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Node.js
• Server-side JavaScript environment on top of Google’s V8 

JavaScript Engine

• Asynchronous I/O

• Event-driven model – Single-threaded event loop

 Compute-intensive tasks depend on the performance of a 
single Core

Parallelization and Scaling Modules
• Multi-Process

o Child Process

o Cluster

Different techniques produce different performance!

Motivation
Performance Efficiency. We need to determine which method 
is more appropriate for each case under scalable conditions.

Contribution
• Formulate a methodology

• Extract patterns

• Analyze and identify (dis)-similarities in computational 
performance

• Find the optimal techniques

Methodology
We use a compute-intensive task and vary: 

• Task size in two dimensions; number of instances and 
workload per instance

• Execution environment; bare-metal host vs. virtual 
environment.

We collect data and present performance metrics with 

end goal to provide observations and recommendations.

• Multi-Thread

o Napa.js

o WebWorker-Threads

Performance Evaluation

 SpeedUp – Higher is better

 Cache Misses 
Lower is better
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Observations & 
Recommendations
• Module implementation 

overcomes the instance type 
occasionally.

BUT at least one multi-thread 
technique produces better results 
than the multi-process ones.

• Multi-thread modules are more 
susceptible to environment for 
short-term applications

BUT the underlying environment 
does not change the overall trends

Conclusions & Future Work
• For a CPU-intensive task it is better to use a multi-thread approach

considering the computational performance.

On-going research/methodology expansion:

• Heap usage, garbage collection patterns for every case

• Communication cost
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