
Visual Exploration of Simulated

FPGA Architecures in Odin II
by

K. Nasartschuk, K. B. Kent and R. Herpers

TR 12-220, August 20, 2012

Faculty of Computer Science
University of New Brunswick

Fredericton, NB, E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
Email: fcs@unb.ca

http://www.cs.unb.ca

mailto:fcs@unb.ca
http://www.cs.unb.ca/

Abstract

Field Programmable Gate Array (FPGA) research became more and more

important during the last decades. The FPGA technology is being used

in many fields and offers the main features scalability, flexibility and the

low costs of prototyping. The functionality of FPGA devices is developed

using hardware description languages such as Verilog. Those descriptions

are translated to boolean circuits which can be programmed on the FPGA

devices using Computer Aided Design (CAD) Flows which optimize the

circuit for the specific features offered by the FPGA device. The VTR

CAD flow is such a workflow consisting of three tools: Odin II, ABC and

VPR6.0. In order to handle the growing scale of circuits and features offered

by FPGA devices the tools in the CAD flow are being improved constantly.

This report describes the development of simulation features within the

Odin II circuit visualization software. The software was created in order

to visualize the netlist created by Odin II to offer developers exploration

functionality. Being able to simulate the circuit in the visualization creates

a verification feature which can be used for debugging and research of new

FPGA architectures. Another goal of the report is to improve the usability

and exploration comfort of the visualization software.

ii

CONTENTS

Contents

1 Introduction 1

2 Basics 3

2.1 FPGA Introduction and History 3

2.2 GUI Development . 5

2.2.1 QT . 6

3 Related Work 8

3.1 Odin II . 8

3.1.1 Simulation in Odin II 10

3.2 Visualization in Odin II . 11

3.3 VPR6.0 . 11

4 Design 13

4.1 Problem Specification . 13

4.2 Use cases . 14

4.3 Basic Design . 15

4.4 Think Aloud Evaluation Concept 15

5 Implementation 17

5.1 Software Engineering . 17

5.2 Visual Simulation . 20

5.3 Extending the BLIF Explorer 29

6 Evaluation 32

6.1 Use Case Based Evaluation 32

6.2 Approach Discussion . 37

6.3 Usability Evaluation . 38

7 Conclusion and Future Work 40

Bibliography 44

A Appendix 45

iii

CONTENTS

B Visualization Software Screenshots 47

C Think Aloud Evaluation Task List 49

iv

LIST OF FIGURES

List of Figures

2.1 A Conceptual FPGA . 4

2.2 Island-Style FPGA . 4

2.3 GUI Application Flow and Classic Batch-processing Applica-

tion in Comparison . 6

3.1 The VTR Workflow . 9

3.2 The Processing Stages in Odin II 10

3.3 The Processing Stages in VPR 12

5.1 Class Diagram of the First Approach 18

5.2 Class Diagram of the Second Approach 19

5.3 Open File by BLIF Parser Flow Diagram 26

5.4 Create Visualization Using Odin II Open File Flow Diagram 26

5.5 Feedback Loop in a Boolean Circuit 27

5.6 Visual Simulation Exploration 29

5.7 Search Result for a Substring in a Circuit With 133 Nodes . . 30

5.8 Highlighting of a Node During the Simulation Process 31

5.9 Currently Implemented Shapes in the Vizualization 31

6.1 Open BLIF Times in Relation to the Connection Count . . . 36

6.2 Open BLIF Times in Relation to the Node Count 36

6.3 Comparison Table Between the two Approaches 38

B.1 Simulation of a Circuit with 3354 Nodes 47

B.2 Simulation of a Circuit with 3354 Nodes 48

v

LIST OF TABLES

List of Tables

1 File Opening Times Using Both Approaches 35

vi

1 Introduction

Field Programmable Gate Arrays (FPGA) are widely used for prototyping

and in areas where requirements of an application may change frequently.

Instead of creating hundreds or thousands of devices which functionality

cannot be changed developers tend to use reprogrammable devices.

Verilog HDL [1] and VHDL [2] are hardware description languages used

for development of FPGA applications. The languages provide the ability

to define functions which are later translated into boolean circuits. These

circuits are programmed onto an FPGA device. The translation from a de-

scription file to the final boolean circuit is performed by Computer Aided

Design(CAD) tools.

The VTR [3] project provides a CAD workflow consisting of three tools

where each tool performs improvements. The workflow was created in order

to assist the developers of FPGA architectures to manage the growing com-

plexity and size of FPGA architectures. Evaluation and verification tend to

be very complex and time consuming during the development phase and are

mostly done manually. Odin II is part of the VTR project and represents

the first stage of the VTR workflow. It performs Verilog elaboration and the

front end synthesis. Simulation and visualization of the circuit in Odin II

were created in order to assist developers during evaluation and verification

processes.

This report describes the improvement of the visualization component in

Odin II by combining the abilities of the Odin II its simulator and the vi-

sualization tool. The main goal is to to explore the simulation process of

the created netlist visually. Feedback by developers who work with Odin

II is used to improve the usability of the visualization tool in general and

to create new functions in order to assist developers during the exploration

process.

