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Abstract—Device-to-device (D2D) communications provide a
promising paradigm for data dissemination with low resource
cost and high energy efficiency. In this paper, we propose a
three-phase approach for D2D data dissemination, which exploits
social-awareness and addresses users’ incentive constraints via
moneyless mechanisms. The proposed approach includes one
phase of seed selection and two subsequent phases of data
forwarding. First, we build a social-physical graph and partition
it into communities based on edge-betweenness, and then select
one seed for each community according to vertex-closeness. In the
subsequent two data forwarding phases, we propose new mecha-
nisms for message selection and cooperation pairing which take
into account both altruistic and selfish behaviors of users. The
theoretical analysis proves truthfulness of the message selection
mechanism. Extensive simulation results further demonstrate the
effectiveness of the three-phase approach.

Index Terms—Data dissemination, social-awareness, incentive
constraints, truthfulness, D2D communications.

I. INTRODUCTION AND RELATED WORKS

Data dissemination aims at delivering information to a

group of target users in a geographical region. It has a

wide range of applications, such as in disaster alert, event

notification, and advertisement distribution. The mobile-to-

mobile, or device-to-device (D2D) communications, provide

a promising paradigm to expedite data dissemination, while

offering side benefits such as traffic offloading and energy

efficiency. One widely studied data dissemination approach

is based on a two-phase procedure. A base station (BS) first

delivers content objects to certain selective users, called initial

sources or seeds. After that, the seeds propagate the objects

to other users via D2D communications, and any user that

receives the data further forwards the data to others resulting

in an information epidemic. Considering that portable wireless

devices such as smart phones and tablets are carried by people,

it is essential to address and exploit the social properties of

human behaviors in cooperative data dissemination.

In the literature, there have been some existing studies on

social-aware data dissemination [1]–[3]. Most existing works

either assume that users are completely altruistic so that they

are willing to transmit messages to anyone they encounter
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[1], or assume that users are absolutely selfish so that they

need to be incentivized to participate in the process of data

dissemination [2]. In fact, a user tends to be double-faced such

that he/she is selfish to strangers but altruistic to the people

with social ties such as family members, friends, colleagues,

etc. Therefore, users’ altruism and selfishness should be jointly

exploited for effective data forwarding.

Based on these insights, in this paper, we propose a three-

phase approach for social-aware data dissemination, which

fuses the social network and mobile network for initial seed

selection, and exploits users’ altruism and selfishness for

subsequent data forwarding. Specifically, Phase I selects seeds

based on a social-physical graph model, which characterizes

users’ social relationships and transmission opportunities via

D2D communications. Then, Phase II and Phase III follow

with data forwarding to accommodate users’ altruistic and

selfish incentive constraints, respectively. In Phase II, data

forwarding only takes place among socially connected users

and a truthful moneyless mechanism is proposed for message

selection. In Phase III, the BS intervenes and activates data

forwarding among cooperative users which are grouped by

a stable matching mechanism. We prove that the message

selection mechanism is truthful and demonstrate the high

performance of the three-phase approach with extensive sim-

ulations.

The remainder of this paper is organized as follows. Sec-

tion II gives the system model for social-aware data dissemi-

nation via D2D communications. In Section III, we introduce

the proposed three-phase approach and analyze the relevant

properties. In Section IV, we evaluate the performance of our

mechanisms and conclude this paper in Section V.

II. SYSTEM MODEL

In this paper, we consider a data dissemination scenario

depicted in Fig. 1, where a BS is requested to disseminate a

sequence of m messages, M , to a set of n users, N , in an area.

Assume that each user i ∈ N has a heterogeneous preference

toward a message k ∈ M , quantified by a normalized valuation

(i.e., utility) vik (0 ≤ vik ≤ 1). The BS first chooses a subset

of users D ⊂ N as seeds and directly transmits the messages



Base Station

Cellular Link

D2D Link

Seed Seed Seed

D2D Link

Cellular Link

D2D Link

Fig. 1. Data dissemination scenario.

to them, and then the seeds and any receiving user further

forward the data to others via D2D communications.

