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Abstract

Naive Bayes is an effective and efficient learn-
ing algorithm in classification. In many ap-
plications, however, an accurate ranking of
instances based on the class probability is
more desirable. Unfortunately, naive Bayes
has been found to produce poor probabil-
ity estimates. Numerous techniques have
been proposed to extend naive Bayes for bet-
ter classification accuracy, of which selective
Bayesian classifiers (SBC) (Langley & Sage,
1994), tree-augmented naive Bayes (TAN)
(Friedman et al., 1997), NBTree (Kohavi,
1996), boosted naive Bayes (Elkan, 1997),
and AODE (Webb et al., 2005) achieve re-
markable improvement over naive Bayes in
terms of classification accuracy. An interest-
ing question is: Do these techniques also pro-
duce accurate ranking? In this paper, we first
conduct a systematic experimental study on
their efficacy for ranking. Then, we propose
a new approach to augmenting naive Bayes
for generating accurate ranking, called hid-
den naive Bayes (HNB). In an HNB, a hid-
den parent is created for each attribute to
represent the influences from all other at-
tributes, and thus a more accurate ranking
is expected. HNB inherits the structural
simplicity of naive Bayes and can be easily
learned without structure learning. Our ex-
periments show that HNB outperforms naive
Bayes, SBC, boosted naive Bayes, NBTree,
and TAN significantly, and performs slightly
better than AODE in ranking.
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1. Introduction

Traditionally, the performance of a classifier is mea-
sured by its classification accuracy (or error rate).
Some classifiers, such as naive Bayes and decision
trees, also produce the estimates of the class proba-
bility p(c|E) that is the probability of instance E in
the class c. This information is often ignored in clas-
sification, as long as the class with the highest class
probability estimate is identical to the actual class. In
many applications, however, classification and error
rate are not enough. For example, a CS department
usually needs a ranking of its students in terms of their
performance in order to award various scholarships.
Thus, a ranking is more desirable.

If a ranking is desired and only a training data set
with class labels is given, the area under the ROC (Re-
ceiver Operating Characteristics) curve (Swets, 1988;
Provost & Fawcett, 1997), or simply AUC, can be used
to evaluate the quality of rankings generated by a clas-
sifier. AUC is a good “summary” for comparing two
classifiers across the entire range of class distributions
and error costs. Bradley (Bradley, 1997) shows that
AUC is a proper metric for the quality of classifiers
averaged across all possible probability thresholds. It
has been shown that, for binary classification, AUC
is equivalent to the probability that a randomly cho-
sen instance of class − will have a smaller estimated
probability of belonging to class + than a randomly
chosen instance of class + (Hand & Till, 2001). Thus,
AUC measures the quality of a ranking. The AUC of a
ranking is 1 (the maximum AUC value) if no positive
instance precedes any negative instance.

Naive Bayes is one of the most effective and effi-
cient classification algorithms. In classification learn-
ing problems, a learner attempts to construct a classi-
fier from a given set of training instances with class la-
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bels. Assume that A1, A2,· · ·, An are n attributes. An
instance E is represented by a vector (a1, a2, , · · · , an),
where ai is the value of Ai. Let C represent the class
variable and c represent the value that C takes. A
naive Bayesian classifier, or simply naive Bayes, is de-
fined as follows.

g(E) = arg
c

max p(c)
n∏

i=1

p(ai|c).

In naive Bayes, all attributes are assumed independent
given the class; that is,

p(a1, a2, · · · , an|c) =
n∏

i=1

p(ai|c).

Figure 1 shows graphically the structure of naive
Bayes. In naive Bayes, each attribute node has the
class node as its parent, but does not have any parent
from attribute nodes. Because the values of P (ai|c)
can be easily estimated from training instances, naive
Bayes is easy to construct. It is also, however, surpris-
ingly effective (Kononenko, 1990; Langley et al., 1992;
Domingos & Pazzani, 1997). It is obvious that the
conditional independence assumption is rarely true in
reality. Indeed, naive Bayes has been found to work
poorly for regression problems (Frank et al., 2000), and
produces poor probability estimates (Bennett, 2000).

 C

A A A A1 2 3 4

Figure 1. An example of naive Bayes

One way to alleviate the conditional independence as-
sumption is to extend the structure of naive Bayes to
represent explicitly attribute dependencies by adding
arcs between attributes. Tree augmented naive Bayes
(TAN) is an extended tree-like naive Bayes (Friedman
et al., 1997), in which the class node directly points
to all attribute nodes and an attribute node can have
only one parent from another attribute node. Figure
2 shows an example of TAN.

