
A parallel spatial data analysis infrastructure for the Cloud

Suprio Ray, Bogdan Simion, Angela Demke Brown, Ryan Johnson
Department of Computer Science, University of Toronto

{suprio, bogdan, demke, ryan.johnson} @cs.toronto.edu

ABSTRACT
Spatial data analysis applications are emerging from a wide range
of domains such as building information management, environ-
mental assessments and medical imaging. Time-consuming com-
putational geometry algorithms make these applications slow, even
for medium-sized datasets. At the same time, there is a rapid ex-
pansion in available processing cores, through multicore machines
and Cloud computing. The confluence of these trends demands ef-
fective parallelization of spatial query processing. Unfortunately,
traditional parallel spatial databases are ill-equipped to deal with
the performance heterogeneity that is common in the Cloud.

We introduce Niharika, a parallel spatial data analysis infrastruc-
ture that exploits all available cores in a heterogeneous cluster. Ni-
harika first uses a declustering technique that creates balanced spa-
tial partitions. Then, Niharika adapts to performance heterogene-
ity and processing skew in the spatial dataset using dynamic load-
balancing. We evaluate Niharika with three load-balancing algo-
rithms and two different spatial datasets (both from TIGER) using
Amazon EC2 instances. Niharika adapts to the performance het-
erogeneity in the EC2 nodes, thereby achieving excellent speedups
(e.g., 63.6X using 64 cores on 16 4-core EC2 nodes, in the best
case) and outperforming an approach that does not adapt.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Performance, Measurement, Experimentation, Algorithms

Keywords
Spatial join, Cloud, performance heterogeneity, load balancing

1. INTRODUCTION
Spatial analysis applications are rapidly gaining in importance,

fueled by the explosive growth in vector spatial data and the avail-

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGSPATIAL ’13, November 05-08, 2013, Orlando, FL, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2521-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2525314.2525347

ability of spatial features in commercial databases. Alongside tra-
ditional uses such as land surveys, city planning and environmental
risk assessment, new classes of spatial applications are emerging in
domains as diverse as building information management and med-
ical image analysis. These applications perform complex analy-
ses of spatial datasets to provide vital information to governments
and industries ranging from insurance to natural resource develop-
ment to medical diagnostics. In contrast to geospatial Web services
such as Google Maps, which are driven by short-running range
queries, these spatial analytics applications are characterized by
long-running compute-intensive spatial join queries. For example,
a spatial join of a polyline table (73 million records representing the
contiguous USA) with itself takes roughly 20 hours to complete on
an Amazon EC2 m1.xlarge instance.

The current surge in available processing cores, through multi-
core architectures and the Cloud computing model, presents an op-
portunity to dramatically reduce the latency of spatial join queries
by creating a scalable parallel data processing infrastructure. The
key challenge is how to balance the spatial processing load across
a large number of worker nodes, given significant performance het-
erogeneity in the nodes and processing skew in the workload.

Modern data-centers have evolved as very large distributed sys-
tems built from hundreds of machines from multiple hardware gen-
erations. Performance heterogeneity among these machines occurs
naturally, as disks or nodes fail and are replaced with newer com-
ponents. The same effect occurs in smaller clusters within an or-
ganization. Cloud computing adds a new dimension, in that the in-
frastructure itself is no longer fixed. Cloud infrastructure providers,
such as Amazon EC2, offer different instance types, each with dif-
ferent processing and storage capacity. Furthermore, due to virtu-
alization overhead and load consolidation, different machines of a
single instance type may vary widely in performance.

Although the issue of performance heterogeneity has received
widespread attention in distributed data processing systems such as
MapReduce, not much work has been done in parallel databases
in this context. The challenges with parallel query processing in
a heterogeneous cluster were recognized by Mayr et al. [14], but
their evaluation was limited to User Defined Functions (UDFs) for
traditional workloads in a 2 node system. Spatial database work-
loads are more compute-intensive than traditional database work-
loads [20] and the amount of computation required to evaluate a
spatial join predicate can vary widely for different tuples. Thus,
assigning the same number of tuples to each node, even when the
nodes are identical, does not guarantee good load balancing. Due
to this processing skew, the performance heterogeneity may get
aggravated. Moreover, traditional database systems are unable to
fully exploit multicore machines [11]. Most databases, including
PostgreSQL, do not yet support intra-query parallelism. Although



a few recent projects [2, 4] explored support for intra-query paral-
lelism, none of them looked at spatial join queries.

Our solution is Niharika, a distributed spatial query processing
system that provides a framework for spatial declustering and dy-
namic load balancing on top of a cluster of worker nodes, each
of which runs a standard PostgreSQL/PostGIS relational database.
The overall architecture of Niharika is inspired by HadoopDB [1],
which aims to provide a parallel database implementation for Cloud
computing. However, Niharika uses a multi-round query execution
model that is better suited to exploit multiple processing cores and
to address performance heterogeneity. Niharika’s mechanisms for
data partitioning and dynamic load balancing directly support intra-
query parallelism, by concurrently executing multiple customized
queries on multiple cores in each machine. A key advantage of
our approach is that it requires no change in the underlying re-
lational database engine. By taking advantage of the optimized
relational database systems Niharika offers good query execution
performance and scalability. Our contributions are as follows:

1. We show how our system is able to exploit multiple processing
cores in each node while executing long-running spatial join
queries. Niharika is able to achieve near linear speedup (in the
number of cores) for most queries and scales to the number of
cores in a cluster of multi-core machines.

2. We introduce novel dynamic load-balancing techniques that al-
locate well-balanced workload partitions to nodes, based on node
capability and dynamic load characteristics rather than static
partitioning, which enables Niharika to adapt to machine perfor-
mance heterogeneity We perform extensive performance evalu-
ation experiments with Amazon EC2 M1 Extra Large instances.

3. With a number of experiments we demonstrate the scalability of
Niharika on two datasets, one that fits in memory and another
that does not fit in memory.

We begin with the motivation for parallelizing spatial join in Sec-
tion 1.1, and the challenges of heterogeneity and processing skew
in Section 1.2, before presenting the Niharika architecture and our
spatial declustering approach in Section 2. Section 3 details Ni-
harika’s scheduling algorithms for load balancing and data place-
ment, which are evaluated experimentally in Section 4. Related
work and conclusions are in Sections 5 and 6, respectively.

1.1 A case for parallelizing spatial join queries
Spatial join queries are used to combine two different datasets

based on a spatial predicate. For instance, a polygon dataset rep-
resenting land use can be joined with another polygon dataset of
flood-plains to determine flood-risk areas [19]. To find river bridges,
a polyline dataset of roads can be joined with another polyline
dataset representing hydrography. Table 1 shows some use cases
for spatial join queries. These queries involve computational ge-
ometry algorithms to evaluate the relationships between spatial data
types. These geometric computations on datasets with many records
impose a high computational load, even with spatial indexes, lead-
ing to very long query latencies.

To illustrate the performance of the spatial join queries, we se-
lected seven representative medium and long running queries from
the Jackpine spatial benchmark’s micro-benchmark suite [19]. These
queries perform spatial join operations using different topological
relations on the edges (polylines) and area (landmass and water
polygons) tables from our datasets. We use PostgreSQL with the
PostGIS spatial extension as the relational database. We use two
real-world spatial datasets that contain diverse geographical fea-
1We use Line to refer to polylines and Area to refer to polygons.