The report is divided into 6 Chapters. Chapter 2 introduces Field Pro-

1

grammable Gate Arrays, gives a short introduction to the history of FPGA

and describes the basics of graphical user interface (GUI) development.

Chapter 3 describes the VTR [3] project, the tools it consists of and the

workflow in general. The chapter describes what Odin II is used for in the

workflow, what functions already exist to assist during evaluation and veri-

fication and how they can be improved. This improvement is the main goal

of this project. The design of the proposed solution is explained in Chapter

4. Improvements to different parts of Odin II are pointed out and an eval-

uation strategy is defined in this chapter.

The implementation of the additional functions is covered in Chapter 5.

Chapter 6 compares the goals which were defined during the design phase

and the results using the evaluation strategy. Chapter 7 summarizes the

project and gives an outlook into future developments in Odin II and its

components.

2

2 Basics

The project describen in this report combines the FPGA techonology with

the field of graphical user interfaces. This section gives a short introduction

in both fields of research. Section 2.1 explains the development of FPGAs,

describes it’s history and fields of research in this area. The history of

graphical user interfaces is given in Section 2.2.

2.1 FPGA Introduction and History

During the 1990s the development of hardware became more and more risky

as the production cost of chips ranged from $20,000 to $200,000 [4]. The

production Application Specific Integrated Circuits (ASICs) is very time

consuming and expensive. The goal of the hardware industry was to re-

duce the costs of hardware prototypes and the time between programming

to testing. A solution for this problem was to use a technology which was

introduced in 1986 by Xilinx Inc. named ”Field Programmable Gate Arrays

(FPGA)” [4][5].

FPGAs have two main advantages which lead to the conclusion that this

technology is a good solution to prototype hardware. At first prototypes

can be produced in small quantities and ”no facility must be tooled to be-

gin production of a mask-programmed device which incurs a large overhead

cost” [4]. The second reason is that the programming process is finished

within minutes and can be tested, ”whereas mask-programmable devices

must be manufactured by a foundry over a period of weeks or months” [4].

An FPGA is basically a collection of logic blocks on a hardware device, which

can be programmed and connected. There are many different architectures,

which place the logic blocks and possible interconnections. As can be seen

in Figure 2.1 the basic design of an FPGA consists of logic units, intercon-

nection resources and I/O-cells, which are arranged as a two-dimensional

array. The FPGA design is always ”a trade off in the complexity and flex-

ibility of both the logic blocks and the interconnection resources [4]”. The

most common design is called island-style and consists of evenly distributed

3

2.1 FPGA Introduction and History

I/O-cells surrounding a basic structure of logic blocks. The main advantage

of this structure is the flexibility allowing a single application to ”be used

in multiple products all with different capacity, pin count, package etc [6]”.

The structure can also be used in other applications by embedding the de-

sign with all its logic blocks and their interconnections [6]. Figure 2.2 shows

an example of an island-style designed FPGA, which looks very similar to

the conceptual FPGA in Figure 2.1.

Figure 2.1: A Conceptual FPGA [7]

Figure 2.2: ”Island-Style” [5]

There are a variety of manufacturers which produce FPGAs. The archi-

4

2.2 GUI Development

tecture and design differs widely. Logic units on an FPGA differ and can

represent different levels of granularity. Predefined logic blocks are often

embedded in FPGA devices. A more granular logic block is more effective

in speed, but less flexible compared to a block with finer granularity [8].

Examples for more granular hard blocks are multipliers or memories.

The first FPGA, presented by Xilinx contained ”64 logic blocks and 58

inputs and outputs [7]”. Nowadays the size of FPGAs grows every year

and in 2007 they contained ”approximately 330,000 equivalent logic blocks

and around 1100 inputs and outputs [7]”. This leads to different problems.

The architecture of such a device is a problem which is addressed in the

next chapter. Other challenges are the programming and understanding of

processes that happen in such a device.

2.2 GUI Development

Computer applications perform actions or computations, which the user has

ordered them to do. Most of the applications are very specific and users are

capable of using them by entering commands on a command console. The

basic flow of such an application can be seen in Figure 2.3a. It receives the

input parameters and terminates after results are delivered.

Example advantages of such an application are, that no resources are needed

in addition to the actual computation and that computations can be per-

formed on servers if human interaction is not necessary. The main disad-

vantage of a classical batch-processing application is the way of interaction

with a human user. The user has to learn how to address the program and

how to interact with it. To simplify this process programs with high human

contact are offering graphical user interfaces (GUI), which encapsulate the

complexity of the program into an intuitive interface.

The structure of such an application differs from that of a batch appli-

cation (Figure 2.3) as it adds an event loop, which awaits user commands

and passes those commands to the actual program. Such graphical user

5

2.2 GUI Development

Figure 2.3: GUI Application Flow and Classic Batch-processing Application in

Comparison [9].

interfaces can be implemented using different languages and pre-compiled

libraries. The Qt [10] library is used for this project and is introduced in

the next chapter.