A. Social Graph Model

Here, we specify our system model from both the social

and physical perspectives. First, a social graph G0(N,E) is

used to model the social ties among the nodes in N , where

an edge e = (i, j) ∈ E represents that nodes i and j
are socially connected via social relationships among family

members, friends, colleagues, etc. Note that the social graph

is unweighted and undirected.

B. Physical Network Model

The physical network supporting data dissemination needs

to be characterized by the communication and contact process-

es among nodes. While the communication feasibility depends

on the D2D links between any two nodes, the contact process

directly varies with user mobility. Considering a target data

rate, we take the time to transmit a message at this rate as

one time slot τ . Then, we say that two nodes encounter each

other, or are in contact, when their physical distance and D2D

channel conditions can support the target data rate. For each

pair of nodes i and j, their contact process alternates between

encounters and inter-contacts. Referring to previous studies

on real contact traces [4], we assume that the inter-contact

interval, up to a characteristic time in the order of half a day,

follows a power-law tail, which can be modeled by a Weibull

or Pareto distribution. The contact duration is modeled by a

uniform distribution [5]. The probability that nodes i and j
have at least one encounter within a time frame T is termed

as contact probability and denoted by pij .

C. Social-Physical Graph Model

Coupling the social graph G0 and the physical network

model, we have a weighted and undirected social-physical

graph G, which inherits the node set and edge set from G0

and further labels each edge e = (i, j) ∈ E by a length metric

length(e) = log
1

pij
. (1)

In social network analysis, betweenness and closeness are

two classic centrality measures which can identify the most

influential vertices or edges in a weighted or unweighted, undi-

rected or directed graph. Here, we consider edge-betweenness:

betweenness(e) =
∑

s,d∈N,e∈E

σsd(e)

σsd

(2)

where σsd is the number of shortest paths from node s to node

d, and σsd(e) is the number of those shortest paths that pass

through edge e. Given the length metric in (1), we can see

that the total length of a path from node s to node d is

length(P ) = log
1∏

e=(i,j)∈P pij
. (3)

In addition, we consider closeness of a vertex based on

harmonic centrality, defined by

closeness(s) =
∑

s,d∈N,s6=d

1

dsd
(4)

where dsd is the length of the shortest path(s) (i.e., the dis-

tance) from node s to node d. This closeness definition actually

measures the speed of spreading information sequentially from

node s to all other nodes.

III. SOCIAL-AWARE DATA DISSEMINATION WITH

INCENTIVE CONSTRAINTS

As data forwarding via D2D communications costs non-

negligible bandwidth, energy, and computing resources, self-

interested users should be incentivized to contribute to data

spreading. Many existing studies focus on monetary incentives

that involve transfer of money to compensate a forwarding

node for its cost of resources. In contrast, moneyless incentives

are often used in the environments where monetary com-

pensation is difficult or prohibited. The existence of social

trust between two socially connected users can justify their

willingness to disseminate data to each other via D2D links

when falling within the communication range. Thus, social

trust can be regarded as one type of moneyless incentives,

which is termed social incentive in the following. Moneyless

incentives have been considered in cooperative communica-

tions, where a relay node helping a source-destination pair

can be allocated a higher priority for channel access [6,7].

We refer to this form of moneyless incentives with exchange

of resources as cooperative incentive. Compared to monetary

mechanisms with the payment leverage, it is more challenging

for a moneyless mechanism to ensure truthfulness.

To accommodate the incentive constraint, we consider a

three-phase approach, which further splits data forwarding into

two phases, namely, data forwarding among socially connected

users, and data forwarding among cooperative users. The

two phases of data forwarding exploit social incentive and

cooperative incentive, respectively.

A. Phase I: Initial Seed Selection

Based on the definitions of the social-physical graph G and

edge-betweenness, we can use the Girvan-Newman algorithm

[8] to partition the social-physical graph into c communities.

