenger count,

tip and fare amount, and distance traveled.

We also use a Twitter dataset, called USA Tweets, which

consists of 2 million tweets with geolocations distributed

across the United States.

3) Query Set: To simulate real-time ad hoc polygonal

query windows, we use the census tract neighborhoods of

New York when querying the NYC Taxi dataset. We use the

USA state boundaries when querying the USA Tweets dataset.

[26]. Our primary dataset is the NYC Taxi, unless specified

otherwise. Each set of queries was run three times, where the

first run-time is considered the warm-up run and is excluded

from our results.

4) Experimental Equipment: Experiments were con-

ducted on a computer with a Intel Core i5 and 16 GB of

RAM. All approaches are implemented in Java and executed

within a Ubuntu 20.04 OS.

B. Experimental results

1) Index Construction and Memory Overhead: We

evaluate the build time of all structures with 10 million data

points, which include the build time for constructing the index,

and building and storage of pre-aggregates (Figure 7) (a).

Note that GeoBlocks is the only approach in our evaluation

that includes a sorting phase. Overall, the best build time is

from SC1, which is 13× faster than the total build time of

GeoBlocks including the sorting time and 16× faster than the

PH-tree. The aR-tree by far had the slowest build time.

We compare the memory overhead of each build in Figure 7

(b). Altogether, the lowest memory consumption was from

TABLE IV: Summary of experiments and their details.
Experiment Dataset Measures Figure

Index construction NYC Taxi Build time 7(a)

Memory overhead NYC Taxi
Pre-aggregates and
index storage

7(b)

Query performance
NYC Taxi
USA Tweets

End-to-end
query processing

8

ScanX1 and ScanX2
NYC Taxi
USA Tweets

End-to-end
query processing

9

Scalability NYC Taxi
End-to-end
query processing

10

Number of
temporal partitions

NYC Taxi
End-to-end
query processing

11

Grid resolution and
query performance

NYC Taxi

End-to-end
query processing
Retrieval of
pre-aggregates only

12(a)

12(b)

Grid resolution and
relative error

NYC Taxi n/a 12(c)

Statistical synthesis NYC Taxi
End-to-end
query processing

13

SC1. SC1 memory usage was 1.5× smaller than GeoBlocks.

GeoBlocks stores a 64 bit spatial key that can account for a

slightly higher space consumption. Since the aR-tree stores all

individual records at the leaf nodes, the storage requirement

for the aR-tree is the highest. The memory consumption of the

PH-tree is higher than GeoBlocks and ScanCube, as PH-tree

uses prefix sharing and not pre-aggregates.

2) Query Processing Time: We evaluate the end-to-end

execution time for spatial query processing in Figure 8 for

all spatial approaches. Query processing in Figure 8 refers

to the execution time of the polygonal approximation and

retrieval of pre-aggregates combined. Overall, the best query

execution time is from SC2, which uses ScanX2 polygonal

approximation method. The absence of a pre-processing step

explains the faster execution time of SC2 over SC1, which

uses ScanX1. The second best performance was from SC1,

which was 13× faster than GeoBlocks with the NYC Taxi

dataset. Note that GeoBlocks uses an S2 function for their

polygonal approximation and that this was not part of their

evaluation in their paper. The aR-tree also had a relatively fast

query execution time, but the aR-tree is limited to a rectangular

query window. To query over polygonal regions, the aR-tree

uses an MBR, which requires a simpler spatial approxima-

tion computation than a grid-based polygonal approximation

method such as, SC1, SC2 or GeoBlocks. This may explain

why the aR-tree outperforms GeoBlocks. Nonetheless, the SC1

and SC2 polygonal approximation approaches do not seem to

hinder query performance at all with the NYC Taxi dataset.

We can observe, however, that the aR-Tree outperforms SC1

and SC2 with the USA Tweets dataset. Again, note that the

PH-tree and aR-tree support rectangular query windows only.

The PH-tree had the slowest time, which can be explained by

the lack of aggregation that reduces the number of objects to

be processed.

3) ScanX Polygonal Approximation: To evaluate our

polygon approximation methods, ScanX1 and ScanX2, we

implement the baseline scanline (Base) that follows the form

8
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Fig. 7: Index construction time (a) and memory overhead (b)

for 10 million data points.
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Fig. 8: Query performance of all approaches. Note that the
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Fig. 9: Performance of ScanX1 (SC1) and ScanX2 (SC2)

algorithms vs. basic scanline (Base) method.
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size on end-to-end query exe-
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Fig. 11: Impact of the number of

temporal partitions on execution

time.

described in our approach section. The pre-processing step is

included in our evaluation. As shown in Figure 9, the best

performance was from SC2, which supports ScanX2 and was

1.9× faster than the Base with the NYC Taxi dataset and

127× faster than the Base with the USA Tweets. SC1 that

supports ScanX1, was the second fastest and was 1.6× faster

than the Base in (a) and 73.4× faster than the Base in (b).

Note that the Base had a faster query processing time than

SC1 but not by much. The real benefit of SC1 over the Base

is in its pre-processing step. SC1 excludes a sorting step in its

pre-processing step, which is included in the Base.