Table 1: Some use cases of spatial join queries
Use case Queries

Flood Risk Analysis Line/Area Intersects Line/Area1

Area Overlaps Area

Land Info Management Area Overlaps Area
Area Intersects Area

Medical Imaging Area Overlaps Area
Area Intersects Area

Building Info Management Line/Area Intersects Line/Area
Line/Area Touches Line/Area

Water/Gas Utilities Line Crosses Line
Line Touches Line

Table 2: Jackpine queries and abbreviations with two datasets
Description California US
Line Intersects Area (edges and arealm) LiAca LiAus
Line Touches Area (edges and arealm) LtAca LtAus
Line Crosses Area (edges and arealm) LcAca LcAus
Line Intersects Line (edges and edges) LiLca LiLus
Line Crosses Line (edges and edges) LcLca LcLus
Area Overlaps Area (areawater and areawater) AoAca AoAus
Area Touches Area (areawater and areawater) AtAca AtAus

tures, drawn from the TIGER R© data [21], produced by the United
States (US) Census Bureau. This is a public domain data source
available for each US state. The first dataset consists of the poly-
line, polygon and point shapefiles for all the counties of California.
The second is a much larger dataset covering the contiguous US.
Full details of the experimental setup and dataset are in Section 4.1.

Table 2 summarizes these queries on the two datasets, and the
abbreviations that we use to refer to them in the text. Note that in
the original Jackpine benchmark, the “Line and Line” queries were
limited to return 5 result records due to very long execution times;
we remove this limit in our experiments.

To establish a baseline for our work, we evaluated the single-
node PostGIS performance for the queries in Table 2 on 16 m1.xlarge
instances on Amazon EC2. We ran Ubuntu 10.04 Lucid 64-bit with
kernel version 2.6.32-33-generic as the OS on each machine. The
best (minimum) and worst (maximum) observed execution times
are shown in Figure 1. As can be seen some of the queries are very
long running. For instance, the AoAus query takes 2 hours (7341
seconds), whereas the LcLus takes over 20 hours (71159 seconds)
on average. Thus, it is natural to try to parallelize the spatial join
queries, in light of the abundance of processing cores per machine.

Figure 1 also shows that there is a significant difference between
the best and worst observed query execution times. This disparity
is indicative of performance heterogeneity, which we discuss next.

1.2 Heterogeneity in computing clusters
Both modern data centers and smaller local clusters are typi-

cally built from commodity machines. Over time, new machines
are added to deal with increasing loads or to replace failed nodes.
These new nodes will usually come from newer hardware genera-
tions and will have many differences including different CPU mod-
els, numbers of cores, cache sizes, and disk models. Even without
adding new nodes to the cluster, failed disks may be replaced with
newer models, delivering higher performance. Such disk upgrades
or replacements are commonplace in real-world clusters.

Performance heterogeneity in a homogeneous cluster can also
arise because system performance may degrade over time. Disk
performance degradation due to partial media failure (i.e., bad sec-
tors) is a common phenomenon. Therefore, to maintain perfor-
mance homogeneity over time, a full replacement of the system
would be required, which is prohibitively expensive.

Recently, Borthakur [6] observed that, in Facebook’s datacen-



1 

10 

100 

1000 

10000 

100000 

LiAca  LtAca LcAca LiLca LcLca AoAca AtAca LiAus  LtAus LcAus LiLus LcLus AoAus AtAus 

Ex
ec

u
ti

o
n

 t
im

e 
(s

e
co

n
d

s)
 -

 L
o

g 
sc

al
e

 

Min Max 

Figure 1: Min and max single-node PostGIS execution times
for Jackpine queries, observed on 10 distinct EC2 m1.xlarge
instances (warm runs)

1 

10 

100 

1000 

10000 

100000 

LiAca  LtAca LcLca LiAus  LtAus LiLus LcLus 

Ex
ec

u
ti

o
n

 t
im

e 
(s

ec
o

n
d

s)
 -

 L
o

g 
sc

al
e

 

Min Max 

Figure 2: Min and max observed execution times of 7 Jackpine
queries in a cluster of local nodes (cold runs)

ters, heterogeneity is the norm and anomalous behavior is far more
common than complete failure; at any given time, perhaps 10% of
machines in the cluster run 50% slower than the others. This obser-
vation suggests that performance heterogeneity in large clusters of
machines is more severe than academic researchers usually assume.

In Cloud environments, additional factors such as virtualization
overheads, contention for shared physical resources from multi-
ple virtual machine (VM) instances, and the effects of VM migra-
tion, can also contribute to performance heterogeneity. Figure 1
shows significant differences between the fastest and slowest ex-
ecution times, even though we used warm runs and the instances
had enough RAM to hold the California dataset (the US dataset also
benefited from OS caching). For instance, with the “Line and Area”
queries on the US dataset, the slowest node takes roughly 50%
longer than the fastest node (1844s extra for LcAus). We also found
that the slowest instance varied across different queries, which in-
dicates that the degree of performance heterogeneity may vary dy-
namically in Cloud environments, as others have observed [10].

Perhaps more surprisingly, we also observed performance het-
erogeneity in an apparently homogeneous local cluster. We show
the min and max execution times of 7 Jackpine queries from Ta-
ble 2 on 4 distinct local nodes. Each local machine includes 8 Intel
Xeon CPU cores (model E8400), 6 MB cache, 2 GB memory and
an 880 GB 7200-RPM SATA disk. Every query was run in isolation
on an instance of PostgreSQL running on each of these machines.
For these experiments, we use cold runs to include disk effects.

As can be seen, there is a significant difference between the best
and worst times for the queries. For instance, the LiAca (Line In-
tersects Area, California dataset) query took 111 seconds longer on
the slowest node than on the fastest node. For LtAus (Line Touches
Area, USA), the difference was 2633 seconds. On investigation, we

found that the cluster was not truly homogeneous: the disk models
differ due to replacements, which are common in real-world clus-
ters. In this case, the node with the highest disk read bandwidth
was always the first to complete the query.

We now consider the effect of processing skew within the spatial
dataset itself.

1.3 Processing skew and load balancing
In a parallel query execution system operating on traditional work-

loads, the dataset is statically distributed to nodes using either range
partitioning or hash partitioning, so that each node can work on a
disjoint portion of the dataset. However, these partitioning schemes
are not suitable for spatial data because, to execute a spatial join in-
volving two tables, the tables need to be partitioned on the same
spatial boundaries. The process of partitioning spatial datasets,
known as spatial declustering, involves dividing the spatial domain
into two-dimensional disjoint subspaces and assigning them to in-
dividual shared-nothing database nodes so that the load is evenly
distributed. However, due to the nature of spatial datasets, spatial
declustering approaches suffer from a few issues caused by skew.
The first issue is the variation in the number of records among dif-
ferent partitions, known as tuple distribution skew, The second is-
sue is the processing skew caused by variation in the size of objects.

Round-robin [16] is a popular spatial declustering technique. It
creates a large number of disjoint partitions and then maps them
to the nodes in a round robin fashion. Intuitively, this scheme re-
duces tuple distribution skew, since neighboring partitions which
are likely to have similar densities of objects are assigned to differ-
ent nodes. However, the processing skew cannot be avoided with-
out refactoring the data objects.

To illustrate the problem, we calculated a frequency histogram of
the total area of all the polygons in the partitions of the arealm_ca
table. In over 96% of the partitions, we found that the total area of
all polygons is less than 0.25 million hectares. However, for three
partitions the total area is over 1.5 million hectares, because they
contain very large objects such as the Death Valley National Park.
Moreover, several large polygons usually cluster within the same
spatial partition. These large objects require expensive refinement
processing more frequently, since their minimum bounding rectan-
gle (MBR) interacts with a larger number of other objects. The
TIGER dataset already does a good job of refactoring very long
line features (such as rivers, or roads) using polylines, consisting
of many smaller line segments. Thus, the processing skew is less
pronounced in the “Line and Line” queries.

