
Evolving to 5G: A Fast and Near-optimal Request

Routing Protocol for Mobile Core Networks

Jun He and Wei Song

Faculty of Computer Science

University of New Brunswick, Fredericton, Canada

Emails: {jhe2, wsong}@unb.ca

Abstract—Mobile networks are undergoing fast evolution from
the fourth-generation (4G)/Long Term Evolution (LTE) to the
fifth generation (5G) so as to keep pace with the ever-increasing
data traffic, mainly fueled by large-object delivery, such as video
streams. To cope with the traffic growth, next evolution will
integrate functionalities of content distribution networks (CDNs)
in various manners, from in-network caching and mobile CDNs to
virtualized source-service points in a software-defined mobile core.
In accordance with these developments, we consider the emerging
request routing problem of joint source redirection and flow rout-
ing in mobile networks with built-in content sources. We develop a
fast request routing protocol, which intelligently distributes traffic
demands among sourcing nodes and strategically routes flows
through intermediate nodes. Theoretical analysis and computer
simulations show that our protocol achieves (1 + ω)−optimal of
traffic engineering for any ω > 0. Advanced features of source
virtualization and data aggregation are also supported in the
protocol.

Index Terms—Video request routing, software-defined mobile
core network, source virtualization, data aggregation.

I. INTRODUCTION AND RELATED WORK

A. Next Evolution: Virtualization and Central Management

Global mobile data traffic will experience an 11-fold growth

in the next five years according to Cisco’s forecast [1].

Large-object delivery, i.e., with an object size greater than

1 megabytes, such as video streaming, is dominating the

traffic growth, which usually requires high bandwidth and low

latency. Such growth is, however, challenging the fundamental

of current mobile systems, e.g., the Long Term Evolution (LTE)

systems, which are designed as “interconnecting middle-boxes”

between public networks and mobile users. Mobile systems are

therefore in urgent need of more efficient content delivery.

To counter this, transparent content caching and delivery

techniques are extensively investigated in the literature [2]–

[6] so as to move data closer to customers and improve the

quality of experience (QoE). For instance, in an LTE system

depicted in Fig. 1, caching capacities at serving gateways

are exploited in [4], while built-in mobile content distribution

networks (MCDNs) or cloud serving points are studied in [3],

[7]. One essential development of LTE is the separation of

control plane and data plane, where the control traffic (e.g., for

charging and policies) is delivered in control plane, while

users’ requested data are transmitted in data plane. Central

This research was supported by Mariner Partners Inc. and Atlantic Canada
Opportunities Agency, Canada.

management is incorporated into certain key components of

the system, e.g., the packet data network gateway (PDN-GW).

In order to facilitate scalability, flexibility and cost-

efficiency, mobile networks are now evolving to the fifth

generation (5G) [8] with virtualized network functions [9]. 5G

mobile networks tend to employ software defined network-

ing (SDN) [10] techniques in core networks, where network

equipment is regarded as “computing equivalent”, gathering

programmable resources based on virtualization technologies.

Fig. 2 displays the basic architecture of a 5G system, where

data service points can be network components with storage

and sourcing capacities, possibly integrated in routers [11]

or gateways. To enable a more manageable system, a central

controller is setup for collecting network-wide information as

well as managing resources via the control plane.

In all the evolving network models above, central controllers

can easily gather network information, shape network traffic

and accordingly optimize network performance. On the other

hand, existing routing schemes fail to incorporate content

sources within core networks. Therefore, it is practical and

of vital importance to develop a fast request routing protocol,

which adapts to the new network architecture, jointly consid-

ering source redirection and flow routing.

B. Request Routing: Source Redirection and Flow Routing

Traffic engineering (TE), i.e., minimizing maximum link

utilization, is one of the most popular routing design objectives,

and has a great impact on the network capacity and stability.