TAN is a specific case of general augmented naive
Bayesian networks, or simply ANB, in which the class
node also directly points to all attribute nodes, but
there is no limitation on the links among attribute
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Figure 2. An example of TAN

nodes (except that they do not form any directed cy-
cle). ANB can represent arbitrary attribute dependen-
cies. Intuitively, ANB yields more accurate probability
estimates and thus generates more accurate rankings.
In reality, however, when the structural complexity of
an ANB is high, its variance is also high due to the
limited training data (Friedman et al., 1997), and thus
its probability estimates could be still poor. In addi-
tion, learning an optimal ANB is similar to learning
an optimal Bayesian network that has been proved to
be NP-hard (Chickering, 1996). In practice, learning
TAN is more feasible, due to its acceptable computa-
tional complexity and considerable improvement over
naive Bayes. One main issue in learning TAN is that
only one attribute parent is allowed for each attribute,
and the influences from other attributes have to be ig-
nored. Thus the rankings yielded by TAN could be
inaccurate. Certainly, a model that can represents the
influences on an attribute from all other attributes and
still retains the structural simplicity, is desirable.

The rest of the paper is organized as follows. In Section
2, we introduce the related work. In Section 3, we de-
scribe an empirical study on the ranking performance
of the widely used techniques for augmenting naive
Bayes. In Section 4, we present a novel model hidden
naive Bayes for augmenting naive Bayes to produce
accurate ranking. In Section 5, we make a conclusion
and outline the main directions for future research.

2. Related Work

The ranking addressed in this paper is based on the
class probabilities of instances. Ranking is different
from both classification and probability estimation.
For example, assume that E+ and E− are a posi-
tive and a negative instance respectively, and that
the actual class probabilities are p(+|E+) = 0.9 and
p(+|E−) = 0.1. An algorithm that gives class proba-
bility estimates: p̂(+|E+) = 0.55 and p̂(+|E−) = 0.54,
gives a correct order of E+ and E− in the rank-
ing. Notice that the probability estimates are poor
and the classification for E− is incorrect (assume that
the threshold for classification is 0.5). However, If a
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learning algorithm produces accurate class probabil-
ity estimates, it certainly produces an accurate rank-
ing. Thus, aiming at learning a model to yield accu-
rate probability estimates will usually lead to a model
yielding accurate probability-based ranking.

Recently, a considerable amount of research work has
been done on learning decision trees with accurate
ranking. Traditional decision tree algorithms, such as
C4.5 (Quinlan, 1993), have been observed to produce
poor estimates of probabilities (Pazzani et al., 1994;
Provost et al., 1998). Provost and Domingos (Provost
& Domingos, 2003) propose the two techniques to im-
prove the AUC of C4.5: smooth probability estimates
by Laplace correction and turning off pruning and col-
lapsing.

Naive Bayes is easy to construct and has surprisingly
good performance in classification, even though the
conditional independence assumption is rarely true in
real-world applications. On the other hand, naive
Bayes has been found to produce poor probability esti-
mates (Bennett, 2000). Some work has been proposed
to produce well-calibrated probabilities (Platt, 1999;
Zadrozny & Elkan, 2001; Zadrozny & Elkan, 2002;
R.Caruana & Niculescu-Mizil, 2005).

Many techniques have been proposed for extending
naive Bayes. One approach to improving naive Bayes
is selecting an attribute subset in which attributes
are conditionally independent. Of the proposed tech-
niques, selective Bayesian classifier (SBC) by (Langley
& Sage, 1994) demonstrates remarkable improvement
over naive Bayes. In SBC, a forward greedy search
method is used to select a subset of attributes. A more
effective and straightforward approach to improving
naive Bayes is to extend its structure to represent de-
pendencies among attributes, such as TAN and ANB.
Friedman et al. (1997) propose a TAN learning algo-
rithm based on conditional mutual information, which
is an extension of the Chow-Liu algorithm (Chow &
Liu, 1968). The conditional mutual information is de-
fined as

IP (X; Y |Z) =
∑
x,y,z

P (x, y, z)log
P (x, y|z)

P (x|z)P (y|z)
, (1)

where x, y, and z are the values of variables X, Y ,
and Z respectively. In TAN, IP (Ai; Aj |C) between
each pair of attributes is computed, and a complete
undirected weighted graph is built, in which nodes are
attributes A1, · · ·, An, and the weight of an edge con-
necting Ai to Aj is set to IP (Ai; Aj |C). Then, a max-
imum weighted spanning tree is constructed. Finally,

the undirected tree is converted to the directed one,
and a node labeled by C that points to all attribute
nodes is added.