In a real-world cluster, the combined effects of processing skew
and machine performance heterogeneity make load balancing even
more challenging. Therefore, significant opportunity exists to im-
prove load balancing, which would in turn reduce query execution
time and achieve better speedup.

2. OVERVIEW OF NIHARIKA
Niharika is a parallel spatial query execution infrastructure that

aims to accelerate the execution of long running spatial analysis
queries by exploiting all available processing cores. It addresses
the challenges of performance heterogeneity and processing skew
by combining a data partitioning scheme and task scheduling with
dynamic load balancing. This mechanism can naturally take ad-
vantage of the multiple processing cores in each machine.

2.1 Architecture
Niharika uses a master-slave architecture, inspired by HadoopDB,

with a task scheduler called the Coordinator, and worker nodes
called DBWorkers, as shown in Figure 3. The Coordinator handles



(a) Recursive tiling

56

10

4

1

3

2

8

7

13 11

9

12

7

7

7

8ptn1

ptn2

ptn3

ptn4

(b) Declustering

Figure 4: Spatial partitioning (a) and declustering using Hilbert SFC traversal and tile aggregation into partitions (b)

Query 

Customizer 
Scheduler 

Partition 

Allocator 

Spatial Declustering 

Load 

Monitor 

PostGIS 

Data 

Meta 

TaskTracker 

Coordinator 

PostgreSQL 

+ PostGIS 

DBWorker 

Result  

Aggregator 

Heartbeat       JDBC 

Load 

Monitor 

PostGIS 

Data 

Meta 

TaskTracker 

PostgreSQL 

+ PostGIS 

DBWorker 

Load 

Monitor 

PostGIS 

Data 

Meta 

TaskTracker 

PostgreSQL 

+ PostGIS 

DBWorker 

Figure 3: Architecture of Niharika

the scheduling of query jobs, while DBWorkers run tasks locally.
Each DBWorker node hosts a PostgreSQL/PostGIS instance, which
is used to locally process its portion of the dataset.

The role of the Coordinator resembles that of the JobTracker
in HadoopDB. It pushes the query execution into the database in-
stances on each DBWorker, thus leveraging the highly-optimized
RDBMS processing. The Coordinator performs aggregation and
group-by operation on the resultset returned by the DBWorkers.
The coordinator also eliminates duplicates from the resultset.

We implement a spatial declustering scheme (see Section 2.2),
which aims to assign neighboring tiles to the same node as much
as possible, while still reducing tuple distribution skew.

The Scheduler component of the Coordinator is responsible for
making these assignments, with the help of a Query Customizer
that re-writes the submitted query for execution on each node so
that nodes only process records from their assigned partitions. We
implement and evaluate three algorithms for dynamic load balanc-
ing within this framework.

2.2 Spatial declustering in Niharika
We wanted to use a declustering approach that distributes the

records as evenly as possible among the resultant spatial partitions.
The number of partitions and the order of the distribution (which
affects locality) are important considerations. If we have a small
number of large partitions, tuple distribution skew is more likely,
leading to load imbalance. On the other hand, a large number of
partitions increases duplication of records because each spatial ob-
ject (line or polygon) that is not completely contained within a sin-
gle partition must be replicated to all partitions that it overlaps.

Niharika’s spatial declustering algorithm attempts to equalize the
number of tuples assigned to each node, instead of mapping an
equal number of partitions to each node, thereby minimizing tuple
distribution skew. It also reduces duplicates by taking advantage of
the locality-preserving property of Space-filling curves (SFC) when
distributing partitions to nodes. Our algorithm has three phases:

Phase 1 - recursive tiling: The spatial domain is recursively
subdivided into small disjoint subspaces, called tiles, so that the
number of spatial items contained in each tile is expected to be
roughly equal. In each step, if the number of spatial objects that are
mapped to each tile exceeds a threshold, the tile is split into 4 equal
parts. This is essentially a quad-tree splitting scheme, illustrated in
Figure 4(a). The end result is that each tile contains roughly the
same number of objects. The threshold on the maximum number
of objects per tiles is chosen to be a relatively small value, so that
many tiles are generated. This decreases tuple distribution skew.

Phase 2 - SFC order: After the tiles are generated, a Hilbert
SFC traversal order is imposed on them (see Figure 4(b), left-side),
to preserve locality when assigning tiles to nodes. The Hilbert
curve can achieve near-optimal locality, however, it is often not
used due to the complexity of the traversal operations. We use a
fast look-up scheme [8] that is well-suited for large datasets.

Phase 3 - tile aggregation: Phase 1 and 2 provide a partition-
ing scheme that ensures (1) that the number of objects in each tile
will be less than a threshold and (2) good spatial locality of the ob-
jects. But, in some tiles the number of objects can be close to the
maximum threshold and in others it could be close to zero. Since
the tiles are mapped to the nodes with Hilbert SFC, some nodes
could end up with tiles corresponding to relatively feature-sparse
geographic regions, resulting in significant tuple distribution skew.

To further minimize this skew, we perform tile aggregation. In-
stead of distributing tiles directly to the nodes, we accumulate tiles
in partitions until nearly filled and then distribute the partitions to
the nodes. Our algorithm resembles the next fit online bin packing
problem, since the tiles must be distributed by maintaining a par-
ticular SFC traversal order. However, we constrain the maximum
number of available partitions. The algorithm runs iteratively until
all the tiles are accommodated in at most the maximum number of
partitions. In each iteration, the unit partition size is first adjusted
and then all the tiles are examined (in the already imposed SFC
order) while performing the following operations:

1. See if the tile can fit in the same partition as the last tile with-
out the number of objects exceeding the partition capacity.

2. If the addition of the new tile causes the last partition to over-
flow, start a new partition.

We illustrate the tile aggregation algorithm with an example.
Given a set of 29 spatial objects and a threshold of at most 4 ob-
jects per tile, Phase 1 generates 13 tiles (see Figure 4(a)). The
tiles are then numbered in the Hilbert SFC traversal order (see Fig-
ure 4(b)(left)). We assume that there are 4 nodes, N1 to N4, in the
cluster. If each node gets an equal share of tiles (last node gets extra
tiles) the tile-to-node allocation is:
N1 : T1, T2, T3[8 objects] N2 : T4, T5, T6[4 objects]
N3 : T7, T8, T9[8 objects] N4 : T10, T11, T12, T13[9 objects]

Here, N2 gets only 4 objects while N4 gets 9 objects, giving a
significant tuple distribution skew with this approach.



Next, we apply our tile aggregation algorithm with a partition
size of 8. Traversing the tiles in SFC order, ptn1 is assigned tiles
T1, T2 and T3. The next tile T4 will not fit in ptn1, so ptn2 is
created and filled similarly. The end result is:
ptn1 : T1, T2, T3[8 objects] ptn2 : T4, T5, T6, T7[7 objects]
ptn3 : T8, T9, T10[7objects] ptn4 : T11, T12, T13[7objects]

Since the number of partitions is the same as the number of
nodes, each node is assigned one partition. As can be seen, the
data distribution skew is significantly reduced.

To enable dynamic load balancing, we actually generate many
more partitions than the number of nodes.

3. DYNAMIC LOAD BALANCING
Load-balancing is essential to parallelize any computing task, in-

cluding a long running analytics query. An imbalanced workload
assignment may result in a significant delay between the comple-
tion times of the fastest and the slowest (aka straggler) machines.
Even in a perfectly homogeneous cluster of machines, the inher-
ent skew in the spatial dataset may cause workload imbalance. In
the real world, machine performance can vary widely, as seen in
Section 1.2, worsening the straggler effect.

