
Post-mortem Debugging with Promises for Node.js

What is a Promise?

A Promise is placeholder for a future value.

Alternative JavaScript design pattern to callbacks.

Organizes callbacks into discrete steps.

Helps manage execution order through composition. 

Errors are handled outside primary logic. 

No need for boilerplate checks in every callback. 

Easier to maintain or modify later on.

Curtails “callback hell”.

Exists in three states: pending, resolved, rejected.

Callback: 

Promise:

Maxim Uzun, Kenneth B. Kent

University of New Brunswick, Faculty of Computer Science

Michael Dawson

IBM Canada

muzun@unbca, ken@unb.ca, Michael_Dawson@ca.ibm.com

Research

What are unhandled rejections?

Forgetting a catch handler in a Promise chain.

Throwing an error inside a Promise.

Calling a function that doesn’t exist.

The problem:

Promises are rejected silently, code might continue to run.

A function passed to a promise executed on the next tick.

Unhandled rejections can show up at a different point in time.

Core dumps and other diagnostics may not be meaningful 

because the heap structure could have changed.

Solutions being explored:

Forking when a Promise moves to a rejected state.

Expensive and perhaps unnecessary.

Implementation of forking and taking a core dump not always accurate.

Capturing and storing stack traces and rejection data.

Double-run approach where rejection data is tracked and 

evaluated in real time.

Using catch predictions in V8.

How long has a rejection been floating around?

Goals:

Create better tools for post-mortem debugging and diagnostics.

Evaluate the overhead and benefits of different solutions.


