
Dynamically Ranked Top-K Spatial Keyword Search

Suprio Ray
University of New Brunswick
Faculty of Computer Science

Fredericton, N.B. Canada
sray@unb.ca

Bradford G. Nickerson
University of New Brunswick
Faculty of Computer Science

Fredericton, N.B. Canada
bgn@unb.ca

ABSTRACT
With the growing data volume and popularity of Web services and
Location-Based Services (LBS) new spatio-textual application are
emerging. These applications are contributing to a deluge of geo-
tagged documents. As a result, top-k spatial keyword searches have
attracted a lot of attention and a number of spatio-textual indexes
have been proposed. However, these indexes do not consider the
"recency" of the indexed documents. Part of the challenge is due to
the fact that the textual relevance score measures that these indexes
use, require all documents to be inspected.

To address these issues, we propose the idea of "dynamic rank-
ing" of spatio-textual objects. We also introduce a novel index,
called STARI, which uses this ranking method to retrieve the most
recent top-k relevant objects. Experimental evaluation demonstrates
that that our system can support high document update rates and
low query latency.

CCS Concepts
•Information systems → Query representation; Query refor-
mulation; Top-k retrieval in databases; Retrieval efficiency;
Search engine indexing; Search index compression; Web and
social media search; Data encoding and canonicalization; In-
formation retrieval diversity; •Applied computing→ Document
searching; •Social and professional topics→ Geographic char-
acteristics; •Computing methodologies→Concurrent algorithms;

Keywords
spatio-textual; index; geo-tagging; spatial keyword search

1. INTRODUCTION
We are in the era of Big Data, in which vast quantities of data

from a variety of sources are being generated. Web documents
constitute a significant portion of this data. Increasingly, these doc-
uments contain location information. For instance, many Web doc-
uments contain information regarding popular places of attraction
and restaurants. In recent times the proliferation of GPS-enabled

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GeoRich’16, June 26-July 01 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4309-1/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2948649.2948655

mobile devices has made Location-Based Services (LBS) a per-
vasive technology. The confluence of the Web and LBS is con-
tributing to the generation of unprecedented amounts of geo-tagged
documents. This is driven by applications such as Twitter, Flickr,
Foursquare, Facebook, Google Maps and Yellow Pages.

Top-k spatial keyword searches can provide significant insight
into the hundreds of millions of daily tweets, Facebook comments,
and blog updates as they relate to spatial location. A top-k spa-
tial keyword query retrieves k objects based on both the distance
of the generated documents (objects) from the query location and
textual relevance. Efficient retrieval and update of geographically
relevant textual information can be highly valuable for navigation,
tracking news events that have an impact on business, and for enter-
tainment. However, the value of such information often depends on
the recency of the generated document. For instance, we pay more
attention to the "breaking news" or recently reported tweets than
those generated a week or a month ago. Similarly, "hot new" spe-
cial deals or discounts are of interest to a customer in personalized
mobile advertising. As time passes, these documents progressively
lose their importance.

Due to the popularity of geo-textual search, a number of spatio-
textual indexes have been proposed, such as [5, 13, 16]. However,
they do not consider the "recency" or relevance based on aging of
the indexed documents. These indexes use a ranking function that
combines the spatial distance of the documents from the query lo-
cation and textual relevance of the documents with the query key-
words. Two popular measures to calculate textual relevance score
are the classic tf-idf [8] and the language model [11]. For instance,
the recently proposed I3 index [16] uses tf-idf measure. However,
these measures calculate the relevance score based on the entire his-
tory of all indexed documents and they do not consider "recency" of
the documents. In order to calculate the score all documents must
be inspected. For instance, the term idf in the tf-idf measure is cal-
culated by dividing the total number of documents by the number
of documents in which a term appears. Therefore existing indexes
must calculate the term weights of each document statically during
the pre-processing stage.

To address the limitations of existing indexes, we consider the ef-
ficient indexing and retrieval of most recent objects with the high-
est ranking scores that match query keywords and locations. We
introduce the concept of "dynamic ranking" for geo-textual search.
The notion of "most recent" uses exponential decay based on time
to decide the weight of matching objects in the ranking process.
More recently appearing matching objects rank higher than older
matching objects with the same keyword and location score.