When we aim at classification (discriminative learn-
ing), maximizing conditional likelihood, instead of
maximizing likelihood, is desired. However, the com-
putational cost is very high. In recent years, some
research work has been done to deal with this problem
(Greiner & Zhou, 2002; Grossman & Domingos, 2004).

Kohavi (1996) presents a model NBTree to combine a
decision tree with naive Bayes. In an NBTree, a local
naive Bayes is deployed on each leaf of a traditional de-
cision tree, and an instance is classified using the local
naive Bayes on the leaf into which it falls. The ex-
periments show that NBTree outperforms naive Bayes
significantly in accuracy.

Elkan (1997) proposes to apply boosting technique to
naive Bayes. The resulting model is called boosted
naive Bayes. The experiments show that boosted naive
Bayes performs better than naive Bayes in accuracy.

The most recent work on improving naive Bayes is
AODE (averaged one-dependence estimators) (Webb
et al., 2005). In AODE, an ensemble of one-
dependence classifiers are learned and the prediction
is produced by aggregating the predictions of all qual-
ified classifiers. The notion of x-dependence is intro-
duced by Sahami (Sahami, 1996). An x-dependence
estimator means that the probability of an attribute
is conditioned by the class variable and at most x other
attributes, which corresponds to an ANB with at most
x attribute parents. In AODE, a one-dependence clas-
sifier is built for each attribute, in which the attribute
is set to be the parent of all other attributes. Their ex-
perimental results show that AODE performs surpris-
ingly well compared to other classification algorithms.

3. Empirical Study

Most techniques for augmenting naive Bayes aim at
improving its classification accuracy. Do these tech-
niques also result in accurate ranking? Which of them
do? We conduct an empirical study to answer these
two questions.

In our experiments, the AUC of a classifier on a data
set with two classes is computed using the following
formula.

Â =
S0 − n0(n0 + 1)/2

n0n1
, (2)

where n0 and n1 are the numbers of negative and pos-
itive examples respectively, and S0 =

∑
ri, where ri

is the rank of the ith positive example in the ranking.
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Table 1. Description of the data sets used in the experi-
ments.

data set size attr. classes missing

anneal 898 39 6 Y
anneal.O 898 39 6 Y
audiology 226 70 24 Y
autos 205 26 7 Y
balance-s. 625 5 3 N
breast-c. 286 10 2 Y
breast-w 699 10 2 Y
colic 368 23 2 Y
colic.O 368 28 2 Y
credit-a 690 16 2 Y
credit-g 1000 21 2 N
diabetes 768 9 2 N
Glass 214 10 7 N
heart-c 303 14 5 Y
heart-h 294 14 5 Y
heart-s 270 14 2 N
hepatitis 155 20 2 Y
hypoth. 3772 30 4 Y
ionosph. 351 35 2 N
iris 150 5 3 N
kr-vs-kp 3196 37 2 N
labor 57 17 2 Y
letter 20000 17 26 N
lymph 148 19 4 N
mushroom 8124 23 2 Y
p.-tumor 339 18 21 Y
segment 2310 20 7 N
sick 3772 30 2 Y
sonar 208 61 2 N
soybean 683 36 19 Y
splice 3190 62 3 N
vehicle 846 19 4 N
vote 435 17 2 Y
vowel 990 14 11 N
waveform 5000 41 3 N
zoo 101 18 7 N

Multi-class AUC is calculated by M-measure in (Hand
& Till, 2001).

Our experiments are conducted on the 36 datasets
form Weka (Witten & Frank, 2000), which are listed in
Table 1. All these data sets are from the UCI repos-
itory (Blake & Merz, 2000). We downloaded these
data sets in the format of arff from main web of Weka
(Witten & Frank, 2000). We adopted the following
preprocessing stages on each data set.

1. The missing values of attributes in each data set
were replaced by using the filter of ReplaceMiss-
ingValues in Weka.