2.2.1 QT

The first public version of Qt (pronounced cute) was published in May 1995

[10]. It was developed at the Norwegian Institute of Techonlogy in Trond-

heim by two students, Haavard Nord and Eirik Chambe-Eng. The develop-

ment began in the late 90s, but was published after the students founded the

company Quasa Technologies, which later became Troll Tech and is known

today as Trolltech [10]. Trolltech is a subsidiary of Nokia. Graphical inter-

faces developed using Qt are ”KDE, the web browser Opera, Google Earth,

Skype, Qtopia and OPIE” [11].

The library consists of modules whose functionality is clearly structured

and separated. An application only uses the parts of the framework, which

are necessary. Dialogue based and also window based applications are pos-

sible [12].

6

2.2 GUI Development

The library is written in C++ and utilizes object oriented standards. Parts

of the application implement classes which already exist in the library start-

ing with the main class QObject and becoming more and more specific to

classes such as QLine or QPolygon.

Qt consists of 22 modules, which are used for different purposes. The QtGui

module consists of classes which are used to create graphical user interfaces.

QtCore is a collection of core non-graphical classes used by other models.

Xml, WevKit, OpenGL, Svg can also be handled using modules, which are

provided by Qt. A full list of modules and an API can be found on the

website of Qt [13].

Development in Qt in the basic version only allows C++, but many projects

created bindings for the library. The reason was mostly to be able to use

the functionalities of Qt in different programming languages. Qt bindings

for more than 15 languages are available. Examples include PyQt (Python),

QtRuby (Ruby) and QtLua (Lua).

7

3 Related Work

The Verilog to Routing (VTR) [3] project is a collaboration project consist-

ing of three core tools Odin II [14], ABC [15] and VPR [16]. ”Odin II is

responsible for Verilog elaboration and front-end hard-block synthesis [3]”,

ABC for logic synthesis and VPR for physical synthesis and analysis. The

structure of the workflow is shown in Figure 3.1.

A Verilog HDL design and a FPGA description are required as inputs for the

workflow. The result of the stages in the workflow is an output bit stream

which is used to program the FPGA device. The communication between

the stages is performed using the Berkeley Logic Interchange Format (BLIF)

[17]. It contains the current state of the circuit. A more detailed description

of the tools involved in the VTR project is found in the following sections.

3.1 Odin II

Odin II is a ”framework for Verilog Hardware Description Language(HDL)

synthesis [14]” which is an improved version of Odin [18]”. Its main purpose

is the ”the front-end conversion of a HDL design into a netlist of basic gates

and more complex logic functions [18]”. The inputs which are required for

Odin II are a Verilog HDL design and an architecture description file. Odin

II uses the Verilog HDL description to create an ”abstract syntax tree [14]”.

The architecture description is used to map functionalities onto hard blocks

which are available on the specific FPGA device.

As shown in Figure 3.2 there are multiple stages in Odin II which lead

to a flat netlist. In order to create this netlist Odin II performs a first op-

timization and partial mapping. The architecture file is used to discover

functionalities which are already implemented as hard blocks on the device

and can be used for the circuit. [14] gives the example of a 8x8 multiplier

which is used in the design and is available on the device. Odin II binds

those to speed up the computation and decrease the number of soft logic

8

3.1 Odin II

Figure 3.1: The VTR Workflow

9

3.1 Odin II

Figure 3.2: ”The Processing Stages in Odin II [14]”

blocks used.

”Odin II Verilog elaboration front end has four key roles in the VTR frame-

work [3]”. The roles are the interpretation and conversion of ”some of the

Verilog syntax into a logical netlist targeting the soft logic on the FPGA

[3]”, synthesis of constructs into hard blocks, ”to be responsive to the ar-

chitecture description of the FPGA” and ”to provide a framework for the

verification of the correctness of the software flow [3]”.

3.1.1 Simulation in Odin II

Simulation in Odin II was created to ”verify that the produced netlists are

functionally correct [19]”. Also the verification of the ”future work on the

entire tool flow [19]” is computed using the simulator in Odin II.

The simulation algorithm traverses through the netlist starting at the top-

most nodes which are the inputs and the constant nodes. The input values

for each cycle are taken either from a predefined file or generated randomly.

Using the input values the follow up nodes are enqueued and computed if all

parent nodes are ready. This procedure iterates through the whole netlist

10

3.2 Visualization in Odin II

until all nodes are processed [19].

After the queue is empty and there are no more nodes to compute, ”the

simulator writes the values of the netlist output nodes to an output vector

file [19]”. This procedure is repeated until the desired number of input and

output vectors is created. The combination of input and output vectors can

be used to verify the correctness of the circuit [19].

3.2 Visualization in Odin II

The visualization software was created in 2011 and introduced in [20]. Its

main purpose is to assist the exploration and development of new FPGA

architectures. It ”aims to improve the productivity of development” and

”support the evaluation process” in the VTR [3] workflow.

The application is developed using the Qt [13] framework which allows de-

velopers to use a subset of modules required for the specific application.