To support efficient most recent top-k spatial keyword search, we
introduce an index called STARI (Spatio-Textual Adaptive Ranking-
based Index). STARI is an indexing approach that supports con-

current document updates and query execution. The updates are
handled by a component that combines an in-memory grid with in-
verted list. The grid approach allows the handling of updates in a
parallel fashion, and two different threads can concurrently handle
updates for two different grid cells. Queries are directed to a fast
Sort-Tile-Recursive (STR) R-tree that can perform efficient circular
nearest neighbor search from the query location. The STR R-tree
indexes the cells of the grid, but is not involved in any updates.

In our approach, the textual relevance score of the documents
are not calculated during the index time. STARI uses our dynamic
ranking measure to calculate textual relevance score of a small
subset of documents based on the keywords in a given query in
real-time. This on the fly computation of relevance score ensures
that the search returns the most recent relevant objects. We imple-
mented a prototype of our system and evaluated it with a real world
dataset. Our experimental evaluation suggests that STARI can sup-
port high rates of document updates, while supporting low latency
query execution. When compared with an existing spatio-textual
index, such as IR-tree, we show that STARI can support real-time
updates, whereas IR-tree does not.

The rest of the paper is organized as follows. In Section 2 we
describe the related works. We introduce the problem and present
our dynamic ranking scheme in Section 3. In Section 4 the system
organization and in Section 5 our index STARI are presented. We
evaluate STARI in Section 6 and finally, Section 7 concludes the
paper.

2. RELATED WORK
Due to the rise of streaming data sources and the popularity

of Web search, the topic of keyword search on data streams has
been addressed by a number of research projects. For instance,
Markowetz et al. [10] proposed a technique for keyword search
on relational data streams without requiring any knowledge of the
schema. However, their approach did not incorporate a ranking
mechanism or return top-k results. The work of Cheng et al. [2] fo-
cussed on extracting representative and diversified posts from data
streams, particularly in the context of microblogging data. None of
these approaches considered spatio-textual keyword search.

In recent years spatial keyword search has become increasingly
important, partly, due to the emergence of Location-based Services
(LBS). Because of this, a number of spatio-textual indexes have
been proposed. Depending on the structure of these indexes, they
can be classified into three groups: R-tree based indexes, grid-
based indexes and space filling curve based indices. Chen et al. [1]
conducted an evaluation study of 12 of these indexes and reported
that not all of them support the top-k spatial keyword search query.

The IR-tree [5] is one of the R-tree based approaches that sup-
port top-k spatial keyword search. It integrates an R-tree with an
inverted file. It augments the nodes of the R-tree with summary
information of the textual content of the node’s corresponding sub-
tree. In this approach an upper bound of the textual relevance score
is computed from the summary information, and the spatial rele-
vance is calculated from the MBR. This can be used for pruning
search paths. The authors also present a few variants of the IR-
tree, namely, the DIR-tree, the CIR-tree and the CDIR-tree. The
S2I [13] index uses two different approaches for frequent terms and
infrequent terms. For infrequent keywords, all the elements in the
inverted file are stored sequentially for efficient I/O. Otherwise an
aggregated R-tree (aR-tree) is used for pruning. The I3 index [16]
uses a similar textual partitioning approach as S2I. However, they
use a Quadtree instead of an R-tree. Recently, Choudhury et al. [3]
present an approach for batch processing of queries to take advan-
tage of the spatial proximity of multiple queries when searching the

IR-tree forming the basis of their spatial index.
SFC-QUAD [4] is one among only a few non-R-tree based ap-

proaches that support top-k spatial keyword search. It is essentially
an inverted file in which the document id and object frequencies
are compressed using the OPT-PFD algorithm [15]. In each in-
verted list the document ids are ordered based on their position in a
Z-curve. It also maintains a Quadtree for efficient traversal.

None of the above-mentioned indexes considered the concept of
retrieving most recent documents in real-time data streams. In [9]
the authors present a system for real-time support of top-k spatio-
temporal queries, but don’t consider keyword search. Guo et al. [7]
present a system to support continuous top-k spatial keyword queries
on objects moving on road networks. Our approach differs from the
existing approaches in that it considers the age of the indexed doc-
uments and retrieves the most recent document based on dynamic
ranking.

