What a large test suite!!
| only wanted to test the
the test cases that

use BuggyClass1!!

A Test Generator System

Example:
Cover every
transition pair

Test Oracle:
Specification of
Unit Under Test

Test-case Generator

Coverage Criteria:
Specification of

what tests should be
generated [2]
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Problem
Abstraction of Removal of knowledge about
test oracles [1] error-prone aspects of software [1]

} Less efficient
test suite

Lack of control of test experts over generated test suite

Solution

The solution is to allow a test expert to:
1- Extend test oracle with their knowledge [1].
2- Define custom coverage criteria [1,3].

Test expert’s control over the generated test suite:

Identify test cases
explicitly

Choose

a coverage criteria rules
\\_//
Extend test oracle and

Compose
coverage criteria rules

Test Expert

tology based Testin

1. Generate Test Structures:
A test structure denotes the structure of a single test case.
Model the test oracle in an ontology and extend it with expert knowledge.
Define coverage criteria rules:
criteria for selection of test structure based on test oracle and expert knowledge -> structure of a test case
Generate test structures using reasoning.
2. Check Redundancy of a Test Structure:
Define redundancy checking rules:
specification of a test structure based on the test suite ontology -> existence of a test case
Use reasoning to Identify existence of a test with a given test structure in a partially generated
test suite ontology.
3. Generate Test-cases:
Generate test cases for a test structure that is not satisfied by the test suite and add it to the test
suite ontology.
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Concluding Remarks

Ontology based representation of test oracle is extensible and empowers test experts to use their
knowledge and define custom overage criteria to generate efficient test suites.
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For more information, please refer to our paper titled “Ontology-based unit test-case
generation" in Proceedings of 2009 UNB CS ResearchExpo.
Contact information: valeh.h@unb.ca.