Conventional routing protocols for TE optimization operate

at lower layers, such as open shortest path first (OSPF) at link

layer and OSPF-enhanced schemes at network layer [12], [13],

providing optimized flow routing for a given set of source-

destination traffic demands. For fixed source-destination re-

quests, state-of-art lower-layer routing algorithms include link-

state protocols [14], multicommodity-flow model protocols

[13] and the latest TE study in hybrid SDN [15]. All these

works only consider flow routing, where source selection (redi-

rection) for requests is assumed pre-determined. In this work,

we move attention to higher layers, i.e., source redirection at

application layer and flow routing at transport layer.

Evolving from 4G to 5G, mobile operators are integrating

content sources within their core networks, e.g., virtualized

data-service points in SDN-based cores, information-centric

networks with improved routers [11]. In evolving mobile core

networks, the central controller gathers request patterns from



CDN
INTERNET

P-GW

S-GW

IXP

eNodeB Mobile Device

Cloud

 Mobile

Network

Public

Internet

S-GW

P-GW

S-GW

Content Distribution 

Network

Packet Data Network 

Gateway

Serving Gateway

Local Hard Disk 

Mobile Content 

Distribution Network

MCDN

MCDN

CDN

Cloud Service Point
Core Network

Figure 1. LTE network architecture.

edge nodes, e.g., serving gateways in Fig. 1 or radio access

network (RAN) service gateways in Fig. 2, and redirects

requests to corresponding sources as well as determines flow

routing decisions. Meanwhile, the dynamics of requests with

continuous traffic demands (e.g., video streams), are usually in

several seconds [16], allowing such centralized routing opti-

mization. However, given the fact that source selection remains

an intractable problem in generic networks [17], request routing

in mobile networks is therefore more challenging.

In our previous work [18], we have considered similar

request routing problem for video delivery. This work com-

plements [18] by studying more design details of the routing

protocol, considering a protocol-oriented routing problem, and

extending the former work to emerging mobile networks and

generic object delivery.

C. Our Contributions

Our contributions are three-fold. First, to our best knowl-

edge, this is the first work to define and study the request

routing problem in the evolving mobile network, where joint

source redirection and flow routing are investigated. This prob-

lem is essential to high-performance data delivery in various

mobile network models evolving to 5G.

Second, we propose a complete request routing protocol

with close scrutiny into new networking paradigms. Our proto-

col handles source redirection at application layer integrating

source virtualization while optimizing generated flows at trans-

port layer with improved data aggregation.

Third, we formulate a protocol-oriented routing problem

aiming to minimizing maximum link utilization (traffic en-

gineering), where requested data are split among sources as

well as network edges. We propose a fully polynomial-time

approximation algorithm for the formulated problem, which

achieves an approximation guarantee of 1 + ω with time

complexity proportional to ω−2, for any ω > 0. The algorithm

outputs independent decisions of source redirection and flow

splitting to be implemented in the routing protocol.

The rest of this paper is organized as follows. Section II

presents our request routing protocol. Section III formulates the

optimization problem followed by the the proposed algorithm

in Section IV. Section V presents numerical results. Finally,

Section VI concludes this paper.

II. TARGET ROUTING PROTOCOL

In this section, we introduce the detailed design and features

of our protocol, while leaving routing decisions to be modeled

INTERNET

SDN Mobile Core

Radio Access 

Network

Mobile Device

Data Service 

Points

Internet Access 

Switch

RAN Service 

Gateways

Base Stations

Routers

Controller

Figure 2. Architecture of future mobile network.

and determined in Sections III and IV.

A. Protocol Model: What to Be Routed

We consider large-object delivery in an evolving mobile

network with a central controller. Large objects are transmitted

in a progressive downloading mode associated with periodical

requests at fixed data rates per several seconds. For instance, a

video clip of 30 megabytes encoded in Flash (FLV) supports

traffic engagement of 3 ∼ 4 minutes (in the same order of

playback time) with a resolution of 640 × 360. We assume

that the controller has the knowledge of the network topology

as well as content distribution of data sources. The content

distribution is typically updated on a weekly basis. We also

assume that requested flow can be arbitrarily split among

source nodes and intermediate nodes, which is a common

assumption in existing works, e.g., [17], [19], [20].