4) Scalability: We examine the scalability of all ap-

proaches, with the exception of the aR-tree. To study the

scalability, we use NYC Taxi dataset and vary the size starting

from 10 million up to 100 million, in 10 million increments

We evaluate the scalability by examining the execution time

for end-to-end querying (Fig. 10). We note that GeoBlocks and

ScanCube both show consistent query times regardless of the

size of the dataset for both Figure 10. Since both GeoBlocks

and ScanCube use aggregates, the query performance depends

on the number of pre-aggregates processed and not the total

number of data points. In Figure 10, we observe a perfor-

mance decrease of 4.6× for PH-tree from 10 to 100 million

data points. The PH-tree does not use any aggregation method;

therefore it requires processing a higher number of objects,

which explains the increase in query latency.

5) Impact of Grid Resolution on Query Performance and

Approximation Error: ScanCube and GeoBlocks both

support distance-based bounded error, which are determined

by the grid resolution (i.e. cell edge length), where a smaller

grid resolution results in a higher precision guarantee. A

smaller grid resolution, however, means that there are more

pre-aggregates to retrieve. We investigate the end-to-end query

execution (Fig. 12 (a)), retrieval of pre-aggregates execution

time (Fig. 12 (b)) and relative error (Fig. 12 (c)) at various

grid resolutions. Five different resolutions are measured. As

we did not get an exact match of grid cell edge length between

ScanCube and GeoBlocks, we will refer the reader to Table III

for the corresponding grid cell edge settings.

In general, there is a decrease in performance for both Scan-

Cube (SC1 and SC2) and GeoBlocks, as one might expect and

is illustrated in Figure 12 (a) and (b). However, in Figure 12

(a), GeoBlocks has the biggest performance decrease for end-

to-end query execution, 44×, while SC1 only decreases by

2.2×. In Figure 12 (b) GeoBlocks performance decreases by

35× and SC1 by 20× for retrieval of pre-aggregates only.

Note that to our understanding, the authors of GeoBlocks in

their paper evaluated the execution time for the retrieval of

pre-aggregates only. We conclude that a higher number of

pre-aggregates results in a decrease in performance overall,

however, the GeoBlocks approach seems to suffer the most in

Figure 12 (a) due to their polygonal approximation approach

while in Figure 12 (b) results are much more comparable.

To measure the approximation error, we use the relative

error. As shown in Figure 12 (c), as the cell edge length

decreases, for both approaches we observe a lower relative

error. However, a lower error for GeoBlocks comes at a greater

cost of a performance decrease, which is not ideal for real-time

analysis. The aR-tree and PH-tree are not included in Figure 12

because they only support rectangular query windows, and not
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Fig. 12: Impact of grid resolution on end-to-end query execution time (a),

retrieval of pre-aggregates only (b) and relative error (c).
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Fig. 13: Performance of statistics computed

from scratch vs. statistical synthesis

polygonal query regions.

6) Statistical Synthesis: We examine the performance

difference when computing statistical functions from scratch,

in comparison to statistical synthesis by reusing basic aggre-

gates. We adapt SC1 and SC2 to compute the statistics from

scratch, in order to make the comparison fair. We evaluated

3 statistics: Sample Correlation (COR), Simple Linear Re-

gression (SLR) and Standard Distance (SD). Overall, there

was an improvement in all cases of statistics composition by

reusing pre-aggregates (Fig 13). The biggest improvement was

observed from Sample Correlation, with a speed-up of 5× for

SC1 and 6.2× for SC2.

7) Temporal Partitions: To study ScanCube with spatio-

temporal data, we investigate the impact of the number of

temporal partitions in the overall query processing (Figure 11).

Since GeoBlocks does not support spatio-temporal aggrega-

tion, we could not compare its performance in this experiment.

We vary the number of temporal partitions starting from 8 up

to 32. A partition here simply refers to an equal interval of

time. Overall, both SC1 and SC2 performance decreases by

1.4× and 1.3× respectively.

VII. Conclusion

The ability to perform exploratory data analysis over ad hoc

arbitrary polygonal regions has become a necessity. To support

interactive sub-second response time during such analyses,

pre-aggregation and statistical synthesis over pre-computed

basic aggregates can be helpful. Existing approaches, except

GeoBlocks, only support rectangular query regions.

We have presented ScanCube, that supports exploratory

data analysis with spatio-temporal aggregation queries over

arbitrary polygonal regions. It enables interactive response

times with two fast polygon approximation algorithms and

synthesizes advanced statistics by reusing a set of basic

aggregates. Although Data Canopy supports statistical synthe-

sis, it does not support spatial or spatio-temporal querying.

GeoBlocks does not support statistical synthesis nor does it

evaluate spatio-temporal querying. ScanCube introduces two

new polygon approximation methods, ScanX1 and ScanX2.

With extensive experimental analysis, we demonstrate that

ScanCube significantly outperforms existing approaches eval-

uated in this paper.
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the historical, present, and future positions of moving objects,” in MDM,
2005, pp. 59–66.

[21] S. Chen et al., “ST2B-tree: A Self-tunable Spatio-temporal B+-tree
Index for Moving Objects,” in SIGMOD, 2008.

[22] Y. Tao, D. Papadias, and J. Zhang, “Aggregate processing of planar
points,” in EDBT, vol. 2287. Springer, 2002, pp. 682–700.

[23] I. V. Lopez, R. T. Snodgrass, and B. Moon, “Spatiotemporal aggregate
computation: A survey,” IEEE TKDE, vol. 17, no. 2, pp. 271–286, 2005.

[24] J. E. Burt and G. M. Barber, Elementary Statistics for Geographers.
Guilford Publications, 1996.

[25] N. Taxi and L. Commission, “Tlc trip record data.” [Online]. Available:
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[26] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: an experimental evaluation,” in PVLDB, 2013.

10