3. PROBLEM STATEMENT
Our system supports top-k queries q = (q.l, q.d, t) that are dy-

namically ranked, where q.l is the query location, q.d is the set of
keywords being searched for and t is the time of the query. Each
document o = (o.id, o.l, o.d, to) in the set O of indexed docu-
ments to be searched has an id o.id, a location o.l, a set of words
or terms o.d describing the object or document, and a time to that
the document was inserted into the database.

3.1 Spatial Match
Spatial match S(o.l, q.l) ∈ [0, 1] is defined as the distance from

the query location q.l to the document location o.l, normalized by
rmax, where rmax is the max distance between any two points in
the spatial domain.

S(o.l, q.l) =


0 if o.l = q.l

2(d/rmax)
2 if 0 < d ≤ rmax/2

1− 2((d− rmax)/rmax)2 if rmax/2 ≤ d < rmax

1 if d ≥ rmax
(1)

where d is the distance from q.l to o.l. Equation 1 corresponds to a
piecewise parabolic curve, and is an approximation of the sigmoid
function.

3.2 Textual Match
Textual match T (o.d, q.d) is computed as follows:

T (o.d, q.d) =

∑
i∈o.d and q.d

tfidf (o.d .i , o.d)tfidf (q .d .i , q .d)√
|o.d|∑
i=1

tfidf (o.d .i , o.d)2

√
|q.d|∑
i=1

tfidf (q .d .i , q .d)2

(2)
where i refers to a specific term (e.g. a word) in either the document
o.d or the query q.d, and the notation o.d.i, q.d.i refers to a term i
in either the document text o.d or the query text q.d, respectively.
Equation 2 is called the vector space model, and was introduced by
Salton et al. [14] for use in information retrieval. For a given term
τ and document d, the term frequency inverse document frequency
(tf-idf) weight tfidf (τ, d) is computed as

tfidf (τ, d) =
f(τ, d)

|d| log
|O|

|{d′ ∈ O|τ ∈ d′}| (3)

where O is the complete set of documents being indexed, f(τ, d)
is the number of times term τ appears in document d, |d| is the

Query location q.l + radius rSort-Tile-Recursive
(STR) R-tree

q.l
r

.. .. .

..
.

.
. .

.
. ...

.

.

.
.. .

..

..
...

.

.

..
... .

.
.

[<docId, termFreq, timeStamp>]

[<docId, termFreq, timeStamp>]

[<docId, termFreq, timeStamp>]

Inverted list (stored as
concurrent hash table)

One inverted list
per occupied grid cell

<no. of documents word appears in>

<no. of documents word appears in>

<no. of documents word appears in>

Inverse document frequency table
(stored as concurrent hash table)

Spatial
grid Per document term table

(stored as concurrent hash table)

<compressed bitmap for each word that appears>

<compressed bitmap for each word that appears>

<compressed bitmap for each word that appears>
Word Id
aesthetic 1
amber 2
anthem 3
ashen 4
battery 5
better 6
brook 7
 

zither N

Dictionary
Word Id

Document Id

Word Id

Figure 1: Structure of STARI index

STARI
indexDocumentTable

Table
Insert
Thread

Record
queues,
RQx

Record
queue,
RQt

Thread
pool

Figure 2: Handling document updates

number of terms in d, and |O| is the size of set O. The log term
on the right of equation 3 is the inverse document frequency; its
denominator |{d′ ∈ O|τ ∈ d′}| is the number of documents in O
in which term τ appears.

3.3 Dynamic Ranking
We introduce the half-life decay parameter H(t) defined as

H(t) = e−λt, (4)

where λ > 0 is a decay constant, e is the base of the natural loga-
rithms, t is time and H(t) ∈ (0, 1]. The decay constant λ is related
to the half-life t1/2 as follows:

λ =
ln(2)

t1/2
(5)

Half-life t1/2 defines the time period during which an object loses
1/2 of its original quantity.

We adapt the ranking scheme of Choudhury et al [3] to include
a factor depending on the time to the object was entered into the
database. Objects o ∈ O in a database matching a spatial-textual
query q are ranked as follows:

R(t, o, q) = αS(o.l, q.l) +
1

H(t− to)
(1− α)(1− T (o.d, q.d)),

(6)
if H(t − to) ≤ 1, where S(o.l, q.l) ∈ [0, 1] is the spatial match
between o and q, o.l and q.l are the spatial locations of object o and
query q, respectively, T (o.d, q.d) is the textual match between the
query keywords q.d and the object keywords o.d, and α ∈ [0, 1]
is the weight given to the spatial query. Note that objects closely

matching the query have a lower rank R(t, o, q). Other textual
match models such as the language model [11] could also be used
for T (o.d, q.d) in equation 6 as long as their maximum value is 1.