The input for the visualization is a Berkeley Logical Interchange Format

(BLIF) [17] file. The input file represents a boolean circuit created during

the workflow. The nodes in this structure are visualized using objects of

classes LogicUnit or Wire which store information and parameters neces-

sary for the visualization and exploration process.

The visualized graph provides functions such as zoom, arrangeable node

structure or the ability to insert notes into the graph. The visualization

software was designed using object oriented principles to be extendible in

order to add new functionalities.

3.3 VPR6.0

The toolset VPR [21] was developed at the University of Toronto and is

”used to perform FPGA architecture and CAD research [22].” VPR performs

placing of logic structures on FPGA devices and designes routing based on

11

3.3 VPR6.0

experimental results. In 2011 a beta of VPR6.0 was introduced in [16]. Since

the release of VPR5.0 [22] the development has focused on the following

features:

• Single Driver Routing Architectures

• Heterogeneous Logic Blocks

• Optimized Circuit Design in released Architecture Files

• Robustness

Improvements in VPR6.0 are ”new constructs that allow the description and

packing of far more complex logic blocks [3]” and ”timing driven function-

ality [3].” In the VTR workflow VPR is mainly used for the specification of

architecture descriptions, packing, placing and routing. The flow structure

of VPR is shown in Figure 3.3

Figure 3.3: ”The Processing Stages in VPR [22]”

12

4 Design

This chapter describes the planning and designing process of the project.

Different approaches are discussed and chosen for implementation. The

main procedure in this chapter is to specify the problem the project is aimed

to solve, create an approach how to solve the problem and to create an

evaluation strategy in order to figure out how well the problem was solved.

The problem specification can be found in Section 4.1. The basic design

of the approach is located in Section 4.3 and the evaluation strategies are

created in Sections 4.4 and 4.2.

4.1 Problem Specification

The contribution of this project is to enhance the exploration tool in Odin II

by adding extended functionality. The main part of the project is to include

the simulation functionality into the software and provide the functions in

the graphical user interface.

The simulation is performed on a netlist which is created by Odin II ac-

cording to a Verilog HDL or a BLIF file. This project mainly focuses on

BLIF files. The simulator creates random input vectors or uses a file with

predefined input values in order to compute the states and values of all nodes

in the netlist.

Initially all values are set to undefined. The netlist is traversed starting

from the inputs and following all outgoing connections. The output of the

simulation is a file which represents all outputs at all stages during the sim-

ulation. Values for the nodes that are not output nodes are not stored.

In order to visualize the simulation process, Odin II and the visualization

tool need to be connected. The netlist is used to assign output values during

the simulation. This requires every node in the visualization to be paired

with a node in the netlist.

The simulation is processed in waves. A usual wave in Odin II is 16 cy-

13

4.2 Use cases

cles. The value can be changed in the makefile of Odin II. The simulator

computes a whole wave at a time before it stores the output values and com-

putes the next wave. This reduces the file access times as the result does not

have to be stored after each cycle. From the perspective of the visualization

it is possible to simulate different numbers of cycles which number is usually

a multiple of the wave length.

The second part of the project is to improve the usability of the BLIF

explorer by adding functionality requested by developers. The main goal of

this process is to enhance the exploration ability and the readability of a

visualized circuit.

4.2 Use cases

The project is created from the perspective of the user and is implemented

top down. Use cases are defined to represent the functions. Those are

divided into exploration and simulation according to the structure of this

project.

• Simulation

– Perform simulation of the currently viewed circuit

– See current states of outputs in the visualization

– Undefined stage, 0 and 1 have to be recognizable visually

– Navigate through simulation steps for raising and falling clock

edges

– Start simulation of the next wave and continue exploring simula-

tion

• Exploration

– Search by name function for nodes

– Highlight a node and all incoming and outgoing connections

14

4.3 Basic Design

– Recognize latches (flipflops) visually

– Recognize clock node visually

– Open large BLIF files in reasonable time

4.3 Basic Design

In order to connect Odin II and the visualization software two designs were

created. The one with the better performance is determined in Chapter 6.3.

The initial application design, which was presented in [20] was changed by

adding a new module which includes Odin II. This module is addressed after

the BLIF file is processed by the BLIF explorer and the current circuit is

created within the application. Odin II creates its own netlist and those two

structures are connected by an Odin interface using the unique names of

the nodes.

The second design utilizes Odin II for all functions regarding the circuit

except for the visualization itself. This means parts of the initial applica-

tion are not used any more but are provided by Odin II. The implementation

and and selection of the more efficient approach is described in chapters 5

and 6.

4.4 Think Aloud Evaluation Concept

The usability evaluation will be performed using the think aloud test [23].

