Scaling Parallelism under CPU-intensive Loads in

Maria Patrou, Kenneth B. Kent
University of New Brunswick, Faculty of Computer Science

Michael Dawson

IBM Canada
{maria.patrou, ken}@unb.ca, michael dawson@ca.ibm.com

Node.js

» Server-side JavaScript environment on top of Google’s V8
JavaScript Engine

* Asynchronous |I/O

» Event-driven model — Single-threaded event loop

“» Compute-intensive tasks depend on the performance of a
single Core

Parallelization and Scaling Modules

 Multi-Process * Multi-Thread
o Child Process o Napa.js
o Cluster o WebWorker-Threads

Different techniques produce different performance!

Motivation

Performance Efficiency. \We need to determine which method
IS more appropriate for each case under scalable conditions.

Contribution
* Formulate a methodology
» Extract patterns

* Analyze and identify (dis)-similarities in computational
performance

* Find the optimal techniques

Methodology
We use a compute-intensive task and vary:

 Task size in two dimensions; number of instances and
workload per instance

 Execution environment; bare-metal host vs. virtual
environment.

We collect data and present performance metrics with
end goal to provide observations and recommendations.

AUNB

IBM Centre for Advanced Studies - Atlantic

Node.js

Performance Evaluation
* SpeedUp — Higher is better

Bare-Metal Host 16 workers VM 16 workers

1
M Sequential ® Napa.js m WebWorker-Threads m Cluster ® Child Process

i
II [

I I
F LR
o I I
. I I I
IIIIIIII il ol ol s IIIIII
S S S S S S S S

S
%QQ \ '\,\ q/\ b‘ \ ,\Q \

B Sequential Napa.js B WebWorker-Threads

Task SpeedUp

O R N W B U1 O N O O O
Task SpeedUp

O L N W b U1 O N O O O

Q Q Q Q Q
N WV ™ \9\ <’)Q\

Host VM Ratio CPU% Usage 7 workers

Iuster H Child Process

I

1.4

CPU% Host/CPU% VM

1.2 - i _'_ i

f I !
1?T‘l§\?\!

200,000 2,000,000

: |
—
20,000,000 |

200,000,000

Execution time Host/Execution time VM

j
|

0.8

0.2

6,000,000

—e—Sequential Napa.js WebWorker-Threads Cluster —e—Child Process WebWorker-Threads

Bare-Metal Host 16 workers

Observations &

Recommendations

* Module implementation
overcomes the instance type
occasionally. :

BUT at least one multi-thread

technique produces better results

than the multi-process ones.

+* Cache Misses
Lower is better

5,000,000

ses (Hundreds)

< 4,000,000
3,000,000

2,000,000

* Multi-thread modules are more
susceptible to environment for
short-term applications

1,000,000

Cluster —e—Child Process

—3

o &

200,000 2,000,000 20,000,000

BUT the underlying environment
does not change the overall trends

—e—Sequential Napa.js WebWorker-Threads

Conclusions & Future Work

 For a CPU-intensive task it is better to use a multi-thread
considering the computational performance.

On-going research/methodology expansion:

» Heap usage, garbage collection patterns for every case
 Communication cost

FACULTY OF COMPUTER SCIENCE

‘7

200,000,000

Cluster —e—Child Process

approach