We generally consider t to be the current time, and t ≥ to always
holds. If an object oi was not yet inserted into the database at time
t, then t < to, so oi should be discarded as a possible query match.

The term H(t − to) is a time-varying half-life decay parame-
ter with t = time of the query. When t = to, then H(t − to) =
H(0) = 1, and the textual match receives its full weight of 1− α.
We thus have a dynamic, time-based ranking of an object match-
ing a query. The object’s location at the time of insertion into the
database does not change, so the time-varying part applies only to
the textual component of the rank. The factor 1

H(t−to) could be ap-
plied to both the spatial and textual components if it is known that
object locations are time dependent.

The valueR(t, o, q) of a database object matching a query based
on equation 6 increases as time increases, thus giving a lower rank,
and eventually the factor 1/H(t − to) exceeds 1 as H(t − to)
decreases. The time at which 1/H(t − to) exceeds 1 depends on
the half-life t1/2 chosen to define H(t).

4. SYSTEM ORGANIZATION
In this section we describe the overall system organization, par-

ticularly, how document updates are handled. Figure 2 shows the
update workflow. When a new geo-tagged document, such as a
tweet, o = (o.id, o.l, o.d, to) is received by our system, it is en-
queued in RQt. Once, it is retrieved by the table insert thread
from the queue, a document record is created and inserted into in-
memory table DocumentTable. It has the following schema:

{DocumentId,Datestamp,Latitude,Longitude,Content}.
The columns in this table corresponds to the document fields

o.id, to, o.l.lat, o.l.lon and o.d. The content, o.d, of a small docu-
ment such as a tweet or a Facebook comment, can be stored directly
in the Content column. For a larger document, the Content column
can store the pointer to its location in the disk file. The in-memory
table can store a certain number of records based on the available
RAM. When the age of a document record exceeds a configured
threshold, it is moved from the in-memory store to a disk store.

Next the document record is enqueued in one of the queues in
RQx. An index update thread from the thread pool dequeues the
record and updates the data structure in our index STARI. The index
update and query execution mechanisms are described in the next
section.

5. STARI SPATIO-TEXTUAL INDEX
In this section we describe our spatio-textual index. Figure 1

shows the structure of our index. First we describe the internal
data structures of STARI. Then, we describe the update and query
processing algorithms.

5.1 Index structure
STARI organizes the spatial domain as a grid (GRID) by dividing

it into regular sized grid cells. Whenever a new document object is
received, the corresponding grid cell (GCELL) is determined from
its location (i.e. o.l.lat, o.l.lon). For each GCELL entry an in-
verted list (ILIST) is maintained for the documents that are indexed
at that grid cell. The ILIST is a concurrent hash table, in which
the key is a word id and value is a list of tuples. Each word id
corresponds to the numeric identifier in the global word dictionary
(DICT). Each tuple consists of 3 entries: the document id, the term
frequency - the number of times a word appears in that document,
and the timestamp when the document was generated.

The dictionary, DICT, is a global data structure. In addition,
there are three global data structures: an inverse document fre-
quency table (IDFT), a per document term table (PDTT) and a
global document counter (DC). Any time a new document object
is indexed, the counter DC is incremented. The IDFT keeps track
of inverse document frequency for each word i.e. the number of
unique documents in which a word appears. The PDTT data struc-
ture is used to maintain a concise representation of each document.
It is a concurrent hash table in which the key is a document id and
value is a compressed bitmap (CBMAP). A position in the bitmap,
p, is set if a word appears in the document whose document id in
DICT is p. CBMAP is compressed to be memory efficient.

To efficiently support circular range search given a query loca-
tion q.l and radius r, a Sort-tile-recursive R-tree, (STR) is main-
tained. This can used to tightly pack the spatial objects, which
results in more efficient spatial search. The grid cells of GRID are
indexed by STR. However, STR is solely used for query processing
and it is not involved in the document update.

5.2 Update processing
The update processing algorithm enables ingesting and index-

ing continuously arriving geo-tagged documents. For an incoming
document object o ∈ O, a new record id RID is obtained when
the corresponding record is inserted into DocumentTable. Then the
record is enqueued in order to be picked up by one of several index
updater threads. An adaptive load balancing algorithm is used [12]
to ensure that the index updater threads are kept busy and data skew
is minimized.