Five persons will be asked to participate in the test and to solve a number

of tasks which will cover the use cases listed in Section 4.2. The list of tasks

will be the same for all users. The defined list is shown below:

1. Start the application

2. Open a BLIF file

3. Zoom out to 50%

4. Search for the top^clock node using the search function

15

4.4 Think Aloud Evaluation Concept

5. Locate the search result

6. Reset the highlighting

7. Pick a node in the circuit and highlight it using the Highlight connec-

tions function

8. Start the simulation

9. Navigate through the simulation

10. Close the application

16

5 Implementation

This chapter describes the implementation process in detail. It explains

the software engineering part of the program as well as the specifics of the

implementation, problems which occurred and algorithm that were used

during this process.

5.1 Software Engineering

This project extends the class structure which was described in [20]. In

the first step the structure was refactored to split up functions which were

not necessarily in one class object. This caused the creation of the class

BlifParser which is responsible for BLIF file handling. The class contains

functions that return the circuit to the Container class. The Container

uses this information to create all logic units and their connections.

As described in Chapter 4 the integration of the Odin II simulator was

performed in two different ways. The class structure of those approaches

is slightly different. The first approach is shown in Figure 5.1. The second

approach uses the same structure with slight changes (Figure 5.2).

Both approaches have a new class called OdinInterface which establishes

the communication with Odin II. It provides and controls the functions

which are called in Odin II, requests information and returns references to

nodes in the netlist. The functions in this class are different for two ap-

proaches as they are used for different purposes.

The first approach uses the extracted class to read in the BLIF file and

connects the circuit created, to the netlist in Odin II. That means the BLIF

file is read in by using this class before Odin II processes the file and refer-

ences to all nodes in the circuit are requested by the Controller class.

The second approach does not require the BlifParser class. It uses the

17

5.1 Software Engineering

Figure 5.1: Class Diagram of the First Approach

18

5.1 Software Engineering

Figure 5.2: Class Diagram of the Second Approach

19

5.2 Visual Simulation

read BLIF function of Odin II to create the netlist and creates all visual

objects according to Odin II’s netlist. This causes the OdinInterface and

Container classes to find all nodes in the netlist and to create a visual ob-

ject for all nodes and connections depending on their type and functionality.

The benefits and disadvantages are discussed in Section 5.2 and Chapter 6.

5.2 Visual Simulation

The implementation of the visual simulation was divided into substeps. The

steps were created in small packages which could be tested and debugged

as easily as possible to make sure the development of a new component will

not suffer from previous mistakes. The steps were the following:

1. Refactor the Container class.

2. Adjust the classes LogicUnit and Wire to support simulation.

3. Create a class OdinInterface and connect it to Odin II.

4. Adjust LogicUnit to store an Odin II node reference.

5. Connect Odin II netlist and the circuit stored in the visualization.

6. Simulate circuits in Odin II using OdinInterface.

7. Access actual state of the simulated circuit and visualize it.

8. Provide implemented functions in the BLIF explorer.

The class Container which stores all nodes and connections is also respon-

sible for the creation and orchestration of all processes that involve the

visualized circuit. A BLIF file was used initially to be parsed in by the

readInFile() method and to create the visual structure.This function was

refactored to be better readable and more scalable. The BlifParser class

was created to read the file line by line and return information about the

logic units and their interconnections.

20

5.2 Visual Simulation

This structure allows developers not only to better navigate in the source

code but also implement different file structures which might be interesting

to use as input files for the BLIF explorer. Such an example is a Verilog

HDL file with an architecture file as used in Odin II. The interface, which

is defined by the class BlifParser can be used in order to read in new file

structures.

The status of each node in the circuit is saved in a LogicUnit object. Each

regular node in the netlist and the BLIF file structure has exactly one out-

put, which is named by the node itself. This means the output value which

is received by all following nodes can be stored in one place and all outgoing

Wires only have to check which status it is at the moment. Nevertheless the

BLIF format also allows hard blocks, which can have multiple outputs with

different names. To allow such a structure, the output status variable is a

vector of values.

For cases representing the soft logic of the circuit, the vector has the length

1. Only in case of a hard block with multiple outputs is the status vector

bigger. The class LogicUnit therefore was given one new variable and two

new methods which set and get the required values:

public:

int getOutValue(int outputNumber);

int setOutValue(int value, int outputNumber);

private:

QList<int> myOutVal;

[...]

The visualization of the output status uses the width of the connection wires.

A 1 is thicker than a 0. The status is updated using the updateWire()

method. This method is called by two different components in the applica-

tion. The ExplorerScene detects mouse events and user inputs. If the zoom

level is changed and everything is scaled down, the wires are updated. To

increase the performance of the application ExplorerScene, which inherits

QGraphicsScene, only updates the actually visible part of the visualized

21

5.2 Visual Simulation

graph.

A LogicUnit is notified by ExplorerScene if the user drags it, changes

wires etc. The Container object notifies it every time a simulation step is

computed by Odin II. Each of those cases requires the LogicUnit not only

to store the new data but also to notify it’s outgoing connections to update

themselves.

The changes for simulation purposes in the Wire header class are the fol-

lowing:

//wire.h

public:

void updateWireStatus();

[...]

private:

int wireOff;

int wireOn;

[...]