Most traditional parallel database systems [9] do not deal with
straggler nodes, as the underlying assumption is that the member
nodes have identical performance. HadoopDB [1] deals with strag-
gler nodes by launching speculative tasks, but its speculative task
execution model (inherited from Hadoop) may lead to critical per-
formance issues in heterogeneous environments.

We now describe Niharika’s solution for load balancing, which
does not rely on speculative tasks. We first discuss our dynamic
partition assignment and then our scheduling algorithms.

3.1 Dynamic partition assignment
In a traditional parallel database, each member node is statically

assigned a disjoint subset of the dataset. In the context of spatial
query execution, this implies the static assignment of spatial parti-
tions that are generated by the spatial declustering phase. When a
query job is submitted, each node can be issued an identical query
task, which it executes on its own dataset. The resultset returned by
all member nodes can be aggregated to produce the final query re-
sult. For instance the query “find all the line segments that intersect
polygon objects”, can be expressed as follows in PostgreSQL:

select distinct a.gid from
arealm_us a, edges_us e where
ST_Intersects(e.the_geom, a.the_geom) (1)

Each node executes this query on its data partition.
However, static partition assignment does not take into account

node performance heterogeneity, dynamic load conditions, or the
inherent processing skew due to variation in spatial object sizes and
join selectivity. These factors can easily result in straggler nodes.
Instead, we propose dynamic partitioned parallelism in which the
data partitions that each node processes are determined “just in
time” based on the performance of presently available nodes. This
scheme requires that nodes either host the entire dataset locally, or
obtain the dataset for their assigned partitions at run-time, since it
is not known ahead of time which partitions will be needed. The
compact nature of vector spatial data makes it tractable to host the
entire dataset on each node, which is the approach we take. Design-
ing a performance heterogeneity aware data placement algorithm,
allowing a node to host a part of the whole dataset, is a future work.

Once the Scheduler has determined a partition assignment, we
need to ensure that each node processes only the partitions that are
mapped to it. We cannot send the original query to each node be-
cause this would result in each node processing the original query

 
… 

 
… 

A1 

Table E Table A 

A2 

An En 

E1 

E2 

Figure 5: Spatial join with partitioned tables

over the entire dataset. Instead, a form of virtual dynamic parti-
tioning can be achieved by customizing queries on-the-fly to direct
each node to process only its assigned partitions. This query cus-
tomization scheme requires the addition of a partition_id column to
the database tables. Then, the query can be tailored for each node
by the Coordinator to include the appropriate partition identifiers.

Dynamic partitioning implies that the workload should be dis-
cretely divisible into chunks of almost equal size. Spatial parti-
tions are the natural granularity for dividing spatial query work-
loads. The physical division of a table can be achieved by a widely
supported database technique called sharding, which allows a sin-
gle instance of a database table to be split into smaller physical
pieces. PostgreSQL supports sharding by letting the sharded tables
“inherit” from a master table and adding a constraint on the par-
titioning key [15]. In Niharika, the partitioning key is the spatial
partition id and an index is created on this for each partition.

Query customization can be done in several ways. First, the
where clause of the original query can be extended with a set of
partition ids specified as a range (using between) or as a list (using
in). We can also use a union of multiple queries, with each query
specifying one partition. For example, we can specify the partitions
for node N2 from Section 2.2 by rewriting Query (1) using union:

... and a.partition_id = T4

and e.partition_id = T4

union select distinct a.gid from
arealm_us a, edges_us e where
ST_Intersects(e.the_geom, a.the_geom)
and a.partition_id = T5

and e.partition_id = T5

union ...

The choice of customization strategy depends on the underly-
ing database engine. For instance, we want the query optimizer to
select an ideal spatial join plan. Figure 5 shows a spatial join be-
tween partitioned tables A and E. An ideal plan would involve join
between matching partitions only (e.g. partition 1 of table A would
be joined only with partition 1 of table E). Joining partition 1 of
table A with any other partition of table E is unnecessary, since it
would not contribute any tuple to the query resultset. Other fea-
tures of the database engine may affect the choice between query
customization strategies that result in ideal query plans.

Inefficient query plan: A 1 E = A1 1 E1UA1 1 E2...UA1 1

En ∪A2 1 E1UA2 1 E2...UA2 1 En... ∪ ...An 1 En

Ideal query plan: A 1 E = A1 1 E1 ∪A2 1 E2...∪An 1 En

We evaluated each of these customized queries for dynamic par-
titioning on PostgreSQL, and found that an ideal query plan was
generated for only the union approach with sharded tables (Sharding-
union). Unfortunately, we also found that memory usage ballooned
with Sharding-union when a large number of partitions is speci-
fied (i.e. >250), leading to dramatic increases in execution time.
To work around this limitation in PostgreSQL, we created a Stored
procedure in which the Sharding-union query with multiple parti-
tions is expressed as an iteration over each partition:

FOR p IN partition_list LOOP
... and a.partition_id = $p
and e.partition_id = $p ...

END LOOP



0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

Ex
ec

u
ti

o
n

 t
im

e 
(s

ec
o

n
d

s)
 

Number of partitions 
(** could not be executed beyond 250 partitions) 

Sharding-in 

Sharding-between 

Sharding-StoredProc 

Sharding-union ** 

Figure 6: Execution times for LiAus query with different par-
tition strategies

2
5

0
 

1
2

2
1

 

1
2

2
3

 

1
8

3
9

 3
6

6
7

 

1
3

1
 

1
3

1
 

3
5

2
 

1
0

9
2

 

1
0

9
4

 

1
6

4
6

 3
2

2
5

 

1
5

0
 

1
5

0
 

1 

10 

100 

1000 

10000 

LiAca LtAca LcAca LiLca LcLca AoAca AtAca 

Ex
ec

u
ti

o
n

 t
im

e 
 (

se
co

n
d

s)
 -

 L
o

g 
sc

al
e 

PostgreSQL (original) 
PostgreSQL (sharded) 

Figure 7: Query execution times - original vs Sharding-
StoredProc (California dataset)

Figure 6 shows the effect of the different dynamic partitioning strate-
gies on query execution time for LiAus on PostgreSQL as the num-
ber of partitions increases. The shared procedure approach (Sharding-
SharedProc), gives us an ideal query plan that has stable perfor-
mance; we use this strategy in our implementation.

Next we execute all the queries with Sharding-StoredProc ap-
proach on single PostgreSQL instances (results are averaged over
the set of m1.xlarge nodes). The execution times are compared
against those of the original PostgreSQL dataset (non-sharded).
Figure 7 shows the comparison for California and Figure 8 for US
dataset. In some cases the original PostgreSQL does better than
sharded PostgreSQL, and in other case the reverse occurs. In all
subsequent experiments we use the execution times of the single-
node sharded PostgreSQL as the baseline to compute speedup for
our scheduling and dynamic load-balancing strategies.

We now present several alternatives for partition assignment to
achieve load balancing. These are evaluated in Section 4.

3.2 Multi-round assignment of partitions
An a priori balanced assignment of partitions to nodes in a single

round is surprisingly difficult. Intuitively, such an assignment can
be made by approximating the processing cost of each partition,
and the processing capacity of each node, and allocating partitions
to nodes proportionally. Node processing capacity can be approxi-
mated by running the same query against the same dataset on each,
and comparing their relative performance.

