
0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

200,000 2,000,000 20,000,000 200,000,000

C
ac

h
e 

M
is

se
s 

(H
u

n
d

re
d

s)

Bare-Metal Host 16 workers

Sequential Napa.js WebWorker-Threads Cluster Child Process

Scaling Parallelism under CPU-intensive Loads in 

Node.js

Maria Patrou, Kenneth B. Kent

University of New Brunswick, Faculty of Computer Science

Michael Dawson

IBM Canada

{maria.patrou, ken}@unb.ca, michael_dawson@ca.ibm.com

Node.js
• Server-side JavaScript environment on top of Google’s V8 

JavaScript Engine

• Asynchronous I/O

• Event-driven model – Single-threaded event loop

 Compute-intensive tasks depend on the performance of a 
single Core

Parallelization and Scaling Modules
• Multi-Process

o Child Process

o Cluster

Different techniques produce different performance!

Motivation
Performance Efficiency. We need to determine which method 
is more appropriate for each case under scalable conditions.

Contribution
• Formulate a methodology

• Extract patterns

• Analyze and identify (dis)-similarities in computational 
performance

• Find the optimal techniques

Methodology
We use a compute-intensive task and vary: 

• Task size in two dimensions; number of instances and 
workload per instance

• Execution environment; bare-metal host vs. virtual 
environment.

We collect data and present performance metrics with 

end goal to provide observations and recommendations.

• Multi-Thread

o Napa.js

o WebWorker-Threads

Performance Evaluation

 SpeedUp – Higher is better

 Cache Misses 
Lower is better

0

1

2

3

4

5

6

7

8

9

10

Ta
sk

 S
p

e
e

d
U

p

Bare-Metal Host 16 workers

Sequential Napa.js WebWorker-Threads Cluster Child Process

0

1

2

3

4

5

6

7

8

9

10

Ta
sk

 S
p

e
e

d
U

p

VM 16 workers

Sequential Napa.js WebWorker-Threads Cluster Child Process

Observations & 
Recommendations
• Module implementation 

overcomes the instance type 
occasionally.

BUT at least one multi-thread 
technique produces better results 
than the multi-process ones.

• Multi-thread modules are more 
susceptible to environment for 
short-term applications

BUT the underlying environment 
does not change the overall trends

Conclusions & Future Work
• For a CPU-intensive task it is better to use a multi-thread approach

considering the computational performance.

On-going research/methodology expansion:

• Heap usage, garbage collection patterns for every case

• Communication cost

0.8

1

1.2

1.4

1.6

1.8

2

200,000 2,000,000 20,000,000 200,000,000

C
P

U
%

 H
o

st
/C

P
U

%
 V

M

Host VM Ratio CPU% Usage 7 workers

Sequential Napa.js WebWorker-Threads Cluster Child Process

0.2

0.4

0.6

0.8

1

1.2

1.4

200,000 2,000,000 20,000,000 200,000,000

Ex
ec

u
ti

o
n

 t
im

e 
H

o
st

/E
xe

cu
ti

o
n

 t
im

e 
V

M

Host VM Ratio Application Time 7 workers

Sequential Napa.js WebWorker-Threads Cluster Child Process