Our protocol works periodically. At the beginning of each

period, the controller gathers the information of all data re-

quests, and decides how these requests are fulfilled among

accessible sources and so-generated traffic are routed over

links. Data requests are initiated by clients, while reaching the

core network at edge nodes. We study request routing in core

networks, focusing on delivery of requested data from sources

to corresponding edge nodes.

B. Protocol Overview: How It Works

In the protocol, the central controller periodically computes

the source-redirection decisions as well as the flow-splitting

decisions according to the network condition and request

pattern in the current period. The source-redirection decisions

indicate how the demanding load of each request is shared

among available sources. And the flow-splitting decisions guide

how an intermediate node splits and forwards incoming flow

destined to specific edge nodes over its outgoing links.

Source-redirection decisions are associated with correspond-

ing requests. For instance, an edge node i requests for an

object k with traffic demand dki . Sk is the set of source

nodes that can serving object k. Then a source-redirection

decision regarding the request specifies the amount of flow

to be loaded on each potential source. With these parameters,

the central controller notifies involved source nodes to deliver

the corresponding amount of flows for each request destined

to the requesting node. Specifically, for each destination D,

a source node generates and combines all the requested data

traffic towards D upon requests from the controller and adds a



Node A

Dst. Egress %

D #1 20

……….

Flow-splitting 

Table

B [f1, D] C[f2, D] 

#1

#2
#3

 A [0.2fa, D]

 A [0.3fa, D]

 A [0.5fa, D]

D #2 30

D #3 50A [f3, D] 

fa=f1+f2+f3

Figure 3. A routing example based on flow-splitting table. A has two physical
incoming flows f1 from B and f2 from C with the same destination D, as well
as one logical incoming flow f3 generated by itself (A is a target source node
selected for some objects requested by node D). For transmission purpose, A
reads the destination identifier of each incoming flow, and then groups flows
with the same destination, e.g., D. For each destination, A then looks up local
flow-splitting table to obtain the splitting fractions for next-hop nodes. After
that, it combines same-destined flows, splits and forwards aggregated flows to
respective links, i.e., #1, #2, and #3, according to flow-splitting fractions.

logical incoming flow to it, possibly via local loop-back. This

operation is implemented at application layer.

Meanwhile, the controller generates and disseminates a

flow-splitting table to each node regarding the flow-splitting

decisions. One tuple of the table consists of three elements:

destination identifier, outgoing link identifier and splitting ratio.

Fig. 3 shows an example of the flow-splitting decision in our

protocol. This is operated at transport layer.

C. Features: Source Virtualization and Data Aggregation

Even though source redirection and flow routing is jointly

studied later in this paper, the controller disseminates these two

types of traffic policies independently, in two specific phases,

namely a flow-generating phase and a flow-routing phase, as

discussed in Section II-B. In the flow-generating phase, an on-

demand source fetches network objects, generates and attaches

flows to its loop-back link. In the flow-routing phase, flows are

labeled only by destination identifiers. In this phase, all nodes

are considered as intermediate nodes without knowledge of

sources, which implements source virtualization in a sense.

Network nodes in an LTE mobile core exchange data using

the general packet radio service (GPRS) tunneling protocol

(GTP), which is built on the top of user datagram protocol

(UDP). Data packets are encapsulated into GTP frames on

entering the core network and decapsulated on exiting. Inside

the core network, encapsulated GTP frames are transmitted in

a connectionless fashion among nodes. Connectionless deliv-

ery provides convenience and flexibility for data aggregation,

i.e., UDP frames destined to same edge nodes are readily aggre-

gated to form larger frames. Such data aggregation simplifies

traffic management and reduces protocol overhead [21].

The remaining work is therefore to determine the two sets

of flow-splitting parameters for our protocol, regarding flow

amount generated at sources for each request and flow-splitting

ratios at each node for incoming flows destined to edge

nodes, respectively. We next formulate the the routing problem

mathematically in Section III and propose a fast solution in

Section IV to obtain the required parameters.