A partial listing of the update processing algorithm is presented
in Figure 3. To update the index STARI with a new document ob-
ject, first its location field o.l is used to determine which grid cell,
GCELL, it belongs to. Then the corresponding inverted list object,
ILIST, is updated by registering a new entry for each word in that
document (lines 10 to 19). Furthermore, the global data structures
IDFT, PDTT and DC are updated (lines 20 and 22).

5.3 Query processing
The goal of our system is to support top-k spatial keyword search

over dynamically ranked streaming documents. A partial listing of

Require: o is a given document object and ILIST is the inverted list of
the grid cell in which o.l belongs to.

1: initialize term frequency hash table termFreqHM
2: for term in o do
3: if term exists in termFreqHM.keys() then
4: value← termFreqHM.get(term)
5: termFreqHM.put(term, value+1)
6: else
7: termFreqHM.put(term, 1)
8: end if
9: end for

10: for term in termFreqHM.keys() do
11: termFreq← termFreqHM.get(term)
12: if term exists in ILIST.keys() then
13: invList← ILIST.get(term)
14: else
15: instantiate a new invList
16: end if
17: invListEntry← (o.id, termFreq, t0)
18: add invListEntry to invList
19: ILIST.put(term, invListEntry)
20: IDFT.update(term)
21: end for
22: PDTT.update(o)

Figure 3: Algorithm ProcessUpdate

Require: q is a given query and RCells are the grid cells returned by STR
that are within r from which q.l. Priority queue PQueue stores the
matched results. We are interested to find top k objects

1: for cell2process in RCells do
2: ILIST ← cell2process.invertedList()
3: initialize perDocTextualScore
4: for term in q.d do
5: if term exists in ILIST.keys() then
6: invList← ILIST.get(term)
7: for (o.id, termFreq, t0) in invList do
8: cbitmap← PDTT.getbitmap(o.id)
9: if matches(cbitmap,term) then

10: textRelScore ← calculate textual relevance score per
Equation 2

11: perDocTextualScore.update(o.id,textRelScore)
12: end if
13: end for
14: end if
15: end for
16: for o in perDocTextualScore.keys() do
17: textualRelScore← perDocTextualScore.getScore(o)
18: spatialRelScore← calculate spatial relevance score per Equa-

tion 1
19: combinedScore ← calculate combined relevance score per

Equation 6
20: topKthScore← PQueue.getKthObjCombinedScore(k)
21: if topKthScore < combinedScore then
22: PQueue.add(o.id,combinedScore)
23: end if
24: end for
25: end for

Figure 4: Algorithm ProcessQuery

the query processing algorithm is shown in Figure 4. For a spatial-
textual query q, the STR is used to perform a circular range search
in which the point of origin is q.l and the radius r (here, r is config-
urable). The STR returns a list of grid cells that are within distance
r from q.l. For each cell, the corresponding inverted list ILIST is
consulted to compute the ranking. This involves first computing
the textual relevance score for each document that has a match for
one of the query keywords (lines 3 to 15). Then for each of those
documents the spatial relevance score and the combined score is
calculated (lines 16 to 19). A priority queue PQueue is used to
maintain the current top-k documents. If the calculated combined

Table 1: Trace file details
Dataset Num. of
name objects
20k 200,000
2mi 2,000,000
20mi 20,000,000

Table 2: Parameter settings
Parameter Settings
Grid resolution 64, 256, 1024, 4096
Updates (num. document objects) 200 thousand, 2 million, 20 million
Number of queries 1000
k 5
Number of query keywords 5
Half-life, t1/2 7 days
Query selectivity 5%, 10%, 20%

0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

120,000.0

140,000.0

160,000.0

200k 2mi 20mi

Th
ro
u
gh
p
u
t

Dataset

Figure 5: Average update throughput

score of a document is less than the score of the k-th document in
PQueue, it is enqueued (lines 21 to 23).

6. EVALUATION
In this section we evaluate STARI in various settings. We first

describe the datasets and the settings used in our experiments.