2. Numeric attributes were discretized by the filter
of Discretize in Weka using unsupervised ten-bin

dicretization. Thus, all attributes were treated as
nominal.

3. We notice that, if the number of values of an at-
tribute is almost equal to the number of instances
in a data set, this attribute does not contribute
any information to classification. For example,
the student ID numbers is not useful for classifi-
cation purpose. So we used the filter of Remove
in Weka to delete this type of attributes. In these
36 data sets, there only exists three this type of
attributes, namely “Hospital Number” in data set
horse-colic.ORIG, “Instance Name” in data set
Splice and “Animal” in data set zoo.

We conducted experiments to compare naive Bayes
(Langley et al., 1992), SBC (Langley & Sage, 1994),
NBTree (Kohavi, 1996), TAN (Friedman et al., 1997),
boosted naive Bayes (Elkan, 1997), and AODE (Webb
et al., 2005) in terms of AUC. We implemented SBC,
boosted naive Bayes, and TAN within the Weka frame-
work (Witten & Frank, 2000), and used the implemen-
tation of naive Bayes, NBTree, and AODE in Weka.
In all experiments, the AUC of an algorithm on a data
set was obtained via 10 runs of ten-fold cross valida-
tion. Runs with the various algorithms were carried
out on the same training sets and evaluated on the
same test sets. Finally, we conducted two-tailed t-test
with a 95% confidence level to compare each pair of
algorithms.

Table 2 shows the AUC scores of the algorithms on
each data set, and the average AUC and standard de-
viation on all data sets are summarized at the bottom
of the table. Table 3 shows the results of two-tailed
t-test, in which each entry w/t/l means that the algo-
rithm in the corresponding row wins in w data sets,
ties in t data sets, and loses in l data sets, compared
to the algorithm in the corresponding column. From
our experiments, we have the following observations:

1. AODE achieves a better performance compared
to naive Bayes, TAN, NBTree, and boosted naive
Bayes.

2. NBTree achieves considerable improvement over
naive Bayes in AUC (8 wins and 2 losses). Notice
that a local naive Bayes is deployed on each leaf
to calibrate probability estimates in NBTree. In
addition, it is also believed that the instances in
a leaf has less chance of having strong attribute
dependencies.

3. TAN does not achieve significant improvement
over naive Bayes in AUC (9 wins and 7 losses).
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This indicates that representing the influence
from only one attribute is not sufficient to pro-
duce accurate rankings. Thus, more sophisticated
approach for augmenting naive Bayes should be
considered.

4. The performance of SBC is even worse than naive
Bayes in AUC (5 wins and 9 losses), although it
achieves significant improvement in classification
(Langley & Sage, 1994).

5. Boosted naive Bayes also performs worse than
naive Bayes in AUC (3 wins and 12 losses), al-
though its performance in accuracy is better than
naive Bayes (9 wins and 5 losses in the 36 data
sets).

4. Hidden Naive Bayes

As we discussed in Section 1, ANB can represent ar-
bitrary attribute dependencies. The joint distribution
represented by an ANB is depicted as follows.

P (A1, A2, · · · , An, C) = P (C)
n∏

i=1

P (Ai|pai, C), (3)

where pai denotes the parents of Ai from attribute
nodes.

Naive Bayes ignores attribute dependencies. More
concretely, pai is empty in Equation 3. In a TAN,
pai consists of at most one attribute. Since for each
attribute the influence from only one other attribute
can be represented, an obvious problem is that several
attributes may have the similar influence and all the
influences except one have to be ignored in TAN. Thus,
its ranking performance could be still poor, which has
been verified by the experimental results in the pre-
vious section. From our experimental results, TAN
does not perform significantly better than naive Bayes
in AUC. This indicates that the rankings yielded by
TAN can be improved further. Intuitively, if for each
attribute the influences from all other attributes are
taken into account, a more accurate model can be ex-
pected. ANB is such a model that can represent arbi-
trary attribute dependencies. However, there are two
main problems in learning ANB. First, learning the
optimal structure of an ANB is intractable. Learning
the structure of an ANB essentially means to deter-
mine pai for each attribute Ai in Equation 3. Second,
the probability estimates of an ANB could be still poor
even pai for each Ai is known due to the high variance
in estimating P (Ai|pai, C) from limited training data.

Our key idea to tackle the second problem is to approx-
imate P (Ai|pai, C) using the weighted one-dependence
estimators as follows.