III. SYSTEM FORMULATION AND OPTIMIZATION

FRAMEWORK

A. System Formulation

We model the mobile core network as a directed graph

G = (O, V,E), where O is the set of available objects

(o = |O|), V is the set of interconnected networking nodes

(n = |V |), and E is the set of links (m = |E|). Each link e
has a capacity c(e). Set V may include content source nodes,

access gateways, intermediate routers or any components with

networking functionalities.

Let (i, k) denote a data request at node i for object k to be

served by the set of nodes Sk, which contain object k ∈ O.

Each request is associated with a positive flow demand dki .

Denote the set of all requests by R with r = |R|.
A routing scheme determines how the requests to be fulfilled

over the network. That is, for each request (i, k), the controller

computes the data amount generated by each source in Sk,

denoted by bki (s), s ∈ Sk. Then, the controller needs to

calculate the flow-splitting ratios for each destination i over

every intermediate node u ∈ V , denoted by qi(u, e), where

sn(e) = u. For ease of presentation, we define functions sn(·)
and tn(·) that return the start node and the end node of an

input link e, respectively, i.e., e = (sn(e), tn(e)).

B. Optimization Framework

Let fk
i (e) denote the flow amount associated with each

request (i, k) over each link e. Then, the problem is to

determine the flow set {fk
i (e)}, ∀e ∈ E, (i, k) ∈ R so as

to achieve the TE objective, i.e., minimum maximum link

utilization. Apparently, this requires to simultaneously address

server redirection and flow routing. Specifically, we formulate

the following linear programming (LP) problem to minimize

the maximum link utilization:

min λ

s. t.
∑

(i,k)∈R

fk
i (e) ≤ λc(e), ∀e ∈ E

∑

u∈Sk

(

∑

e:sn(e)=u

fk
i (e)−

∑

e:tn(e)=u

fk
i (e)

)

≥ dki , ∀(i, k) ∈ R

vars. fk
i (e) ≥ 0, ∀(i, k) ∈ R, e ∈ E (1)

where the first constraint implies the link capacity limitation,

scaled by the link utilization factor λ, and the second constraint

satisfies the demand for object k at node i. Here, fk
i (e)

represents the flow amount destined to node i, which also

implies flow conservation [22]. The optimization in (1) is to be

computed periodically at the controller at the same time scale

as the dynamics of clients’ requests, e.g., for video delivery,

typically in seconds.

Although exact solutions to problem (1) are tractable, fast

computation is infeasible with modern LP solvers due to the

prohibitively large size. For instance, in a production system

with 100 nodes, the number of requests in R is O(105), and the

number of edge is O(103). The rudimentary size of problem

(1) is with O(108) variables and O(105) constraints.

We note that the formulation (1) is similar to the multicom-

modity flow problem, which has been extensively studied in



the literature [12], [13]. Similar TE problem in Intermediate

System-Intermediate System (IS-IS) is formulated and solved

with exact optimal solution using link-state routing in [14].

There is a key difference though. Existing works and solutions

rely heavily on the fact that peer-to-peer traffic requirements are

pre-calculated such that flows are split only among intermediate

nodes/routers, since the major traffic of conventional networks

is connection-oriented, e.g., via the transmission control pro-

tocol (TCP). In contrast, our model targets more scalability

and flexibility where requested flows can also be split among

sources, making existing solutions infeasible. Jointly consid-

ering the computing time limit (bounded by the length of a

period), we conclude that a fast approximation algorithm with

bounded performance guarantees is more desirable.

Recalling the requirements of our protocol in Section II-C,

we comment that only the proportional flow amount of {fk
i (e)}

needs to be calculated, while the source generated flow amount

can be computed with requested demands thereafter.

IV. PROPOSED FAST ALGORITHM

A. Alternative Flow-Path Model

For each pair of nodes i, j ∈ V , Pij denotes the set of paths

from i to j, and P = ∪(i,j)Pij presents the union of all path

sets. Moreover, let Pk
i be the set of all available paths to serve

request (i, k) ∈ R, formally, Pk
i = ∪j∈Sk

Pji.