The integer variables wireOn and wireOff store the width of the wires dur-

ing the status on and off. The values are initialized in the constructor and

are the same for all wires. If the difference is not visible enough it can be

changed. The default values are 2 and 4 which means wires that are cur-

rently representing a 1 are twice as thick as those representing a 0. The

initial value for all outputs and inputs in the netlist that are processed by

the Odin II simulator is -1. In this case the function updateWireStatus()

visualizes the status by setting the green value of the connection to the max-

imal value 255.

This is useful during the first cycles as green connections are still available

and structures in the circuit need some cycles to establish defined values.

Flip-flops for example need a defined value and a clock edge in order to have

22

5.2 Visual Simulation

a defined output value.Obviously the number of cycles is increased if more

flip-flops exist in different stages of the circuit.

In order to include and use functions that are provided by Odin II an inter-

face had to be created which establishes communication with Odin II and

provides all functions that are needed by the Container class. Odin II is

written in C and the visualization software is written in C++. In general

both languages are related and it is possible to use most source code that

is written in C in a C++ application. The precompiled libraries have to be

included in the Qt project file which contains all compiler instructions. In

addition the VPR6.0 library is also needed for some functions in Odin II

and is included together with the 20 precompiled Odin II files. The list of

those files can be found in the appendix.

The use of C code in a C++ environment can be done by including the header

files of the required source code. It is possible to inform the compiler and

the developers that are not familiar with the source code that a different

programming language is used by adding the extern keyword. The class

OdinInterface uses it to include all Odin II headers. An excerpt of this

include procedure is shown here:

extern "C" {

#include "globals.h"

#include "types.h"

#include "util.h"

#include "netlist_utils.h"

#include "arch_types.h"

[...]

}

The only file source file of Odin II which is not included is odin_ii.c as it

contains a main method of Odin II. This would cause collision with the main

function of the visualization software. All initialization procedures which are

23

5.2 Visual Simulation

performed in odin_ii.c are therefore executed in the OdinInterface.

The basic structure of the class OdinInterface can be found here:

public:

OdinInterface();

void startOdin();

void setFilename(QString filename);

private:

void initialize_options();

void do_high_level_synthesis();

void do_simulation_of_netlist();

t_type_descriptor* type_descriptors;

int block_tag;

QHash<QString, nnode_t *> nodehash;

QQueue<nnode_t *> nodequeue;

QString myFilename;

The method structure of odin_ii.c is taken and changed to fit the require-

ments in the visualization software. The naming of the main method which

is changed to be startOdin() and not necessary functions, needed such as

command line interactions with the user are not included as this information

is given by the visualization software. This approach has the advantage, that

no source code file of Odin II has to be changed in order to use the visualiza-

tion software. The folder structure is completely separated from Odin II and

only uses the provided functions. The disadvantage is that any changes that

are made to odin_ii.c also have to be adjusted in the class OdinInterface.

The connection of the netlist in Odin II and the visualization graph is done

using references that are stored in the LogicUnit objects.

public:

24

5.2 Visual Simulation

void setOdinRef(nnode_t* odinNode);

nnode_t* getOdinRef();

bool hasOdinReference();

private:

nnode_t *myOdinNode;

bool hasOdinNode;

This is used to assign a connection between the structures and to receive

information about the Odin II node such as type, output value, incoming

and outgoing connections. The connection process was implemented in two

different ways as already described in previous chapters.

The first approach uses the existing structure and adds a new module

and functions to it. The flow of the open BLIF process is extended by

an Odin II step as shown in Figure 5.3. In order to accomplish this, the

class OdinInterface has a method to create a hash table of all nodes in

the netlist. This information is passed to the Container which connects all

nodes based on unique names.

The second approach changes the flow of the application. It requests the

Odin II netlist before nodes and connections are created.The nodes are cre-

ated by traversing the netlist based on it’s type and child nodes. The flow

of the second approach is shown in Figure 5.4.

The traversal algorithm used by the second approach is required to make

sure that every node in the netlist is created in the visualization graph. A

similar algorithm is used in the simulator to compute the values of every

node. It starts with the inputs of the circuit and moves on to the child

nodes computing the values based on the new inputs. A node needs all in-

put values to be computed for the actual cycle in order to be created.

The parallel requirement for the visualization is that two nodes which have

to be connected have to be existent in order to create the Wire object. A

25

5.2 Visual Simulation

Figure 5.3: Open File by BLIF Parser Flow Diagram

Figure 5.4: Create Visualization Using Odin II Open File Flow Diagram

26

5.2 Visual Simulation

problem that is found in this procedure are feedback structures as shown in

Figure 5.5.

The logic node AND1 will not be added until FLIPFLOP1 is available in the

Figure 5.5: Feedback Loop in a Boolean Circuit

structure. Also FLIPFLOP1 cannot be added as long as AND2 is waiting for

AND1. This deadlock is handled using the specification in the BLIF file for-

mat that every ”feedback loop must contain at least one latch [17]”. As

FLIPFLOP1 has only two inputs, one for the clock and one d-in, the flipflop

can be added as soon as it is reached from a node which is not the clock.