We experimented with various strategies for estimating the node
processing capacity and the work required per partition, for differ-
ent queries, and then assigning partitions accordingly. The speedups
achieved were inconsistent; we do not present the results due to
lack of space. Heterogeneity-aware single assignment is limited
because (a) it does not adapt to dynamic load conditions and (b) the
work required per partition depends on the query being executed.

To overcome the limitations of single-round assignment, we need
to adjust the size of the assigned workload as the query executes.
This goal can be achieved by assigning work in multiple rounds,

2
7

3
3

 

4
8

5
3

 

4
8

4
8

 

3
5

3
2

7
 

7
1

1
5

9
 

7
3

4
1

 

7
3

2
7

 

2
9

1
9

 

5
0

9
1

 

5
0

8
0

 

3
3

9
6

3
 

6
5

9
7

2
 

4
6

3
5

 

4
6

5
8

 

1 

10 

100 

1000 

10000 

100000 

LiAus LtAus LcAus LiLus LcLus AoAus AtAus 

Ex
ec

u
ti

o
n

 t
im

e 
(s

ec
o

n
d

s)
 -

 L
o

g 
sc

al
e

 

PostgreSQL (original) 
PostgreSQL (sharded) 

Figure 8: Query execution times - original vs Sharding-
StoredProc (USA dataset)

Require: W is the number of DBWorkers; P is total number of parti-
tions; BatchSize is the size of assignment

1: TotAssigned← 0
2: MaxIdx← −1
3: while true do
4: for i = 0 to W − 1 do
5: Status← status of DBWorker i
6: if Status = IDLE then
7: if TotAssigned < P then
8: TotAssigned← TotAssigned+BatchSize
9: if TotAssigned > P then

10: TotAssigned← P
11: MinIdx←MaxIdx+ 1
12: MaxIdx←MaxIdx+BatchSize
13: if MaxIdx > P − 1 then
14: MaxIdx← P − 1
15: RwQuery ← Rewrite(MinIdx,MaxIdx)
16: Assign RwQuery to DBWorker i
17: Status← ASSIGNED
18: AsgndCnt← AsgndCnt+ 1
19: else if Status = COMPLETE then
20: CmpltCount← CmpltCount+ 1
21: if CmpltCnt = AsgndCnt and TotAssigned = P then
22: break

Figure 9: Algo1: Multi-round fixed-size batch assignment

where a node processes a smaller portion of its overall assigned
workload in each round. In effect, nodes that complete their work
faster can be assigned a larger share of the total workload.

A useful abstraction for scheduling is Divisible Load Theory
(DLT) [5]. It attempts to devise a task assignment plan such that
all processors finish their computation simultaneously and any de-
viation from the optimal plan can be improved by transferring load
from a busy processor to an idle one. We present three multi-round
scheduling algorithms inspired by DLT.

3.2.1 Fixed-size batch assignment
The first algorithm is the multi-round fixed-size batch assign-

ment to idle nodes (Algo1, see Figure 9). Initially, each node is
assigned a batch of spatial partitions (generated in the declustering
phase). Thereafter, any node that finishes processing its batch gets
the next batch to work on. The intermediate results generated after
processing each batch are combined and aggregated by the Coordi-
nator. At each step the min and max partition indexes of the batch
are updated (lines 11 through 14) and a query rewriting step (line
15) customizes the query before issuing it to the DBWorker. This
process is repeated until all the partitions are completed and the fi-
nal result is produced. Note that the list of partitions is traversed
sequentially and any DBWorker can be assigned the next batch of
partitions if it has finished processing its previous batch.

Intuitively, the choice of batch size requires a tradeoff between
the overhead of executing the query in multiple rounds, and the
opportunity to do load balancing. A smaller batch size requires
more rounds, which creates more opportunities to adjust the work-
load assignment, but also incurs more overhead. It may be useful



Require: W , P , BatchSize as before; HistBucket[B][] is execu-
tion profile histogram having B buckets; InitAssigned[B][W ] is a
boolean array initialized false

1: while true do
2: for i = 0 to W − 1 do
3: CapacityRatio← capacity ratio of DBWorker i
4: Status← status of DBWorker i
5: if Status = IDLE then
6: Assigned← false
7: for j = 0 to B − 1 do
8: if InitAssigned[j][i] = false then
9: AsgnList← assign from HistBucket[j][]

10: in proportion to CapacityRatio
11: InitAssigned[j][i]← true
12: Assigned← true
13: break
14: if Assigned = false then
15: for j = 0 to B − 1 do
16: if any unprocessed left in HistBucket[j][] then
17: AsgnList← assign from HistBucket[j][]
18: Assigned← true
19: break
20: if Assigned = true then
21: RwQuery ← Rewrite(AsgnList)
22: Assign RwQuery to DBWorker i
23: Status← ASSIGNED
24: AsgndCnt← AsgndCnt+ 1
25: else if Status = COMPLETE then
26: CmpltCount← CmpltCount+ 1
27: if CmpltCnt = AsgndCnt and TotAssigned = P then
28: break

Figure 10: Algo2: Multi-round fixed-size batch assignment us-
ing node processing capacity

to employ different batch sizes for different nodes, however, we
have found that a fixed-size batch for all nodes works well. Exper-
imenting with variable batch sizes is left for future work. The main
advantage of Algo1 is its simplicity and that there is no setup step.

Algo1 (Figure 9) is implemented as a Java program running in
the Coordinator node. The Coordinator launches a worker thread
for each DBWorker, which acts as a state machine. When the status
is IDLE (line 6), the corresponding DBWorker is available for more
work. When the status is ASSIGNED (line 17), the DBWorker exe-
cutes the query assigned to it. When a DBWorker finishes its query
and the result is available, the status is changed to COMPLETE.
When all P partitions are processed, the final result is printed.

3.2.2 Batch assignment using processing capacity
In Algo1, node processing capacity is implicit, in the sense that

more work is assigned to faster nodes because they become idle
sooner. Our second algorithm (Algo2, described in Figure 10)
explicitly considers node processing capacity. The idea is to as-
sign batches of workload partitions to each node such that the total
number of partitions assigned to each node is proportional to its
processing capacity in the cluster. The capacity ratio of a node’s
performance can be based on the different types of nodes that are
in the cluster (for instance, m1.xlarge, m2.xlarge, m2.2xlarge, etc).
Another way to do this is by executing a representative query on
each node and comparing their relative performance. To address
skew in the dataset, the spatial partitions are grouped together in
histogram buckets such that the partitions in the same bucket have
similar execution times. The execution histogram is constructed
during a preprocessing step, in which a representative query is ex-
ecuted on a single node for each partition and placing the partition
id in the histogram based on its execution time.

While executing the query, the partitions are assigned from each
bucket to nodes in proportion to their processing capacity (lines 7
through 13). The buckets with the longest running partitions are
processed first. If a faster node completes processing all its share

Require: W , P as before; LargePartsList is a small list of partitions
with the most skew

1: i← 0
2: while LargePartsList has more items do
3: append(NodeAsgnList[i], next(LargePartsList))
4: i← i+ 1
5: if i = W then
6: i← 0
7: Q← P − size(LargePartsList)
8: PartIndex← 0
9: for i = 0 to W − 1 do

10: CapacityRatio← capacity ratio of DBWorker i
11: CurrAsgn← Q ∗ CapacityRatio/TotalCapacity
12: while PartIndex < Q and CurrAsgn > 0 do
13: if PartIndex not in LargePartsList then
14: append(NodeAsgnList[i], PartIndex)
15: CurrAsgn← CurrAsgn− 1
16: PartIndex← PartIndex+ 1
17: returnNodeAsgnList

Figure 11: Procedure StrategicAssignment for Algo3

of partitions from all the buckets, it looks for yet unprocessed par-
titions from the buckets (lines 15 through 19). The query is cus-
tomized with the assigned list of partitions (line 21) before the DB-
Worker executes the query.