P (Ai|pai, C) ≈
∑

Aj∈pai

Wij ∗ P (Ai|Aj , C), (4)

where
∑

Wij = 1.

Moreover, we want to avoid the structure learning that
is an extremely time-consuming. Our idea is to use the
one-dependence estimators from all other attributes.
That is, let pai = {A1, · · · , Ai−1, Ai+1, · · · , An} in
Equation 4. The resulting model is called hidden naive
Bayes (HNB). HNB represents an approximation of
the joint distribution defined as follows.

P̂ (A1, · · · , An, C) = P (C)
n∏

i=1

P (Ai|Ahpi
, C), (5)

where

P (Ai|Ahpi , C) =
n∑

j=1,j 6=i

Wij ∗ P (Ai|Aj , C), (6)

and
∑n

j=1,j 6=i Wij = 1.

In our implementation, we use conditional mutual in-
formation to set Wij as follows.

Wij =
IP (Ai;Aj |C)∑n

j=1,j 6=i IP (Ai; Aj |C)
. (7)

IP (Ai; Aj |C) is the conditional mutual information be-
tween Ai and Aj , defined in Equation 1.

HNB can be viewed in such a way that a hidden (vir-
tual) parent Ahpi is created for each attribute Ai. Ahpi

is a mixture of the weighted influences from all other
attributes, and P (Ai|Ahpi , C) is an approximation of
P (Ai|A1, · · · , Ai−1, Ai+1, · · · , An, C). In an HNB, at-
tribute dependencies are actually represented through
hidden parents of attributes. It is easy to show that
TAN is a special case of HNB. Thus, HNB is more ex-
pressive than TAN. Compared to TAN, HNB can rep-
resent the influences on each attribute from all other
attributes and assign higher weights to more impor-
tant attributes. Thus, HNB should be a more accurate
model than TAN with respect to representing attribute
dependencies, and the rankings yielded by HNB should
be more accurate.

The training process of HNB is very similar to TAN.
A three-dimensional table of probability estimates
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for each attribute-value, conditioned by each other
attribute-value and each class is generated. To create
the hidden parent of an attribute, HNB needs to com-
pute the conditional mutual information IP (Ai;Aj |C)
for each pair of attributes. The time complexity for
computing weights using Equation 7 is O(n2). Thus,
the training time complexity of HNB is O(tn2+kn2v2),
where t is the number of training instances, n is the
number of attributes, k is the number of classes, and
v is the average number of values for an attribute. In
practice, t is usually greater than kv2. Thus HNB
is in O(tn2). Compared to TAN that has a training
time complexity of O(tn2+kn2v2+n2logn), HNB does
not have structure learning, and thus is more efficient.
Compared to AODE that has the training time com-
plexity of O(tn2), HNB has the same order in time
complexity. However, we should notice that AODE is
an ensemble learning method in which a collection of
models are built and their predictions are combined,
whereas only a single model is learned in HNB.

We implemented HNB in Weka Framework and com-
pared it to naive Bayes, SBC, NBTree, TAN, boosted
naive Bayes, and AODE. In the implementation of
HNB, we used the Laplace estimation to avoid the
zero-frequency problem. More precisely, we estimated
the probabilities P (c), P (ai|c), and P (ai|aj , c) using
Laplace estimation as follows.

P̂ (c) =
nc + 1
t + k

,

P̂ (ai|c) =
nic + 1
nc + vi

,

P̂ (ai|aj , c) =
nijc + 1
njc + vi

,

where t is the total number of training instances, k
is the number of classes, vi is the number of values
of attribute Ai, nc is the number of instances in class
c, nic is the number of instances in class c and with
Ai = ai, njc is the number of instances in class c and
with Aj = aj , and nijc is the number of instances in
class c and with Ai = ai and Aj = aj .

The detailed results displayed in Table 2 and Table 3
show that the performance of HNB in ranking is overall
the best among the algorithms compared in the paper.
Now, we summarize the highlights briefly as follows:

1. HNB achieves significant improvement over naive
Bayes in AUC (15 wins and 0 loss).

2. HNB performs significantly better than SBC (17
wins and 0 loss), TAN (13 wins and 1 loss),
boosted naive Bayes (18 wins and 2 losses), and
NBTree (8 wins and 1 loss).

3. HNB performs slightly better than AODE (5 wins
and 2 losses). Considering that HNB is a single
model in contrast to an ensemble of models in
AODE, HNB is overall more effective.

