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Abstract

The simplicial depth (SD) of a query point q ∈ Rd with respect to a dataset

S ⊂ Rd is defined based on counধng all (d + 1)-dimensional simplices ob-

tained from S that contain the query point q. Essenধally, the simplicial

depth is a ranking funcধon which has been frequently used for sorধng a

mulধvariate dataset. However, when the dimension d is high, currently

no beħer algorithm is known than the brute force method which takes

Θ(nd+1) ধme. In order to deal with the challenge, offloading the com-

putaধon to a powerful cloud server is an opধon. However, since the

cloud server may be not fully trustable, directly delegaধng the process to

untrusted cloud would be a source of serious security breaches and pri-

vacy concerns. In this paper, we will target the privacy preserving cloud-

enhanced computaধon of simplicial depth, where the resource abundant

cloud server will be employed to perform such ধme consuming computa-

ধon while maintaining the client's privacy.

Simplicial Depth

The simplicial depth of a query point q ∈ Rd with respect to S =
{x1, ..., xn} ⊂ Rd is defined as the total number of the closed simplices

formed by data points that contain q.

SD(q; S) = µ
∑

(x1,...,xd+1)
I(q ∈ Conv[x1, ..., xd+1]), (1)

where µ = 1/
( n
d+1

)
is the normalizaধon factor, and the convex hull

Conv[x1, ..., xd+1] is a closed simplex formed by d + 1 points of S. For

planar points S = {a, b, c, d, e}, Figure 5 illustrates that SD(q1; S) = 3/10,
whereas SD(q2; S) = 4/10.
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Figure 1: Planar simplicial depth
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Figure 2: Simplicial depth contours

Homomorphic Encryption Techniques

The BFV Ring-LWE based homomorphic encrypধon is served as our un-
derlying building block to encrypt the uploaded dataset.

Parameter Generaধon: Given the security parameter λ, corresponding output
(d, κ, t, χkey, χerr, w) will be obtained, where:

Polynomial modulus d forms ring R = Z[x]/(Φd(x), in which Φd(x) ∈ Z[x].
coefficient modulus κ and plaintext modulus t saধsfy 1 < t < κ.
Two bounded probability distribuধons χkey and χerr are chosen based on R.
w > 1 is the base of logarithm in ` = blogwκc.

Key Generaধon:

Secret key SK = s can be obtained by sampling on χkey.

Public key PK = (b, a), where b = [−(as + e)]κ in which a and e are two uniformly

random samples as: a← Rκ and e← χerr.

Relinearisaধon key RelinK = ζ = ([wi · s2 − (ei + ai · s)]κ, ai) ∈ R`, where ai ← Rκ

and ei ← χerr for i ∈ [0, 1, ..., `].
Encrypধon: Given PK = (b, a), ciphertext c for plaintext message m in message

space R/tR can be calculated as c = (c0, c1) =
(
[∆ [m]t + bu + e1]κ , [au + e2]κ

)
∈ R2,

where e1, e2 ← χerr, u← χkey, and ∆ = bκ/tc.
Decrypধon: Given the ciphertext c = (c0, c1), the corresponding message
m =

[
b t

κ · [c0 + c1s]κe
]

t
∈ R can be recovered by the secret key SK = s.

Addiধon (⊕): Given two ciphertexts c = (c0, c1) and c′ = (c′0, c′1),
c⊕ = ([c0 + c′0]κ, [c1 + c′1]κ).
Mulধplicaধon (⊗): Given two ciphertexts c = (c0, c1), c′ = (c′0, c′1), and
relinearisaধon key RelinK = ζ = (ζ0, ζ1), c⊗= Relinearizaধon(C0, C1, C2, ζ)
=
(

(C0 +
∑`

i=0 ζ0i · C2i), (C1 +
∑`

i=0 ζ1i · C2i)
)
, where C0 =

[
b t

κ · c0 · c′0e
]

κ
,

C1 =
[
b t

κ · (c0 · c′1 + c1 · c′0)c
]

κ
, and C2 =

[
b t

κ · c1 · c′1e
]

κ
.
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Figure 3: System model of the privacy-preserving simplicial depth query

DetCompute(A, B, C)

=det(B 	 A, C 	 A) = det

([
B1 	 A1 C1 	 A1
B2 	 A2 C2 	 A2)

])
= ((B1 	 A1)⊗ (C2 	 A2))	 ((B2 	 A2)⊗ (C1 	 A1)) .

and

Dets = {DetCompute(Xi, Xj, Xk)} (2)

DetsSq = Dets ~ Dets = {D ⊗D; D ∈ Dets}, (3)

.

