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Node.js

» Server-side JavaScript environment on top of Google’s V8
JavaScript Engine

* Asynchronous |I/O

» Event-driven model — Single-threaded event loop

“» Compute-intensive tasks depend on the performance of a
single Core

Parallelization and Scaling Modules

 Multi-Process * Multi-Thread
o Child Process o Napa.js
o Cluster o WebWorker-Threads

Different techniques produce different performance!

Motivation

Performance Efficiency. \We need to determine which method
IS more appropriate for each case under scalable conditions.

Contribution
* Formulate a methodology
» Extract patterns

* Analyze and identify (dis)-similarities in computational
performance

* Find the optimal techniques

Methodology
We use a compute-intensive task and vary:

 Task size in two dimensions; number of instances and
workload per instance

 Execution environment; bare-metal host vs. virtual
environment.

We collect data and present performance metrics with
end goal to provide observations and recommendations.
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Node.js

Performance Evaluation
* SpeedUp — Higher is better

Bare-Metal Host 16 workers VM 16 workers
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Task SpeedUp
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Observations &

Recommendations

* Module implementation
overcomes the instance type
occasionally. :

BUT at least one multi-thread

technique produces better results

than the multi-process ones.

+* Cache Misses
Lower is better
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* Multi-thread modules are more
susceptible to environment for
short-term applications
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BUT the underlying environment
does not change the overall trends
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Conclusions & Future Work

 For a CPU-intensive task it is better to use a multi-thread
considering the computational performance.

On-going research/methodology expansion:

» Heap usage, garbage collection patterns for every case
 Communication cost

FACULTY OF COMPUTER SCIENCE
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