The clock is added in the first iteration and can be assumed as given. Based

on this information the pseudo code version of the traversing algorithm is

shown below.

createNodes(){

enqueueTopInputNodes(nodequeue);

enqueueConstantNodes(nodequeue);

while(!nodequeue.isEmpty()){

node = nodequeue.dequeue();

create(node);

doneTable.add(node);

childlist = getChildren(node);

forall(child in childList){

if(doneTable.contains(child)){

addConnection(node, child);

27

5.2 Visual Simulation

}

else if(!inQueue(child) &&

!parentsDone(node)){

nodequeue.enqueue(child);

}

}

}

}

The next step towards visualizing the simulation is to run the Odin II sim-

ulator on the netlist and to store the values in the nodes. The simulation is

called using the globally visible method simulate_netlist(verilog_netlist).

The simulator computes the values in waves. A simulation of multiple cycles

is done at once. The number of cycles is defined in the Makefile of Odin II

and is 16 per default.

The visualization software copies those 16 cycles after the computation to

the LogicUnit objects as an array of short variables. A bool variable would

not be sufficient as there are three possible states (high, low, undefined). If

a cycle number is requested which is above the number of the last computed

cycle so far, another wave is computed by the simulator and the values are

added to the array. This allows the user to see the simulation result very

quickly even for very big circuits as only 16 cycles are computed and addi-

tional cycles only in case they are required.

The simulation function is provided to the user in the graphical user in-

terface in a separate area. At the current state of the application the user

has three functions: run simulation, next simulation step and previous sim-

ulation step. The graphical interface which shows a circuit being simulated

and the user simulation controls is shown in Figure 5.6. The example shows

a very small circuit with only nine nodes. Examples of a circuit with more

than 2000 nodes is shown in the appendix in the Figures B.1 and B.2.

28

5.3 Extending the BLIF Explorer

Figure 5.6: Visual Simulation Exploration

5.3 Extending the BLIF Explorer

During the project, developers were able to work with the software and give

feedback in form of functions which would be helpful during the exploration

process. A wish for better navigation in bigger circuits and a better visual

overview of the modules and its placement in the circuit was requested.

New functions were implemented in order to improve and speed up the

visualization process. A search function, which allows the user to find spe-

cific nodes and to explore their connections, was added. The main menu

and the context menu which is shown if the user performs a right mouse

click on the visualization offers to find nodes.

In order to perform a search, an interaction menu requests the user to enter

the name or part of the name of the node. The algorithm iterates through

the node hash table which is stored in the Container class. Nodes contain-

ing the string are highlighted. The result of an example search is shown in

Figure 5.7. In addition, the number of nodes highlighted is presented to the

user. In a big circuit the search results can be seen in low zoom levels and

zoomed in to inspect the specific nodes.

Another request was to view specific nodes, their connections and neigh-

bours. The right mouse click context menu of the nodes was extended by

29

5.3 Extending the BLIF Explorer

Figure 5.7: Search Result for a Substring in a Circuit With 133 Nodes

the functions Highlight node and Reset highlighting. If a node is highlighted,

the LogicUnit and its connections are painted red. The layer of those ob-

jects is set to a high value which shows the connection wires above nodes,

which are crossed. This allows developers to see and follow all connections

a node has and the neighbour structure can be explored. The highlighting

is persistent during a possible simulation process. If the value of the con-

nection is currently not defined, only the green value is changed and the

connection is shown in yellow until it is high or low which changes the con-

nection color back to red. One of the first cycles of a simulation while a

node is highlighted is shown in Figure 5.8.

In addition nine new shape types were included into the simulation which

allow to recognize clock,latch,logical AND, logical NAND, logical OR, logical

NOR, logical XOR, logical XNOR and logical NOT nodes. Also the shape

of a standard node without a specific shape was changed to show a more

recognizable difference to latch nodes. It is not required any more to create

a node shape by using way points, which build a polygon but can be added

using an image of the shape on transparent background. The currently in-

cluded shapes are shown in Figure 5.9.

30

5.3 Extending the BLIF Explorer

Figure 5.8: Highlighting of a Node During the Simulation Process(green=undefined,

yellow=undefined and highlighted, red=defined and highlighted,

black=defined)

Figure 5.9: Currently Implemented Shapes in the Vizualization

31

6 Evaluation

This chapter applies the evaluation strategies described in 4 in order to find

out how well the problems defined in 4.1 were soved. The evaluation is

divided into three subsections. The first subsection analyses the use cases

which were defined before the implementation started. The goal of this eval-

uation is to find out if the defined goals were met, to discuss advantages and

disadvantages of the approaches and to point out what kind of development

could be done in the future.

The second subsection discusses two approaches which were implemented

in order to extend the visualization software by simulation abilities. The

third section will evaluate the overall usability by discussing results of a

think aloud test which was created in Chapter 4 and performed by five dif-

ferent persons. sections.

6.1 Use Case Based Evaluation

Perform simulation of the currently viewed circuit

The BLIF file is opened in Odin II and the visualization software. The

nodes are connected and the simulation can be started using a button in the

simulation tool section. The user is still able to use the functions that are

provided by the exploration tool. The nodes can still be dragged around,

highlighted and comments can be added.