3.2.3 Batch assignment with node affinity
The previous algorithms are agnostic to which node is assigned

to process which partition. For relatively small datasets that can fit
comfortably in the node memory, this should not be a concern, as
all partitions can be cached in RAM. However, for larger datasets,
an essentially random assignment of partitions to nodes can lead to
very poor caching behavior. In this case, partitions will frequently
need to be fetched from disk, since they are unlikely to be found in
the memory of the node to which they are assigned.

Our third algorithm, Algo3, assigns partitions to each node from
a preferred set of partitions, thereby maximizing the likelihood that
the partitions are available in that node’s memory. Of course, some
spatial partitions may still need to be fetched from disk. However,
Algo3 is expected to reduce disk I/O substantially compared to a
random assignment such as Algo1.

The assignment approach of Algo3 (Procedure StrategicAssign-
ment, Figure 11) first assigns to DBWorkers from a small list (typ-
ically less than 5% of total) of partitions that have the most skew.
This ensures that the long running partitions will be the first to get
processed. To assign from this list we do not consider node pro-
cessing capacity, since this is a rather small set. Then from the
remaining list of partitions each DBWorker is assigned a set of pre-
ferred partitions. This takes into account the static capacity ratio of
a node’s performance. The assignment algorithm makes sure that
a node is always assigned the same set of partitions to maximize
caching benefits. It also ensures that a node will have a sufficient
number of partitions to process. We assume that a number of spa-
tial queries are processed by the system. As outlined in lines 7
through 17 of Algo3 (Figure 12), each DBWorker processes from
the list of partitions assigned to the node. However, if a DBWorker
has processed all its assigned partitions, it may be assigned to work
on any unprocessed partitions originally assigned to another node
(lines 20 through 25). This allows Algo3 to deal with node perfor-
mance heterogeneity and skew, while still providing good affinity
between nodes and the partitions they usually process.

3.2.4 Round Robin with equal share of partitions
To evaluate the benefits of dynamic load balancing, we also im-

plemented a single-assignment approach in which each node is
given an equal number of partitions. We call this approach Round
Robin with Equal Share of Partitions (RR-ESP). As the name sug-



Require: W , P , BatchSize as before; NodeAsgnList[W ] is the list
of partitions assigned to DBWorkers by Procedure StrategicAssign-
ment; FetchList[W ] is the list of partitions fetched by DBWorkers;
PartAssigned[P ] is a boolean array initialized to false

1: while true do
2: for i = 0 to W − 1 do
3: Status← status of DBWorker i
4: if Status = IDLE then
5: BatchList← NULL
6: if TotAssigned < P then
7: CurrAsgnList← NodeAsgnList[i]
8: while CurrAsgnList has more items do
9: if size(BatchList) = BatchSize then

10: NodeAsgnList[i]← CurrAsgnList
11: break
12: PartId← next(CurrAsgnList)
13: if PartAssigned[PartId] = false then
14: PartAssigned[PartId] = true
15: append(BatchList, PartId)
16: remove(CurrAsgnList, PartId)
17: TotAssigned← TotAssigned+ 1
18: if size(BatchList) = 0 then
19: for j = 0 to P − 1 do
20: if PartAssigned[j] = false then
21: PartAssigned[j] = true
22: append(BatchList, j)
23: TotAssigned← TotAssigned+ 1
24: if size(BatchList) = BatchSize then
25: break
26: if size(BatchList) > 0 then
27: RwQuery ← Rewrite(BatchList)
28: Assign RwQuery to DBWorker i
29: Status← ASSIGNED
30: else if Status = COMPLETE then
31: CmpltCount← CmpltCount+ 1
32: if CmpltCnt = AsgndCnt and TotAssigned = P then
33: break

Figure 12: Algo3: Multi-round batch assignment from a pre-
ferred partition set

Table 3: Database tables
Dataset Database table Geometry Cardinality
California edges_ca polyline 4173498
(4 GB, arealm_ca polygon 7953
sharded) areawater_ca polygon 39334
Contig. USA edges_us polyline 73233790
(54 GB, arealm_us polygon 112492
sharded) areawater_us polygon 2290815

gests, it assigns the partitions to cores in a round robin fashion such
that each node gets about the same number of partitions.

4. EXPERIMENTAL EVALUATION
In this section we evaluate our load balancing algorithms in var-

ious settings on the California and USA datasets. We first describe
the datasets and the settings that we use in our experiments.

4.1 Experimental setup
We obtained the polyline (edges) and polygon (area landmass

and area water) shapefiles for all the counties of California and cre-
ated single shapefiles by merging them. Similarly, we created sin-
gle US shapefiles for all the 48 states in the contiguous US. These
shapefiles were then uploaded to a PostgreSQL database using the
shp2pgsql tool. Table 3 outlines the database tables. To represent
a real-world database system that processes many queries, we use
the warm runs to calculate the speedup results. We observe that the
overhead of duplicate elimination from resultset is minimal.

4.2 Results with dataset that fits in memory
Niharika’s query execution model is naturally able to exploit

multiple processing cores in each database node. PostgreSQL exe-

cutes each query as a separate OS process, hence if multiple concur-
rent queries are issued to a multi-core node, the OS will naturally
schedule them on different processors. Niharika’s scheduler simply
assigns multiple concurrent customized queries, each representing
a separate batch of work, to each multi-core node. The number of
concurrent batches is set to the number of cores in a node.

Algo1 and Algo2 were evaluated using Amazon EC2 with 4, 8,
12 and 16 m1.xlarge nodes, each of which had 4 cores and 15GiB
memory. The speedup of each query is computed relative to the
sharded single-node PostgreSQL execution time (as noted in Sec-
tion 3.1) across all nodes. The speedup achieved by Algo1 and
Algo2 for the seven queries is compared in Figure 13.

We observe that queries involving the same database tables have
similar speedup profiles. For instance, the “Line and Area” queries
generally have the lowest speedups for all numbers of cores, for
both algorithms, while the “Line and Line” queries have the best
speedups. The maximum achievable speedup is limited by the
longest processing time of any single partition, and our analysis
showed that large polygons in the area table led to some partitions
with very long processing times in joins with the line table. We also
observe that Algo2 has better speedup with these “Line and Area”
queries than Algo1. However, with the other queries Algo2 per-
forms worse than Algo1. Essentially, Algo2 tries to assign larger
batches of work to the more powerful nodes in the cluster, thus
reducing the number of rounds that are needed. When the esti-
mates of node processing capacity and work per partition are rea-
sonably accurate, Algo2 performs well. However, the larger batch
size also means fewer opportunities for load balancing when con-
ditions change dynamically, or when the static estimates are less
accurate. Since Algo2 is more complex than Algo1, we do not use
Algo2 for subsequent experiments.

4.3 Results with larger dataset (USA)
When the dataset is too large to remain in node memory, as is

the case for the US dataset on m1.xlarge EC2 instances, we expect
that Algo3 should have a significant advantage over the random-
ized assignment of Algo1. For comparison, we also include the
single-assignment RR-ESP results in this section. Figure 14 shows
the speedup attained by Algo1, Algo3 and RR-ESP against the best
sharded single-node PostgreSQL performance. With Algo3, Ni-
harika achieves excellent speedup in the number of cores for all
queries, especially the “Line and Line” queries (LiLus and LcLus).
For instance, the LcLus query achieves linear speedup in the num-
ber of cores, reaching 16.5X with 4 nodes (16 cores) and 62.8X
with 16 nodes (64 cores). With “Line and Area” and “Area and
Area” queries, Algo3 reaches the maximum achievable speedup,
which is limited by the processing time of the longest running par-
tition. For instance, with LtAus, Niharika attains speedup close to
30X with 8 nodes; beyond 8 nodes the speedup does not improve.

