A Java Multitenant Application Server

TenantAP|
P. Patrost, D. Dillit, K. Kent!, M. Dawson<, T. Watson? Our TenantAPI| exposes the IBM JVM multitenancy which allows it to
1: Faculty of Computer Science, University of New Brunswick create and destroy tenants as well as run code in their context enabling
2: 1BM performance and common statics isolation.

Patros.Panos@unb.ca, Dayal.Dilli@unb.ca, Ken@unb.ca,

Michael Dawson@ca.lbm.com, tjwatson@us.ibm.com Theoretical Analysis of Memory Sharing

Introduction
Multitenancy enables sharing of resources between different users, also 100000 -

known as tenants. The tenants execute their code as If the resources -
were held individually by them. 350000 ~
/

300000

—Unused Heap

(4)

Footprint in KB

We propose a technique for a multitenant application server In o 'EE;J:’":d 248017.478
. . . * Liberty classloader
Java which uses a single JVM to support multiple tenants, each SmmE L
represented by its own JAR file without any changes to the 200000 A 216345.478 - berty Threads
tenants’ code. We base our work on the internal multitenant features <0000
(Xmt) of the IBM JVM which we exposed with a Java APl we call the S U
Tenant API . 100000 ;i im:ﬁiﬂlm
50000 ——JJLB;S- iif%m IEB:D;E
.] o _ . .] 41492 Daytrader Workloa
Our approach Is significantly more efficient in saving memory D = 1) Populate tade 06
(measured around 70% less) without any major throughput Gtandard MM ith Multitenant VM- dossmth aring. cosemathsharimg, TenARtAPL- gt
d " h d IBM’ b " | " d ” Standard JVM (1) shared classes (2) default (3) different same application integrated into EE
reductions when compared to s basic multitenant mode as well as e) p server (6
the Standard One_JVM_per_tenant mode_ __Unused Heap 84913 84913 83613 83613 83613 83613
kd Non-Shared 296882.478 256772.478 190294.938 128686.987 118409 85737
b Shared 1368 41492 144459.54 206067.491 216345.478 249017.478
smmResident Memory 322250.478 322264.478 380754.478 380754.478 380754.478 380754.478

Furthermore, we discuss the theoretical maximum memory
sharing levels across a number of different JVM configurations,
Including our proposed technique, using the Daytrader3 benchmark on The Multitenant Server

the Liberty Web server. The results from the two approaches Our server starts by scanning a folder where the tenant JARs are located,

CONVETgE. creating a new tenant context and class loader per tenant using our
p > & - TenantAPl and mapping tenants to their URLs. When a reqguest arrives,
Code of Code of the mapping Is looked up to find the tenant it belongs to and the serving
code from the JAR file Is run on the tenant’s context using our TenantAPI.
Tenant 1 Tenant 2
\ VIR Y We measured footprint savings and speedups In two applications. One
Tenant Tenant hello world and another with flights and hotels bookings. We compare our
Context 1 Context 2 version with Xmt using one JVM per tenant as the baseline.
e =8 \ 100.00% 30.00%
I 1 80.00%
' Shared Application Server ‘ & cooon ﬁ r N
Shared Java libraries S oo ——Xmt g 0007 F Xt
| 4 a 0.00% J ~B=TenantAPI = 20.00% =@=TenantAPI
Shared JVM process 20.00% 0.00%
A A 1 2 3 4 5 6 7 8 . 2 4 6 3
Shared OS Tenants 20.00% Tenants
S EEEEEEEEEEEEEEEEEEEEEEEEEEEE——————
) Shared hardware J Hello World Flight-Hotels DB
1.20 1.04
1.00 1.02
_ 2 0.80 a1
We share virtually all of the hardware and software stack between our 2 0.60 j : e ggiz -:'//A—-\l
tenants, whose code is executed on top of a private Tenant Context, 5040 e 5 0 DS
ensuring static field and performance isolation. 0.00 0.9
1 2 3 4 5 6 7 8 2 4 6 8
Tenants Tenants

J 1{3 IBM Centre for Advanced Studies - Atlantic g

FACULTY OF COMPUTER SCIENCE