Next, we consider an implicit form of problem (1), formu-

lated as follows:

min γ

s. t.
∑

P :e∈P

x(P ) ≤ γc(e), ∀e ∈ E

∑

P∈Pk
i

x(P ) ≥ dki , ∀(i, k) ∈ R

vars. x(P ) ≥ 0, ∀P ∈ P . (2)

Solutions to problem (2) output the flow amount x(P ) on each

path P , which is readily mapped to flow amount over links by

enumerating links over each path P in time O(|P|W ), where

W is the average width of the network.

Note that in problem (2), {x(P )} is scalable to the objective

γ. In other words, if we scale all {x(P )} by 1/γ, we alter

problem (2) into the form of the maximum concurrent flow

problem [23], which is formulated as:

max π
s. t.

∑

P :e∈P

y(P ) ≤ c(e), ∀e ∈ E

∑

P∈Pk
i

y(P ) ≥ πdki , ∀(i, k) ∈ R

vars. y(P ) ≥ 0, ∀P ∈ P . (3)

If we let x(P ) = y(P )/π, γ = 1/π, we note that problems (2)

and (3) are equivalent. Problem (3) is a variant of the maximum

concurrent flow problem, where each commodity has one

destination and (possibly) multiple sources. This problem was

first formulated and investigated in our previous work [18]. In

the following, we extend the algorithm developed in [18] to

solve problem (1) without extra enumeration of paths.

B. Proposed Approximation Algorithm

First, we list the dual form of problem (3) as follows:

min D(l) ,
∑

e∈E

c(e)l(e)

s.t.
∑

e∈P

l(e) ≥ zki , ∀(i, k) ∈ R, ∀P ∈ P
k
i

∑

(i,k)∈R

zki d
k
i ≥ 1

vars. l(e), zki ≥ 0, ∀(i, k) ∈ R, ∀e ∈ E (4)

where l(e) is the length function of edge e, zki is the dual

variable associated with request (i, k).
According to the analysis in [18], zki can be viewed as the

minimum cost for shipping unit data from sources in Sk to

node i under length l. We define the aggregate shipping cost

for all requests by α(l), given by

α(l) ,
∑

(i,k)∈R

dki ψ
k
i (l) (5)

where ψk
i (l) denotes the length value of the shortest path over

all available paths regarding (i, k) under function l. Then,

solving problem (4) is equivalent to assigning a length l to each

edge, such that D(l)/α(l) is minimized. The optimal value of

problem (4) is expressed as:

β , min
l
D(l)/α(l). (6)

Problem (4) is readily solved using the algorithm in [18].

The main procedure of our algorithm is outlined in Alg. 1.

Similarly, our algorithm proceeds in a phase-iteration-step

manner. Initially, the length value of edge e ∈ E is set to

l(e) = δ/c(e), where δ is a parameter to be defined later.

The algorithm then proceeds in phases, while in each phase,

all demands of requests are satisfied by |V | iterations. Each

iteration j considers all requests initiated at node j through

a series of steps. In each step, shortest available paths are

considered and flows are assigned to links such that at least

one edge is saturated or no more flow remains to be routed. At

the end of each step, the length function along shortest paths

is updated by

l(e) = l(e)(1 + ǫ ·
sum of new flows on e

c(e)
)

where ǫ is an accuracy factor.

In Alg. 1, yi(e) denotes the flow amount destined to node

i on edge e, Ei records all the edges used for delivering

responses to node i, d̃kj presents the unfulfilled demand of

request (j, k) and is initialized with dkj at each phase, and c′(e)
is the remaining capacity of edge e in each step. In step (i) of

phase j, either all remaining demands at node j are fulfilled

(see line 17) or at least one edge is saturated (see line 23).

Here, fk
j is the actual amount of flow attached to the shortest

path with respect to request (j, k). For each unit of routed flow,

we accumulate it in source generated flow amount parameter

{bkj (s
k
j )} as well as in edge load {yj(e)} correspondingly.