The key idea of the Girvan-Newman algorithm is to remove
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Fig. 2. Partitions of social-physical graph for community formation and seed
selection. Here, three nodes (1, 6, and 13) are selected for three reasonably
large communities. Nodes (11, 12, 16, and 17) are not connected to any seed
and have to leverage cooperative means to receive messages in dissemination.

the edge of the highest betweenness (break a tie randomly),

recalculate the betweenness of remaining edges, and repeat

until there are c connected components that are “reasonably”

large (e.g., of a size not less than 3) corresponding to c
communities. The nodes within each community are more

strongly connected than those in the rest of the communities.

Then, according to vertex-closeness, the node of the highest

closeness in each community is selected as a seed. Here,

the calculation of closeness depends on the local community

structure instead of the original social-physical graph. Note

that the number of seeds can be limited by adjusting the

minimum size of communities.

B. Phase II: Data Forwarding Among Socially Connected

Users

To improve energy efficiency, we assume that each node is

only periodically activated for dissemination according to cer-

tain schedule. Specifically, an active ego node sends a catalog

of available messages in possession to its socially connected

nodes (for simplicity, generally referred to as “friends” in the

following) within D2D communication range. Each receiving

friend node returns a list of message IDs it is missing. Suppose

that the ego node is subject to an energy constraint and only

able to send at most g messages in one dissemination period.

The ego node then needs to decide the messages it will forward

to its friends. This problem can be abstracted as a bipartite

graph in Fig. 3. Here, an edge between a friend node ui and

a potential message mk indicates that node ui is interested in

message mk and has a valuation vui,mk
toward this message

according to its preference.

This message selection problem involves two key issues.

First, the ego node intends to maximize the total utility of its

friends with its restricted energy, referred to as an efficiency

requirement. Second, we need to address the strategic behavior

of the receiving nodes. Since the ego node is socially con-

nected to all receiving nodes, the social trust in between can

justify the altruism of the ego node toward the receiving nodes.

According to the strong triadic closure [9] property of social

networks, if node A is connected to nodes B and C with strong
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Fig. 3. Message selection modeled by a bipartite graph.

ties, it is likely that B and C are also connected for reasons

such as opportunity, trusting, and incentive. Nonetheless, the

ego node may have weak ties and violate the triadic closure

property, which implies a lack of social trust among the

receiving nodes. A receiving node can lie about its private

preference toward the messages to maximize its own payoff.

Therefore, we require a truthful mechanism which incentivizes

the receiving nodes to report their true preferences.

As in [10], we assume that all possible values, vik’s, are

known a priori or verifiable, but the edges in the bipartite

graph are private. This turns the private information held by

each node on the left into δik = {0, 1} for each present edge.

Accordingly, we propose a greedy algorithm in Alg. 1. The key

idea is to scan the edges according to a non-increasing order of

all known valuations vik’s and select the messages incident to

the present edges. This procedure continues until all messages

are selected or the maximum allowed number is reached. Next,

we prove that Alg. 1 gives a truthful mechanism.

Theorem 1. The mechanism based on Alg. 1 is truthful.

Proof. To prove truthfulness, we consider an arbitrary friend

node ui, which reports an edge set L̂i. It is easily seen that

L̂i ⊆ Li, where Li denotes ui’s true edges. This is because an

edge e = (i, k) /∈ Li indicates that ui does not need message

mk and receiving such a message if it is selected eventually

costs unnecessary energy without any real gain. Therefore, ui

has no incentive to report nonexisting edges.

On the other hand, suppose that ui intends to improve

its utility by hiding some edges in Li. Since there is no

competition when an ego node has sufficient capacity to

multicast all interested messages, we focus on the case when

the number of selected messages is g′ , min{g,m′}. Let

S = {mα1
, ...,mαg′

} denote the selected messages with ui’s

truthful report which are sorted in a non-increasing order of

the maximum values incident on these messages. Notice that

this is also the order that these messages are selected by

Alg. 1. Similarly, we denote the selected messages with ui’s

untruthful report by Ŝ = {mβ1
, ...,mβg′

}. Filtering out the

unique messages in S and Ŝ, we can pair these two subsets

of messages one by one in the order defined above.

