What a large test suite!!
| only wanted to test the
the test cases that

use BuggyClass1!!

A Test Generator System

Example:
Cover every
transition pair

Test Oracle:
Specification of
Unit Under Test

Test-case Generator

Coverage Criteria:
Specification of

what tests should be
generated [2]

i

Problem
Abstraction of Removal of knowledge about
test oracles [1] error-prone aspects of software [1]

} Less efficient
test suite

Lack of control of test experts over generated test suite

Solution

The solution is to allow a test expert to:
1- Extend test oracle with their knowledge [1].
2- Define custom coverage criteria [1,3].

Test expert’s control over the generated test suite:

Identify test cases
explicitly

Choose

a coverage criteria rules
_//
Extend test oracle and

Compose
coverage criteria rules

Test Expert

tology based Testin

1. Generate Test Structures:
A test structure denotes the structure of a single test case.
Model the test oracle in an ontology and extend it with expert knowledge.
Define coverage criteria rules:
criteria for selection of test structure based on test oracle and expert knowledge -> structure of a test case
Generate test structures using reasoning.
2. Check Redundancy of a Test Structure:
Define redundancy checking rules:
specification of a test structure based on the test suite ontology -> existence of a test case
Use reasoning to Identify existence of a test with a given test structure in a partially generated
test suite ontology.
3. Generate Test-cases:
Generate test cases for a test structure that is not satisfied by the test suite and add it to the test
suite ontology.

System Architecture

OWL-DL POSL
<Ontology> <Rules>
State Machine Test Structure
Model Assessment Rules

0O jDREW Test OO jDREW Selected

<Reasoner> Structures/~ <Reasoner> Structures

Test Structure Test Structure | ———=> éi?eigts;

Generator Assessment

Test
POSL OWL-DL Case Description

Rul Ontol)
Cov:ra;ee?;iteria <Te:tOS?1£i]t¥a> W
Concluding Remarks

Ontology based representation of test oracle is extensible and empowers test experts to use their
knowledge and define custom overage criteria to generate efficient test suites.

Bibliography

[1] S. Benz. Combining test case generation for component and integration testing. In
Proceedings of the 3rd international workshop on Advances in model-based testing, pages 23—
33. ACM Press New York, NY, USA, 2007.

[2] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM Computing
Surveys (CSUR), 29(4):366—427, 1997.

[3] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected state machine coverage for
software testing. In Proceedings of the 2002 ACM SIGSOFT international symposium on Software
testing and analysis, pages 134-143. ACM New York, NY, USA, 2002.

[4] M. Ball. OO jDREW: Design and Implementation of a Reasoning Engine for the Semantic Web.
Technical report, Technical report, Faculty of Computer Science, University of New Brunswick,
2005.

[5] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, L.
Stein, et al. OWL Web Ontology Language Reference. W3C Recommendation, 10:2006-01, 2004.
[6] H. Boley. POSL: An Integrated Positional-Slotted Language for Semantic Web Knowledge.
http://www.ruleml.org/submission/ruleml-shortation.html, 2004.

For more information, please refer to our paper titled “Ontology-based unit test-case
generation" in Proceedings of 2009 UNB CS ResearchExpo.
Contact information: valeh.h@unb.ca.