With similar analysis in [23], Alg. 1 results in an infeasible

edge-flow solution after termination of phases, which can be



Algorithm 1: Algorithm for problem (1).

Input: Network graph G = (O, V,E), edge capacities

c(e), object sources set Sk, requests set R, request

demands {dkj }, accuracy factor ǫ
Output: Source generated flow amount {bki (s)} and

flow-splitting fraction {qi(u, e)}
1: Initialize

l(e)← δ/c(e), ∀e ∈ E; yi(e)← 0, ∀e ∈ E, i ∈ V ;
bki (sk)← 0, ∀(i, k) ∈ R, sk ∈ Sk;Ei ← ∅, ∀i ∈ V.

2: while D(l) < 1 do

3: for j = 1 to v do

4: For all requests (j, k) ∈ Rj , initialize d̃kj ← dkj
5: while D(l) < 1 and d̃kj > 0 for some k do

6: K ← {k|(j, k) ∈ Rj , d̃
k
j > 0}

7: P k
j ← shortest path in Pk

j using l, ∀k ∈ K
8: c′(e)← c(e), ∀e ∈

⋃

k∈K P k
j

9: Ej ←
⋃

k∈K P k
j

⋃

Ej

10: for k ∈ K do

11: c← mine∈Pk
j
c′(e), skj is the first node in P k

j .

12: if d̃kj ≤ c then

13: bkj (s
k
j )← bkj (s

k
j ) + d̃kj

14: for e ∈ P k
j do

15: yj(e)← yj(e) + d̃kj , c′(e)← c′(e)− d̃kj
16: end for

17: fk
j ← d̃kj , d̃kj ← 0

18: else

19: bkj (s
k
j )← bkj (s

k
j ) + c

20: for e ∈ P k
j do

21: yj(e)← yj(e) + c
22: end for

23: d̃kj ← d̃kj − c, f
k
j ← c, break

24: end if

25: end for

26: l(e)← l(e)
(

1 + ǫ

∑
k:e∈Pk

j
fk
j

c(e)

)

, ∀e ∈ ∪k∈KP
k
j

27: end while

28: end for

29: end while

30: for i ∈ V and (i, k) ∈ Rj do

31: bki (s
k
i )←

bki (s
k
i )∑

s∈Sk
bki (s)

× dki , ∀s
k
i ∈ Sk

32: end for

33: for i ∈ V do

34: Let U be the vertex set of Ei

35: for u ∈ U do

36: For each e with sn(e) = u,

qi(u, e)←
yi(e)∑

e′:sn(e′)=u∧e′∈Ei
yi(e′)

37: end for

38: end for

scaled down proportionally to obtain a feasible solution. In

contrast, here we only need the proportional solution. Each

request demand is split among available sources and is further

converted to source generated flow amount (see line 31). Flow-

splitting ratios are then calculated on each edge regarding

specific destinations (see line 36).

0 5 10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

ω
−1

M
a
x

im
u

m
 L

in
k

 U
ti

li
z
a
ti

o
n

 

 

 Opt. Range

Alg. 1

(a) n = 30.

0 5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

ω
−1

 

 

M
a
x

im
u

m
 L

in
k

 U
ti

li
z
a
ti

o
n

 Opt. Range

Alg. 1

(b) n = 50.

0 5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ω
−1

 

 

M
a
x

im
u

m
 L

in
k

 U
ti

li
z
a
ti

o
n

 Opt. Range

Alg. 1

(c) n = 70.

Figure 5. Optimal gap with different approx. ratios ω.

C. Correctness, Approximation and Running Time

Compared to the algorithm in [18], we comment that the

path-flow solution therein can be easily recovered from output

of the modified algorithm here. Accordingly, the correctness

therein also applies to Alg. 1.