Here, we notice one important observation which is key



Algorithm 1 A truthful approximate mechanism for message

selection.
Input: N , M , L = {(ui,mk) : δik = 1, ui ∈ N,mk ∈ M},

{vik : ui ∈ N,mk ∈M}, g
Output: S ⊆M = {mk : xk = 1, 1 ≤ k ≤ m}, where xk ∈ {0, 1}

1: xk = 0, ∀1 ≤ k ≤ m // Initialize message selection

2: S ← ∅

3: m′ ← number of messages with positive total values

4: if m ≤ g then

5: xk = 1, if
∑n

i=1 δikvik > 0, ∀1 ≤ k ≤ m

6: return S

7: end if

8: ℓ← 0 // Track number of selected messages

9: Sort pairs (i, k) in a non-increasing order of vik , breaking ties

consistently and arbitrarily

10: for all e = (i, k) ∈ L in the above order do

11: if ℓ = min{g,m′} then

12: break // No more message is available or allowed

13: end if

14: if xk = 0 then

15: xk ← 1 // Add the newly incident message

16: S ← S ∪ {mk}
17: ℓ← ℓ+ 1
18: end if

19: end for

20: return S

to the proof. That is, ui is only able to change a selection

from mα to mβ if viα is the maximum value among all edges

incident on mα. If ui hides such an edge, it can only affect the

selection of those messages whose maximum values are less

than mα. This is because Alg. 1 selects messages in a non-

increasing order of vik’s. Therefore, a hidden edge that caused

the change from mα to mβ must satisfy viα > viβ . The net

gain of this change (viβ − viα) must be negative. The same

reasoning can be applied to each pair of unique messages.

Therefore, no positive gain motivates ui to hide edges.

C. Phase III: Data Forwarding Among Cooperative Users

In Phase II, data forwarding periodically takes place among

socially connected nodes according to each node’s individual

dissemination schedule. It is possible that even after time W
(W < T ), some node has not received any message as it has

not had a chance to encounter its friends. On the other hand,

as seen in Fig. 2, there exist some “orphan” nodes that are

not connected to any seed because they are isolated or belong

to small communities. If data forwarding only happened when

social trust exists, these orphan nodes could not receive any

message from the seeds and their connected nodes. Hence, in

Phase III, we aim to enable cooperation that mutually benefits

both orphan nodes and socially connected nodes.

Consider the scenario illustrated in Fig. 4. Here, uα and uβ

are two socially connected nodes, while uγ is an orphan node.

Suppose uα wants to disseminate its available messages to a

friend uβ but could not meet uβ due to their mobility patterns.

If uγ has a high chance to encounter both uα and uβ , uα may

like to send its messages to this stranger node. If uγ finally

uα uβ  

uγ   

pαβ  

pαγ   pγβ    

Msg Rcvd

m1

m2

m3

m4

Msg Rcvd

m1

m2

m3

m4

Msg Rcvd

m1

m2

m3

m4

m3 m4key

encrypt

encrypt

uβ’s public key 

m3 m4key

decrypt

decrypt

uβ’s private key 

key

Fig. 4. Data forwarding among an orphan node uγ and two socially connected
nodes (uα, uβ).

meets uβ and forwards its carried messages to uβ , uγ can be

granted access to these messages as a reward. To implement

this cooperation idea, it is important to ensure that uγ can only

receive the reward when successfully performing the carry-

and-forward task. A simple solution is that uα encrypts the

messages using a randomly generated session key ys, and

attaches the session key encrypted by the public key of uβ .

Only when uβ receives the messages from uγ will uβ pass

the decrypted session key to uγ to unlock the messages.

The cooperation pairing problem can be modeled by a

bipartite graph in Fig. 5. Here, the left side is the set of orphan

nodes N ′ ⊂ N . The right side is the set of directional edges,

denoted by E′. Each pair of socially connected nodes (us, ud)
correspond to an edge e = (us, ud) ∈ E in the social-physical

graph G. For each e = (us, ud) ∈ E, we include two entities,

(us, ud), (ud, us) ∈ E′, for both directions.
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Fig. 5. A cooperation pairing example modeled as a stable matching problem
with a bipartite graph.