6.1 Experimental setup
We use a real-world spatio-textual dataset: TWITTER. The tweets

were geo-tagged by the authors of [1] using a real road network
dataset [6]. Two additional datasets were generated to conduct
scalability experiments. The three datasets contain 200 thousand,
2 million and 20 million tweets respectively. A summary of the
datasets is presented in Table 1. In order to simulate live stream-
ing of the data, we implemented a driver program that pushed the
tweets into an incoming queue from where our system picked up
the data objects.

The query set consisted of 1000 queries and they were freshly
generated before each new experiment run. The queries were gen-
erated based on the TWITTER dataset. The query keywords were
selected from the dictionary generated by preprocessing the entire
dataset. An important parameter used during the query generation
was selectivity. For example, a 5% selectivity implies that there is
a 5% chance that the current query contains all its keywords from a
known data object in the dataset and its location of search (origin) is
near to that document’s location. Otherwise there is a 95% chance
that the query location will be random and the query keywords are
selected randomly from the dictionary.

The experiments were conducted on a machine having 16 GB
memory, eight 2.6 GHz Intel Core I7 processors, and an 700 GB
7200-RPM SATA disk. We run Ubuntu 14.04 LTS 64-bit as the
OS. Some of the key parameters are shown in Table 2.

6.2 Update Performance
The update task involves inserting a new document into the data

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

64 256 1024 4096

Number of grid cells

Th
ro

u
gh

p
u

t

Figure 6: Average update throughput

0.1

1.0

10.0

100.0

200k 2mi 20mi

R
u

n
ti

m
e

(m
ill

is
e

co
n

d
s)

Dataset

Figure 7: Average query latency

1.0

10.0

5% 10% 20%

R
u

n
ti

m
e

 (
m

ill
is

e
co

n
d

s)

Query selectivity

Figure 8: Average query latency

table DocumentTable and updating the index STARI. We evaluate
the update performance of our system in this section. We used
the above-mentioned three datasets (200k, 2mi and 20mi). In our
experimental setup we utilized 1 dedicated thread to handle inserts
into the DocumentTable and 4 threads to update STARI. For all
experiments we used a driver program to stream data from the three
datasets into STARI.

The update throughputs of STARI with the three datasets is shown
in Figure 5. The best throughput is achieved with dataset 2mi,
which is over 138 thousand document objects per second. Even
with the largest dataset 20mi, this throughput is close to 100 thou-
sand document objects per second. With the smallest dataset 200k,
the throughput is low because it does not saturate the machine ca-
pacity.

6.3 Handling skew
Geo-tagged streaming text data, such as microblogs, are gener-

ated from various parts of the world, and more data is generated
where population density is high. So, there is a significant skew in
terms of source of data.

In Figure 6 we plot the update throughput of STARI for the
dataset 2mi while varying the grid resolutions to 64, 256, 1024 and
4096 cells. As shown, the throughput remains relatively stable re-
gardless of the grid resolution. This demonstrates that STARI’s
load-balancing algorithm does a fine job of handling data skew.

1.0

10.0

100.0

1000.0

10000.0

200k 2mi

R
u

n
ti

m
e

(s
ec

o
n

d
s)

STARI

IR-tree (in-memory)

Dataset

Figure 9: Total index building time (seconds): IR-tree (in-
memory) vs. STARI

6.4 Query performance
To evaluate query performance we use the parameters specified

in Table 2 for the three datasets. The key feature of our system is
that queries can be executed concurrently with the updates. The
average query latencies for these datasets are shown in Figure 7.
For the dataset 200k, this latency is just 0.8 milliseconds. Even
with the largest dataset 20mi, this is quite low (94.8 milliseconds).

Next we vary the selectivity of the queries. The higher the selec-
tivity, the more processing cost is involved. We report the average
query latencies while using 5%, 10% and 20%. For this experiment
the dataset 2mi was used. As can be seen, a change in selectivity
from 5% to 20% only causes the average latency to increase from
6.8 milliseconds to 7.9 milliseconds.

6.5 Comparison with IR-tree
Since STARI uses adaptive ranking, it is not possible to do a

direct comparison with an existing spatio-textual index. However,
we wanted to demonstrate that STARI’s index building time is fast
enough to support real-time updates, whereas existing indexing ap-
proaches are not. STARI is an in-memory approach and so to do a
fair comparison we used IR-tree [5] in an in-memory setup. IR-tree
is a popular spatio-textual index for top-k spatial keyword search.
We constructed IR-tree index with the three datasets (200k, 2mi
and 20mi) and observed the total index build time. With STARI,
we streamed records using a driver program from the same three
datasets and reported the time to completely ingest all the records.