The analysis in [18] also results in the following conclusion:

Theorem 1. The algorithm in [18] obtains a (1 + ω)−
approximation result for problem (2) for any ω > 0 by setting

δ =
1

(1 + ǫ)
1−ǫ
ǫ

·

(

1− ǫ

m

)1/ǫ

and ǫ = 1− 1/ 3
√

(1 + ω).

Therefore, we conclude that Alg. 1 obtains a (1 + ω) ap-

proximation solution to (1), for any ω > 0, with appropriate

selection of accuracy factor ǫ and δ.

In Alg. 1, the total number of steps is O(ǫ−2m logm +
n logm log r) according to the analysis in [18]. Inside each

step, using Fibonacci heaps, the computation of a shortest

path tree requires O(n log n + m) for one run of Dijkstra’s

algorithm on the reversed graph of G. Other cost includes

updating source flow variables which takes at most O(rmax),
where rmax denotes the maximum number of requests from

one node, and updating edge flows, which takes at most

O(nW ). Correspondingly, we denote the cost of each step

by Cs , O(rmax + n logn + nW ). Therefore, Alg. 1

computes a (1 + ω)-approximation solution to problem (1)

in Õ((ω−2 + log r)m · Cs) time, for any ω > 0, where

Õ(f) = O(f · logO(1)m).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our algorithm

using computer simulations. We employ the simulator devel-

oped in [18] and implement Alg. 1 with around 500 lines of

C++ code. The simulated system is a ring-star network, where

n− 1 serving nodes are interconnected in a ring and node 1 is

linked to each of the other n− 1 nodes, respectively. There is

also a virtual data repository in the network, connected to node

1 and node n− 1. All links are bi-directional with a capacity

of 1 Gbps for each direction. There are 200, 000 objects in the

repository, which are distributed among serving nodes so that

each object has 6 replicas. We randomly generate requests at

each node, controlled by the factor of traffic density, which

represents the average number of requests initiated by each

node. The demand of each request is uniformly generated from



0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9
x 10

4

ω
−1

N
um

be
r 

of
 P

ha
se

s

 

 

n=70

n=50

n=30

Figure 6. Number of required phases vs. approximation ratios.

0 500 1000 1500 2000

0
20

40
0

0.5

1

1.5

2

x 10
4

 

Traffic Densityω
−1

 

 N
um

be
r 

of
 P

ha
se

s

Figure 7. Number of phases vs. approximation ratios and traffic density.

128 Kbps to 1 Mbps. Three cases with the number of nodes

30, 50, 70 are simulated under various conditions. For each

instance, we run Alg. 1 to route the requests.

Alg. 1 produces an upper bound for the optimal traffic

engineering of problem (1). To lay out the optimal range, we

use the algorithm in [18] to obtain a lower bound. Fig. 5 shows

the maximum link utilization computed by Alg. 1 with different

approximation factors ω, together with the optimal range. We

can conclude from the figure that Alg. 1 is arbitrarily near-

optimal by selecting ω properly.

However, it is more time-consuming to obtain approximate

results closer to the optimal (see Section IV-C), which re-

quires more phases in the algorithm. To have a numerical

understanding, we record the number of phases in each of the

three running cases. Fig. 6 shows the relationship between the

number of phases and the approximation parameter ω. The

three quadratic curves therein validate the conclusion that the

number of phases in Alg. 1 grows quadratically with ω−1 (see

Section IV-C). Fig. 7 further illustrates the impact of traffic

density on running time. In the network with 50 nodes, traffic

density is increased from 100 to 2000 with a step size of 100.

The slant surface towards higher traffic density in Fig. 7 also

confirms our intuition that the link utilization increases with

traffic density such that the algorithm requires fewer phases.

All simulations are run on a Linux machine with an Intel-

i7 processor and 4G RAM. The simulator uses around 85M
memory for each instance. In a system of 50 nodes with

traffic density of 800, i.e., 400K concurrent requests, it costs

around 4 seconds to route all requests with a traffic-engineering

approximation ratio of ω = 0.05.