As us and ud may hold a different set of messages, denoted

by Ms and Md, respectively, an orphan node ur thus achieves

a different utility with a forwarding task from us to ud or from

ud to us. Given a set of messages available at ur, we say that

ur falls within the acceptable set of (us, ud) and vice versa,

if Ms ∩Mr ∩Md 6= ∅, i.e., us contains at least one message

that is commonly interested to ur and ud. Specifically, ur’s

expected valuation toward (us, ud) is defined by

vur
|(us, ud) = psr · prd

∑

mk∈Ms∩Mr∩Md

vrk. (5)

As seen, ur’s valuation depends on its contact probabilities



Algorithm 2 The deferred acceptance algorithm for coopera-

tion pairing.

Input: G, M , D

Output: {yij : ui ∈ N ′, ej ∈ E′}, where yij ∈ {0, 1}
1: E′ = {e′ = (s, d), (d, s) : e = (s, d) ∈ E}

// Transform each edge in E to two directional edges in E′

2: N ′ ← nodes in N of completion ratio no more than ϑ

// Initialize set of cooperative candidate nodes

3: for all us ∈ D do

// Find nodes reachable from seeds in D

4: Depth-first-search from us, label traversed vertices as visited

5: end for

6: N ′ ← N ′∪ unvisited vertices in N (orphan nodes)

7: Ai ← ∅, ∀ui ∈ N ′, Bj ← ∅, ∀ej ∈ E′

// Sets of acceptable candidates of ui and ej
8: for all ui ∈ N ′ do

// Derive valuations for preference ordering

9: for all ej = (us, ud) ∈ E′ do

10: if Ms ∩M i ∩Md 6= ∅ then

11: Ai ← Ai ∪ {ej}, Bj ← Bj ∪ {ui}

12: v
(A)
ij = psi · pid

∑
mk∈Ms∩Mi∩Md

vik

// ui’s valuation toward ej
13: v

(B)
ji = psi · pid

∑
mk∈Ms∩Mi∩Md

vdk

// ej’s valuation toward ui

14: end if

15: end for

16: end for

17: Return a stable matching between N ′ and E′ by extended DAA

with us and ud, and its utility from the messages that are

available at us and demanded by both ur and ud. Similarly,

the preference of (us, ud) over ur can be measured by

v(us,ud)|ur = psr · prd
∑

mk∈Ms∩Mr∩Md

vdk. (6)

Based on the definition in (5), each orphan node ur has a

strict preference order with respect to the directional edges

in its acceptable set, denoted by E′
r. That is, ∀ eα =

(sα, dα), eβ = (sβ , dβ) ∈ E′
r, eα ≻ur

eβ if and only if

vur
|(sα, dα) > vur

|(sβ , dβ). Similarly, according to (6), each

edge in E′ has a strict preference order toward the orphan

nodes in its acceptable set.

Given the set of orphan nodes N ′ and the set of directional

edges E′ representing socially connected pairs, we want to

properly match N ′ and E′ such that both sides are satisfied

with the matching. This can be formulated as the stable

matching problem. In [11], Gale and Shapley propose the

deferred acceptance algorithm (DAA) to find a stable matching

which is optimal to the proposing side who therefore would

report their preference truthfully. The DAA can be extended

for our scenario with an unequal number of agents on both

sides [12] and an incomplete preference list for each agent.

Alg. 2 presents our cooperation pairing algorithm. Here, we

first transform the edges in the social-physical graph into a

set of directional edges, E′, and identify a set of cooperative

candidate nodes, including the orphan nodes and the nodes

which have social connections but have received no more

than ϑ (e.g., 0.8) of the messages in dissemination, i.e., N ′.

After that, we derive the valuations of each agent toward

its acceptable candidates in the opposite side. The valuations

are translated to the agent’s preference ordering. Then, letting

the candidate nodes propose, we apply the extended DAA to

produce a stable matching between N ′ and E′.

