A Java Multitenant Application Server
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Introduction
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Furthermore, we discuss the theoretical maximum memory
sharing levels across a number of different JVM configurations,
Including our proposed technique, using the Daytrader3 benchmark on The Multitenant Server

the Liberty Web server. The results from the two approaches Our server starts by scanning a folder where the tenant JARs are located,

CONVETgE. creating a new tenant context and class loader per tenant using our
p > & - TenantAPl and mapping tenants to their URLs. When a reqguest arrives,
Code of Code of the mapping Is looked up to find the tenant it belongs to and the serving
code from the JAR file Is run on the tenant’s context using our TenantAPI.
Tenant 1 Tenant 2 . . . .
\ VIR Y We measured footprint savings and speedups In two applications. One
Tenant Tenant hello world and another with flights and hotels bookings. We compare our
Context 1 Context 2 version with Xmt using one JVM per tenant as the baseline.
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