With dataset 20mi, the IR-tree index building process did not
complete, as it needed more memory than the available memory
(RAM) in the machine. So, we removed the results for dataset
20mi and present the results for datasets 200k and 2mi in Figure 9.
As can be seen in this figure, our approach takes 2 orders of mag-
nitude less time than that of an IR-tree in an in-memory setup. For
instance, with dataset 2mi STARI took 13.2 seconds and IR-tree
took 2420.7 seconds. Moreover, IR-tree index building process in-
volves several steps. The first step requires the entire dataset and
each step must be completed before the next step can begin. There-
fore, existing spatio-textual indexing approaches, such as IR-tree,
may not be suitable for real-time streaming applications.

7. CONCLUSION
Due to the rapid growth of spatial-textual, top-k spatial keyword

queries are becoming increasingly important. The "recency" of the
documents in the search results is very important, because we tend
to value most recent objects, such as "hot new" deals. However,
existing spatio-textual indexes that support top-k spatial keyword
queries do not consider the age of the documents.

To address the mentioned challenges, we have presented a novel
spatio-textual index, STARI, that retrieves most recent documents.
It uses a dynamic ranking scheme to calculate textual relevance

measure that enables document relevance to decrease over time.
Our system uses a grid-based inverted index to support live docu-
ment updates and a compact R-tree based index to perform spatial
search queries. With a real-world dataset we demonstrate that our
system scales well.

8. ACKNOWLEDGEMENTS
This research was supported in part by Natural Sciences and En-

gineering Research (NSERC) Discovery Grants (no. 36866-2011-
RGPIN and RGPIN-2016-03787) and NBIF Start-Up Grant (RIF
2016-008).

9. REFERENCES
[1] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword

query processing: an experimental evaluation. In PVLDB,
pages 217–228, 2013.

[2] S. Cheng, A. Arvanitis, M. Chrobak, and V. Hristidis.
Multi-Query Diversification in Microblogging Posts. In
EDBT, pages 133–144, 2014.

[3] F. M. Choudhury, J. S. Culpepper, and T. Sellis. Batch
Processing of Top-k Spatial-textual Queries. In GeoRich,
pages 7–12, 2015.

[4] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and
T. Suel. Text vs. Space: Efficient Geo-search Query
Processing. In CIKM, pages 423–432, 2011.

[5] G. Cong, C. S. Jensen, and D. Wu. Efficient Retrieval of the
Top-k Most Relevant Spatial Web Objects. VLDB,
2(1):337–348, 2009.

[6] DIMACS Implementation Challenge - Challenge
benchmarks.
http://www.dis.uniroma1.it/challenge9/download.shtml.

[7] L. Guo, J. Shao, H. H. Aung, and K.-L. Tan. Efficient
continuous top-k spatial keyword queries on road networks.
GeoInformatica, 19(1):29–60, 2014.

[8] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
Keyword Search in Relational Databases. In SIGMOD, pages
563–574, 2006.

[9] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He.
Mercury: A memory-constrained spatio-temporal real-time
search on microblogs. In ICDE, pages 172–183, 2014.

[10] A. Markowetz, Y. Yang, and D. Papadias. Keyword Search
on Relational Data Streams. In SIGMOD, pages 605–616,
2007.

[11] J. M. Ponte and W. B. Croft. A Language Modeling
Approach to Information Retrieval. In SIGIR, pages
275–281, 1998.

[12] S. Ray, R. Blanco, and A. K. Goel. Supporting
Location-Based Services in a Main-Memory Database. In
MDM, pages 3–12, 2014.

[13] J. a. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and
K. Nørvåg. Efficient Processing of Top-k Spatial Keyword
Queries. In SSTD, pages 205–222, 2011.

[14] G. Salton, A. Wong, and C. S. Yang. A Vector Space Model
for Automatic Indexing. Commun. ACM, 18(11):613–620,
1975.

[15] H. Yan, S. Ding, and T. Suel. Inverted Index Compression
and Query Processing with Optimized Document Ordering.
In WWW, pages 401–410, 2009.

[16] D. Zhang, K.-L. Tan, and A. K. H. Tung. Scalable Top-k
Spatial Keyword Search. In EDBT, pages 359–370, 2013.