IV. SIMULATION RESULTS

A. Synthetic Datasets

To evaluate the performance of our proposed mechanisms,

we conduct computer simulations over synthetic datasets, in

which the number of users (n) is set to 30 and the number

of messages (m) is set to 10. For comparison purpose, users’

preference for a message, vik, is set to be uniformly distributed

within [0.1, 1]. For generating the social graph of the users,

we randomly select 2 users as orphans and then use a classic

social network model, the caveman model [13], to generate the

social relationships for the remaining 28 users. It is proved in

[13] that social networks based on this model are very close

to real ones. Here, we set the number of caves to 7, the size

of each cave to 4, and the rewiring probability to 0.2.

For generating the user contact process in the physical

network, we assume that users’ contact duration follows a

uniform distribution [5] and average encounter duration is in

the range of [3, 6]. Users’ intercontact duration is assumed

to follow a heavy-tailed Weibull distribution [4] and average

intercontact duration is in the range of (5, 25]. In order to better

simulate the real scenarios, we randomly select some users

in each social connected component and make these users

encounter other users in the same component infrequently.

Users’ average periodic activation duration is set to 5 and

inter-activation duration is set to 10.

B. Average Utility / Completion Ratio vs. Time

In this section, we compare our truthful mechanisms with

corresponding optimal algorithms with the synthetic datasets.

For Phase II, we consider the optimal algorithm, in which an

ego node selects at most g messages with the highest total

utility for multicast in one dissemination period. For Phase

III, we use the Hungarian algorithm to obtain the optimal

solution to the maximum weight bipartite matching (MWBM)

problem. In the simulation, the number of seeds is set to 4

and g is set to 3. It is assumed that each message can finish

transmission within one time slot. For the truthful mechanisms,

the BS intervenes and performs matching when the increase of

average completion ratio in two adjacent observation periods

(each observation period is 20 time slots) is not larger than

0.01. Here, the average completion ratio is averaged over

the completion ratios of all users, defined by the number

of messages received by each user over the total number of

messages. For comparison fairness, the BS intervening time

for other dissemination strategies is set to be the same as that

of the truthful mechanisms.

Fig. 6 and Fig. 7 show users’ total utility and average

completion ratio over time, respectively. As seen, high user
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Fig. 7. Users’ average completion ratio over time.

utility and competition ratio are achieved with the two phases

of data forwarding. Compared with only carrying out Phase II

throughout the entire process, the combination of Phase II and

Phase III can effectively improve the performance. Moreover,

it is observed that the performance of our truthful mechanisms

is fairly close to that of the corresponding optimal algorithms.

C. Effect of Number of Seeds

In this section, we examine the effect of the number of seeds

on our mechanisms. With the previous synthetic datasets, the

number of seeds is set to 1 to 5. Similarly, the condition for

the BS to intervene and perform matching is also that the

increase of average completion ratio of two adjacent observa-

tion periods is not larger than 0.01. Fig. 8 shows the results

of average completion ratio with different numbers of seeds.

As seen, with the increase of the number of seeds, average

completion ratio increases more rapidly and substantially with

time during Phase II and then reaches a higher value at the

end of Phase III. It is worth mentioning that when the number

of seeds reaches a threshold (e.g., 4 in this experiment), the

influence of seed number on data dissemination becomes less

evident. Specifically, when the number of seeds increases from

4 to 5, the increase of average completion ratio is not so fast

or significant as that in the previous situations.

V. CONCLUSION

In this paper, we propose a three-phase approach for social-

aware data dissemination via D2D communications. It exploits
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users’ social relationships in the social network and physical

contacts with mobility in the physical network to improve data

dissemination efficiency. Both altruistic and selfish behaviors

of users are taken into account. The proposed mechanisms for

message selection and cooperation pairing properly address

the incentive constraints of users without resorting to monetary

rewards. Thus, the proposed mechanisms are free of the hassle

of payment transfer. The theoretical analysis proves that the

message selection mechanism is truthful. Extensive simulation

results further demonstrate the effectiveness of the three-phase

approach. It is shown that the proposed mechanisms can

achieve a good performance which is relatively close to that

of the corresponding optimal algorithms.
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