
Boosting MicroJIT - A Lightweight 

Just-In-Time Compiler

Background
• Programs commonly run on virtual machines (VMs) e.g.,

Java programs on the Java Virtual Machine (JVM).

• VMs provide a layer of abstraction above operating
systems and processor architecture.

• Java is compiled to intermediary form called bytecode.

• Bytecode runs on any system that provides a compatible
JVM. Bytecodes are interpreted at run-time by the JVM.

Eric Coffin, Scott Young, Kenneth. B. Kent

University of New Brunswick, Faculty of Computer Science

Marius Pirvu, Vijay Sundaresan

IBM Canada

{eric.coffin, scott.young, ken}@unb.ca

{mprivu, vijaysun}@ca.ibm.com

Just-In-Time (JIT) Compiling
• Interpretation slower than native instructions.

• JIT compiles frequently called methods to native
instructions during run-time.

• Adds overhead but generally accepted, as throughput is
increased for long running programs.

JVM + MicroJIT
• Previous work created a JIT compiler, MicroJIT, for IBM’s J9

Java 6 ME JVM.

• Compiles code quickly but performs few optimizations.

• Lightweight JIT for resource constrained systems.

• In 2017 MicroJIT ported to J9 Java 8 SE providing two
separately tunable JIT compilers.

• The MicroJIT reduced startup time and improved throughput
for short-lived applications, or in cases when a shared-class-
cache might not be available.

• Eclipse OpenJ9 JVM uses the JIT compiler in Eclipse OMR.

Motivation
Port MicroJIT to Eclipse Open J9 platform while adding
additional performance enhancements:

• Increase bytecode support – MicroJIT does not support all
bytecodes. We will increase support, further reducing the
number of switches to the interpreter.

• Port instructions to 64-bit – MicroJIT is limited to 32-bit
instructions. Adding 64-bit support will allow the MicroJIT to
run on larger platforms.

• Asynchronous compilation – MicroJIT compiles methods
synchronously on the executing thread. We will investigate
an asynchronous approach further increasing performance.