To explain this effect, we measured the processing time of each
partition and found significant skew, as shown in Figure 15. The
histogram (count) shows that only 1 partition took more than 150
(168.8s, allowing a maximum speedup of 30.1X), with 4 others
taking between 100 and 150s. The remaining partitions took less
than 80s. This result suggests that the spatial dataset properties
can be a key constraining factor with Area queries. Although the
TIGER dataset refactors long line objects, it does not do as well
with large Area objects, as it does with the Line objects. To illus-
trate, we removed the largest 50 objects (0.4% of the dataset) from
the arealm_us dataset and re-ran the Line and Area queries with
Algo1, Algo3, RR-ESP and the sharded single-node PostgreSQL.
As can be seen in Figure 16, Algo3 achieves near linear speedup
in the number of cores. As future work, we are exploring a more



1
0

.0
 

1
0

.6
 1
4

.4
 

1
4

.7
 

1
4

.5
 

1
4

.8
 

1
3

.4
 

1
4

.3
 

1
5

.2
 

1
5

.1
 

9
.4

 

1
0

.9
 

1
1

.0
 

1
0

.9
 

1
3

.5
 1

9
.6

 2
3

.2
 2
7

.8
 

2
3

.5
 2
7

.5
 

2
5

.1
 

2
1

.4
 

2
9

.3
 

2
6

.6
 

1
7

.5
 

1
7

.3
 

1
9

.1
 

1
6

.3
 

1
4

.5
 

2
4

.5
 2
8

.3
 

3
8

.8
 

2
9

.0
 

3
8

.9
 

3
5

.2
 

2
9

.3
 

4
2

.6
 

3
5

.3
 

2
6

.0
 

1
9

.6
 

2
6

.5
 

1
9

.6
 

1
5

.7
 

2
7

.3
 3
1

.4
 

4
4

.5
 

3
0

.6
 

4
4

.6
 

4
4

.4
 

3
6

.6
 

5
5

.4
 

4
6

.2
 

3
2

.5
 

2
4

.4
 

3
3

.0
 

2
4

.4
 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

Algo1 Algo2 Algo1 Algo2 Algo1 Algo2 Algo1 Algo2 Algo1 Algo2 Algo1 Algo2 Algo1 Algo2 

LiAca LtAca LcAca LiLca LcLca AoAca AtAca 

Sp
ee

d
u

p
 

4 nodes 8 nodes 

12 nodes 16 nodes 

Figure 13: Speedup of Algo1 compared with Algo2 (Cal. dataset, 4 cores/node)

1
8

.9
 

1
7

.4
 

1
0

.7
 

2
2

.3
 

1
7

.2
 

5
.0

 

2
2

.4
 

1
7

.7
 

4
.9

 

1
5

.7
 

1
4

.1
 

1
1

.4
 1
6

.5
 

1
5

.3
 

1
1

.6
 

1
5

.3
 

1
0

.6
 

7
.7

 

1
5

.3
 

1
0

.9
 

7
.8

 

1
9

.3
 

1
3

.4
 

8
.6

 

2
9

.8
 

2
0

.6
 

5
.6

 

2
9

.8
 

2
0

.8
 

5
.6

 

3
4

.6
 

2
8

.8
 

2
7

.1
 3

3
.0

 

3
0

.9
 

2
3

.3
 2
7

.6
 

1
5

.3
 

1
1

.6
 

2
7

.9
 

1
5

.9
 

1
1

.7
 

2
0

.9
 

1
5

.9
 

9
.8

 

3
0

.1
 

2
0

.7
 

6
.3

 

2
9

.9
 

2
1

.1
 

6
.3

 

5
1

.9
 

4
2

.6
 

4
2

.2
 4

8
.6

 

4
6

.1
 

3
6

.0
 

2
8

.2
 

1
7

.6
 

1
3

.5
 

2
8

.4
 

1
8

.7
 

1
3

.6
 

2
0

.9
 

1
1

.0
 

9
.9

 

3
0

.1
 

1
6

.9
 

7
.3

 

3
0

.1
 

1
7

.9
 

7
.3

 

6
3

.6
 

5
4

.7
 

5
2

.8
 

6
2

.8
 

6
0

.5
 

4
5

.2
 

2
8

.2
 

2
0

.5
 

1
3

.1
 

2
8

.3
 

2
0

.8
 

1
3

.2
 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP 

LiAus LtAus LcAus LiLus LcLus AoAus AtAus 

Sp
e

e
d

u
p

 

4 nodes 8 nodes 

12 nodes 16 nodes 

Figure 14: Algo3 vs Algo1 vs RR-ESP speedup (USA dataset, 4 cores/node)

669 

231 

45 18 15 9 8 0 4 1 
0 

100 

200 

300 

400 

500 

600 

700 

800 

Processing time range (seconds) 

N
u

m
. o

f 
p

ar
ti

ti
o

n
s 

Figure 15: Histogram of the processing times of the partitions
for LtAus (USA dataset, Algo3)

fine-grained declustering approach that takes object size as well as
object count into consideration.

In comparison to Algo3, the speedup of Algo1 is significantly
worse on all queries. Although Algo1 does a good job with in-
memory datasets, that is no longer the case with datasets that do
not fit in memory. Therefore, Algo3 can be the considered the load
balancing algorithm of choice among the ones we present.

We also see that Niharika with Algo3 is superior to an approach
that is agnostic to performance heterogeneity, that is, RR-ESP. In
both Figures 14 and 16 RR-ESP showed much poorer speedups
compared to those of Algo3. Also, RR-ESP shows reduced speedups
when going from 48 to 64 cores for all but one case (LiAus, where
the speedup is unchanged) when the queries involve an area table.
This suggests that RR-ESP is more susceptible to processing skew.

5. RELATED WORK
Spatial join is a highly complex database operation that is impor-

tant in many spatial applications. A number of projects explored
various ways to improve its performance, as surveyed by Jacox and
Samet [12]. But, only a few have studied parallelizing spatial join.

Brinkhoff et. al [7] presented an R*-tree index based spatial join

3
6

.6
 

8
.9

 

3
1

.7
 

3
1

.4
 

1
5

.5
 2
0

.3
 

3
3

.6
 

2
0

.0
 

2
0

.4
 

3
7

.2
 

1
5

.6
 

3
7

.3
 

5
2

.3
 

2
4

.1
 

2
5

.0
 

5
3

.4
 

2
7

.6
 

2
5

.3
 

5
3

.8
 

2
7

.4
 

4
6

.9
 5

4
.7

 

3
0

.9
 

2
8

.7
 

5
5

.2
 

3
3

.9
 

2
9

.0
 

6
0

.0
 

2
7

.6
 

5
0

.1
 5
5

.1
 

4
2

.0
 

2
7

.5
 

5
5

.8
 

3
6

.6
 

2
7

.8
 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP Algo3 Algo1 RR-ESP 

LiAus LtAus LcAus 

Sp
ee

d
u

p
 

4 nodes 
8 nodes 
12 nodes 
16 nodes 

Figure 16: Algo3 vs Algo1 vs RR-ESP speedup with modified
dataset (USA dataset, 4 cores/node)

in a shared-virtual-memory architecture. They parallelize the filter
step by assigning subtrees of the index to each processor. Zhou et
al. [24] presented a spatial join algorithm based on static partition-
ing. However, their algorithm requires the dataset to fit in memory,
and the system was evaluated with only one query. A non-blocking
spatial join algorithm was proposed by Luo et al. [13]. However,
their goal was to quickly produce the first result tuple, rather than
completing the query execution. Two partitioning-based parallel
spatial join algorithms, clone join and shadow join, were presented
in [17]. Individual partitions are joined using the PBSM algo-
rithm [16], which uses a plane sweeping technique. This approach
works best when there is no index on the spatial attribute. In con-
trast, Niharika takes advantage of R-tree index on each partition.
Their techniques also do not account for node heterogeneity and so
suffer from performance issues due to “straggler” nodes.