Algorithm 1 Intermediate Batch Results

Input: Q, S′ϕ, Precomputed Dets and DetsSq

Output: Encrypted batch $ =
{
{α, β, γ}t; 1 ≤ t ≤

(n
3
)}

1: $← ∅
2: for each Xi, Xj, Xk ∈ S′ϕ do

3: Dijk ← [Dets]ijk
4: α ′← DetCompute(Xi, Q, Xk)⊗Dijk
5: β ′← −DetCompute(Xi, Q, Xj)⊗Dijk
6: γ ′← [DetsSq]ijk 	 α	 β
7: (R1, R2, R3)← (Enc(r1), Enc(r2), Enc(r3));

r1, r2, r3 are posiধve integer random values

8: {α, β, γ}t← (R1 ⊗ α ′, R2 ⊗ β ′, R3 ⊗ γ ′)
9: $← $ ∪ {α, β, γ}t

10: return $

Algorithm 2 Response Depth Value

Input: Encrypted batch $ =
{
{α, β, γ}t; 1 ≤ t ≤

(n
3
)}

Output: Normalized DepthV alue

1: DepthV alue← 0
2: for each {α, β, γ} ∈ $ do

3: (A, B, Γ)← (Dec(α), Dec(β), Dec(γ))
4: if ( A ≥ 0 and B ≥ 0 and Γ ≥ 0)
5: DepthV alue← DepthV alue + 1
6: return DepthV alue/|$|
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Figure 4: Computaধonal costs and response ধme

Experimental Results

To evaluate the performance of the proposed PSDQ scheme, we imple-

mented both plaintext and ciphertext algorithms for compuধng planar sim-

plicial depth of a query point.

Table 1: The Parameter Seষngs

Parameter Value

Security parameter λ λ = 128
Coeffient modulus κ = κ1.κ2 |κ1| = 55, |κ2| = 56
Polynomial modulus Φd = xd + 1 d = 4096
Plaintext modulus t t = 256
Dataset size n n ∈ {5, 10, 15, ..., 100}
Scale factor ϕ ϕ ∈ {10, 100, 1000, 10000}
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Figure 5: Original dateset, ϕ = 10, 100, 1000.

| SDa, SDb |e = 1− r2 (4)

| SDa, SDb |c =

n∑
i=1

n∑
j=1
|MSDa

ij −M
SDb
ij |

n2 − n
, (5)

where MP
n×n is defined as follows:

MD
ij =

{
1 depthD(xi) ≤ depthD(xj)
0 otherwise.

The accuracy of the results based on the geometric mean and the arith-

meধc mean of two dissimilarity values can be computed in two following

forms.

Acc1 = 100
(

1−
√
| SDa, SDb |e · | SDa, SDb |c

)
Acc2 = 100

(
1− | SDa, SDb |e + | SDa, SDb |c

2

)
,

.

Table 2: A Comparison between Dissimilarity Values

S ′ϕ |(SD, SDPSDQ)|e |(SD, SDPSDQ)|c Acc1 Acc2

ϕ = 10 0.0359 0.0763 94.77 94.39

ϕ = 100 1.6860e-04 0.0116 99.86 99.41

ϕ = 1000 8.1835e-06 0.0012 99.99 99.94

ϕ = 10000 0 0 100 100

Conclusion and Future Work

In this work, we presented a privacy preserving scheme namely PSDQ to compute the

simplicial depth of a query point. In other words, considering the privacy preserving,

compuধng the simplicial depth of a query point q ∈ R2 with respect to a dataset S ⊂
R2, is outsourced. To do this, BFV RLWE-based homomorphic encrypধon scheme has

been considered in order to offload both storing and compuধng of encrypted dataset.

The experimental results evaluate the performance and correctness of the developed

scheme. In our future work, an extended scheme will be developed as a framework to

outsource compuধng different depth funcধons. Another future work direcধon would be

generalizing the scheme in order to deal with various data depth related applicaধons such

as depth contours.
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