4. HNB achieves the highest average AUC among all
the algorithms.

5. Conclusions

In this paper, we conducted a systematic experimental
study on the ranking performance of the widely used
techniques for augmenting naive Bayes. We found that
some techniques, such as NBTree, TAN and AODE,
achieve improvement over naive Bayes in ranking, just
as they do in classification. But some others, such as
SBC and boosted naive Bayes, do not. We proposed
a novel model hidden Naive Bayes (HNB) for accu-
rate ranking. In HNB, a hidden parent is created for
each attribute and added to naive Bayes. Our exper-
imental results show that HNB has a better overall
ranking performance compared to the state-of-the-art
algorithms, measured by AUC. Considering the sim-
plicity of HNB, HNB is a promising model that could
be used in many real world applications in which an
accurate ranking is desired.

Although HNB achieves significant improvement over
naive Bayes in AUC, its performance in probability
estimation is still unknown. In an HNB, learning high-
quality weights is crucial. We believe that some more
sophisticated techniques, such as gradient descent and
SVM, can be applied to achieve a better performance.
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Table 2. Experimental results on AUC.

Datasets NB BoostNB SBC TAN NBTree AODE HNB

anneal 96.1±1.18 94.7±3.81 95.12±2.38 96.56±0.21 96.23±1.29 96.18±1.06 96.19±1.31
anneal.O 94.26±4.23 91.8±4.78 94.27±4.35 95.1±2.89 95.13±2.6 94.37±4.11 94.56±4.19
audiology 71.08±0.64 71.05±0.71 70.92±0.74 70.95±0.6 71.06±0.69 71.09±0.63 71.09±0.61
autos 90.07±4.93 90.68±4.69 91.08±4.14 92.45±4.34 93.54±2.96 92.43±3.84 92.79±3.89
balance-s 84.08±4.42 96.07±2.66 84.08±4.42 77.31±5.44 84.08±4.42 79.14±4 86.55±4.07
breast-c 68.24±11.9 62.75±12.2 67.43±12.7 61.54±10.6 66.01±10.9 69.03±10.4 66.35±11.7
breast-w 99.22±0.76 98.3±1.65 99.2±0.76 98.71±1.07 99.21±0.75 99.32±0.69 99.21±0.79
colic 83.22±7.46 82±6.45 84.54±6.75 84.59±6.56 86.04±7.65 85.54±6.68 85.83±6.71
colic.O 80.57±8.03 78.77±8.09 80.46±7.83 73.02±9.77 78.81±8.76 81.67±7.67 81.65±7.2
credit-a 91.71±3.16 88.25±3.88 86.78±4.76 89.57±3.68 91.14±3.36 92.18±3 91.78±3.34
credit-g 79.02±4.22 73.96±5.33 77.72±4.92 76.45±5.08 77.49±5.34 79.35±4.15 79.94±4.47
diabetes 82.51±5 78.14±6.33 82.17±6.4 80.54±4.96 81.99±5.1 82.68±4.86 82.75±4.88
glass 80.89±5.9 77.95±4.88 81.17±5.95 83.03±6.42 82±6.08 81.98±5.91 79.23±6.23
heart-c 84.05±0.6 83.44±0.73 83.77±0.67 83.56±0.76 83.93±0.62 84.05±0.61 83.97±0.63
heart-h 83.9±0.62 83.42±0.8 83.23±0.94 83.45±0.69 83.79±0.66 83.91±0.58 83.82±0.57
heart-s 90.85±5.12 83.59±7.15 87.63±7.03 87.48±5.24 89.28±6.26 90.69±5.04 90.09±5.03
hepatitis 88.41±10.9 80.72±14.7 81.96±14.28 84.67±11.0 84.74±12.3 88.36±11.1 86.35±11.6
hypoth. 87.78±6.12 86.21±6.45 85.43±5.61 87.25±6.87 87.47±6.34 86.86±6.91 86.41±6.69
ionosph. 93.4±4.79 93.4±5.22 93.06±5.33 98.09±2.17 94.04±4.42 97.19±2.47 97.31±2.57
iris 98.64±2.17 96.59±3.9 98.43±2 98.52±2.46 98.84±2.01 98.55±2.34 98.65±2.22
kr-vs-kp 95.16±1.2 98.76±0.44 96.35±0.9 98.22±0.56 99.44±0.6 97.4±0.77 98.2±0.56
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