The previous parallel join approaches appeared prior to the mul-
ticore era. The abundance of processing cores brings new oppor-
tunities as well as new challenges, such as the lack of support
for intra-query parallelism in many well-established databases, in-
cluding PostgreSQL. Recently, several projects [2, 4] have studied
intra-query parallelism for the emerging multicore machines but
their focus is primarily on traditional database workloads. Spatial



join has not received much attention, although it offers great poten-
tial for parallelism due to its compute intensive nature [20].

The emergence of the Cloud computing brings additional chal-
lenges to distributed query processing. Performance heterogene-
ity is a norm [10], rather than an exception, in these platforms.
Addressing performance heterogeneity in data processing frame-
works for Cloud, such as MapReduce, is a very active area of re-
search [22]. Although Mayr et al. [14] recognized potential issues
with parallel query processing in a heterogeneous cluster, it has
since received very little attention from the database community.

SJMR [23] is system that parallelizes spatial join operations us-
ing MapReduce on clusters of commodity machines. It does not
leverage the features of an underlying RDBMS, such as spatial in-
dexes and buffer cache management, and instead uses Hadoop to
process vector data stored in a simple string format. SJMR shows a
slight reduction in execution time over a parallel implementation of
PBSM, when joining 2 tables from the TIGER/Line for California.

Recently, Aji et al. produced a MapReduce-based system for
medical image processing, which also focuses on spatial join [3].
They also observed issues with skew in the dataset. Unfortunately,
a performance comparison is not possible, since they use a propri-
etary dataset and the code is not available. Moreover, results are
reported starting at 20 reducer nodes, so speedup and parallel effi-
ciency against a sequential implementation cannot be calculated.

It has been demonstrated [18] that MapReduce systems such
as Hadoop are significantly slower than parallel databases. Thus,
it is beneficial to take advantage of the database query process-
ing techniques, including spatial indexes. Niharika is inspired by
HadoopDB [1], as it utilizes individual PostgreSQL instances in
each member node. However, HadoopDB does not support spa-
tial data types and spatial query execution. Niharika differs from
HadoopDB architecturally and does not have Hadoop’s overhead.
Niharika’s heterogeneity-awareness and multi-round query execu-
tion model are unique among parallel query processing systems.

6. CONCLUSIONS
Spatial join is at the heart of many emerging spatial data anal-

ysis applications. We have introduced Niharika, a parallel spatial
query execution infrastructure, designed to exploit multiple cores
in modern processors to accelerate spatial join performance.

Performance heterogeneity in a cluster is natural in Cloud com-
puting settings. We have also shown that even an apparently ho-
mogeneous cluster can have significant performance heterogene-
ity, which hurts parallel database query execution times. With its
load-balancing techniques Niharika is able to dynamically perform
“performance proportional” assignment of workloads to nodes ac-
cording to their processing capacity. Niharika significantly reduces
idle times for faster nodes in relation to a straggler.

Niharika does not require changes to the database engine. Its
query execution model can naturally use all available processing
cores for intra-query parallelism, which is not currently supported
by many databases including PostgreSQL. We presented three multi-
round load-balancing algorithms and showed the importance of dy-
namically adapting to performance heterogeneity. Niharika’s Algo3
scales well with an in-memory dataset and a dataset that does not
fit in memory on a cluster of multicore nodes in the Cloud.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-

able feedback. This research was supported by an NSERC Discov-
ery Grant and an Amazon AWS in Education grant. Suprio Ray is
supported by an NSERC PGS-D scholarship.

8. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. HadoopDB: an architectural
hybrid of MapReduce and DBMS technologies for analytical
workloads. In VLDB, pages 922–933, 2009.

[2] R. Acker, C. Roth, and R. Bayer. Parallel query processing in
databases on multicore architectures. In ICA3PP, 2008.

[3] A. Aji, F. Wang, and J. H. Saltz. Towards building a high
performance spatial query system for large scale medical
imaging data. In SIGSPATIAL, pages 309–318, 2012.

[4] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively
parallel sort-merge joins in main memory multi-core
database systems. In VLDB, pages 1064–1075, 2012.

[5] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi.
Scheduling Divisible Loads in Parallel and Distributed
Systems. IEEE Computer Society, 1996.

[6] D. Borthakur. Petabyte scale databases and storage systems
deployed at facebook. In SIGMOD, 2013.

[7] T. Brinkhoff, H. peter Kriegel, and B. Seeger. Parallel
Processing of Spatial Joins Using R-trees. In ICDE, 1996.

[8] P. C. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio,
and J. D. Teresco. Dynamic octree load balancing using
space-filling curves. Williams College, TR CS-03-01, 2003.

[9] D. J. DeWitt and J. Gray. Parallel database systems: The
future of high performance database processing. Commun. of
the ACM, 35(6):85–98, 1992.

[10] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D.
Bowers, and M. M. Swift. More for your money: exploiting
performance heterogeneity in public clouds. In SoCC, 2012.

[11] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database Servers on Chip
Multiprocessors: Limitations and Opportunities. In CIDR,
pages 79–87, 2007.

[12] E. H. Jacox and H. Samet. Spatial join techniques. ACM
Transactions on Database Systems, 32(1), 2007.

[13] G. Luo, J. F. Naughton, and C. J. Ellmann. A Non-Blocking
Parallel Spatial Join Algorithm. In ICDE, 2002.

[14] T. Mayr, P. Bonnet, and J. Gehrke. Leveraging non-uniform
resources for parallel query processing. In CCGrid, 2002.

[15] PostgreSQL Partitioning. http://www.postgresql.org/-
docs/8.3/static/ddl-partitioning.html.

[16] J. M. Patel and D. J. DeWitt. Partition based spatial-merge
join. In SIGMOD, pages 259–270, 1996.

[17] J. M. Patel and D. J. DeWitt. Clone join and shadow join:
two parallel spatial join algorithms. In SIGSPATIAL, 2000.

[18] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt,
S. Madden, and M. Stonebraker. A comparison of
approaches to large-scale data analysis. In SIGMOD, 2009.

[19] S. Ray, B. Simion, and A. D. Brown. Jackpine: A benchmark
to evaluate spatial database performance. In ICDE, 2011.

[20] B. Simion, S. Ray, and A. D. Brown. Surveying the
landscape: An in-depth analysis of spatial database
workloads. In SIGSPATIAL, pages 376–385, 2012.

[21] http://www.census.gov/geo/www/tiger.
[22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and

I. Stoica. Improving MapReduce performance in
heterogeneous environments. In OSDI, pages 29–42, 2008.

[23] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR:
Parallelizing spatial join with MapReduce on clusters. In
CLUSTER, pages 1–8, 2009.

[24] X. Zhou, D. J. Abel, and D. Truffet. Data partitioning for
parallel spatial join processing. Geoinformatica, 1998.