VI. CONCLUSION

In this work, we have studied the request routing problem

in mobile core networks evolving from 4G/LTE to 5G. A

complete protocol has been developed to address both source

redirection and flow routing. In order to compute the routing

decisions required by the protocol, we formulate the request

routing problem as an LP problem. We then propose a fast

algorithm which solves the formulated problem and achieves

(1 + ω)−optimal of traffic engineering, for any ω > 0.

Although our protocol targets the next generation mobile core,

it also applies to a 4G system with built-in content caching and

a central controller.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic forecast
update, 2013-2018,” February 2014.

[2] S. Woo et al., “Comparison of caching strategies in modern cellular
backhaul networks,” in Proc. of ACM Annual International Conference
on Mobile Systems, Applications, and Services, 2013, pp. 319–332.

[3] F. Z. Yousaf et al., “Mobile CDN enhancements for QoE-improved
content delivery in mobile operator networks,” IEEE Network, vol. 27,
no. 2, pp. 14–21, 2013.

[4] J. He et al., “A collaborative framework for in-network video caching in
mobile networks,” in Proc. of IEEE Conference on Sensor, Mesh and Ad

Hoc Comm. and Networks (SECON), 2013, pp. 406–414.
[5] J. He, X. Zhao, and B. Zhao, “A fast, simple and near-optimal content

placement scheme for a large-scale VoD system,” in Proceedings of IEEE

International Conference on Comm. Systems (ICCS), 2012, pp. 378–382.
[6] J. Zhu et al., “Epcache: In-network video caching for lte core networks,”

in Proc. of IEEE International Conference on Wireless Communications

& Signal Processing (WCSP), 2013, pp. 1–6.
[7] M. Liebsch et al., “Runtime relocation of CDN serving points-enabler

for low costs mobile content delivery,” in Proceedings of IEEE Wireless
Comm. and Networking Conference (WCNC), 2013, pp. 1464–1469.

[8] ADVA, “Horizon 2020 advanced 5G network infrastructure for future
Internet PPP, draft version 2.1,” 2013.

[9] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[10] Open Networking Foundation, “Openflow-enabled SDN and network
functions virtualization,” ONF Solution Brief, 2014.

[11] B. Ahlgren et al., “A survey of information-centric networking,” IEEE

Communications Magazine, vol. 50, no. 7, pp. 26–36, 2012.
[12] A. Ouorou, P. Mahey, and J. P. Vial, “A survey of algorithms for

convex multicommodity flow problems,” Management Science (JSTOR),
pp. 126–147, 2000.

[13] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 234–247, 2005.

[14] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering,” IEEE/ACM

Transactions on Networking, vol. 19, no. 6, pp. 1717–1730, 2011.
[15] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in

software defined networks,” in IEEE INFOCOM, 2013, pp. 2211–2219.
[16] F. Dobrian et al., “Understanding the impact of video quality on

user engagement,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 362–373, 2011.

[17] H. Xu and B. Li, “Joint request mapping and response routing for geo-
distributed cloud services,” in IEEE INFOCOM, 2013, pp. 854–862.

[18] J. He and W. Song, “Optimizing video request routing in mobile networks
with built-in content caching,” University of New Brunswick, Canada,
http://cs.unb.ca/~wsong/optrouting.pdf, Tech. Rep., March 2014.

[19] P. Wendell et al., “DONAR: Decentralized server selection for cloud
services,” ACM SIGCOMM Computer Communication Review, vol. 40,
no. 4, pp. 231–242, 2010.

[20] R. Krishnan et al., “Moving beyond end-to-end path information to opti-
mize CDN performance,” in Proceedings of ACM SIGCOMM Conference

on Internet Measurement Conference, 2009, pp. 190–201.
[21] M. Castrucci et al., “A cognitive future Internet architecture,” in The

Future Internet. Springer, 2011, pp. 91–102.
[22] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows: Theory,

algorithms, and applications,” 1993.
[23] G. Karakostas, “Faster approximation schemes for fractional multicom-

modity flow problems,” in Proc. of ACM-SIAM Symposium on Discrete

Algorithms, 2002, pp. 166–173.