In case the user modifies the circuit within the application, the BLIF file

remains the same and also the netlist in Odin II is still the same, which was

created when the BLIF file was opened. All nodes, that were in the circuit

before it was modified will still show their status. The new added structures

do not have actual functions.

See current states of outputs in the visualization, Undefined stage,

0 and 1 have to be recognizable visually

32

6.1 Use Case Based Evaluation

Wired connections were extended by parameters which influence the width

and color of the visual representation which allows the user to see the cur-

rent state of the node output. All states are represented visually.

Navigate through simulation steps for raising and falling clock

edges

The simulation shows both clock edges. In circuits without a clock it causes

the circuit to stay in the same position for two steps. The edges, which have

to be simulated can be chosen by the user. The simulation toolbox contains

three radio buttons, which determine which edges are shown.

Start simulation of the next wave and continue exploring simu-

lation

The simulation is started as soon as the user presses the Start button. The

first wave is simulated and the values are stored. The number of values

depends on the wave length which is defined in the Odin II Makefile.

As soon as the last cycle was shown and the user clicks the Next button

the next wave is simulated and the user has one wave length more cycles

which can be explored.

Search by name function for nodes

A search was implemented. The user can use the function by pressing the

hot key Ctrl+F, using the Item menu option or the right click mouse con-

text menu to access it. The information which is required for the search

is the name or a substring of the node. All nodes, which match the name

are highlighted light blue in order to locate them in higher zoom levels.

The highlighting can be undone using the Reset Highlighting function in the

menu.

Highlight a node and all incoming and outgoing connections

33

6.1 Use Case Based Evaluation

Using the right click context menu a node and all incoming and outgo-

ing connections are highlighted red and the layer of each of the objects is

set to a high value. Connections which cross other nodes are drawn above

them and can be tracked in the circuit. If the highlighting is not needed

any more the Reset Highlighting function restores the initial color and layer

values.

Recognize latches (flipflops) clock node and other logical gates

visually

The LogicUnit class was extended by new types of nodes. All types were

created with standard shapes which allow to see the logical structure of the

circuit without reading the names of the nodes. The currently available

types are:

• Input

• Clock

• Latch

• Logical AND

• Logical NAND

• Logical OR

• Logical NOR

• Logical XOR

• Logical XNOR

• Logical NOT

Shapes are drawn using way points or images with a transparent background

which allows to add complex shapes or change them without accessing the

source code. All visual shapes are shown in Figure 5.9.

34

6.1 Use Case Based Evaluation

Node count Connection count App. 1 time App. 2 time

26 43 0.01s 0.01s

66 139 0.01s 0.01s

708 1676 0.04s 0.05s

918 2150 0.05s 0.1s

1537 3692 0.12s 0.26s

2328 5872 0.15s 0.34s

3354 8654 0.26s 0.51s

5027 12900 0.43s 1.01s

10876 35814 4.12s 8.07s

23757 96733 23.76s 65.3s

Table 1: File Opening Times Using Both Approaches

Open large BLIF files in reasonable time

Two different approaches were implemented which handle the reading of

an input file. The difference of the opening times is part of the discussion in

Section 6.2. The evaluation of the times was performed on a machine with

an Intel Core i7 processor and 4GB of RAM.

Table 1 shows that approach 1 which uses Odin II to read in the BLIF

file performs faster than to open the file using the BlifParser. This can be

explained by the fact that the second approach uses the file multiple times.

The file is opened and parsed a first time to create all nodes, which are found

in the BLIF file. It is parsed a second time to create all interconnections

between the files before Odin II opens it in order to create the netlist with

all node functionalities. The first approach uses the file only once when

Odin II is started. Based on the netlist the visual representations are cre-

ated. A visual comparison between the times is found in Figures 6.1 and 6.2.

35

6.1 Use Case Based Evaluation

Figure 6.1: Open BLIF Times in Relation to the Connection Count

Figure 6.2: Open BLIF Times in Relation to the Node Count

36

6.2 Approach Discussion

6.2 Approach Discussion

The two approaches which were implemented in Chapter 5 have the same

result visually, but the structure and some metrics differ. The flow of the file

handling differs as one approach uses a module, which was already existent

in the application whereas the other approach uses a completely new flow,

which discards the file interface. The benefit of having an interface which

is specifically created for the visualization tool is that new file formats can

be recognized if a new file handler is created which implements the interface.

On the other side the visualization tool is created especially for the workflow

where Odin II is part of and Odin II is already capable of opening output

files from every stage in the workflow and in addition it can open Verilog

HDL files in combination with architecture files, which represent a specific

FPGA architecture. This functionality of Odin II creates a netlist which

can be used in the visualization software to create a visual circuit.

The file handling of the approach, which abstains from using the BlifParser

has the benefit that the file is only read in by Odin II whereas it is read by

the visualization twice before Odin II is started and has to create the netlist

based on the BLIF file as well. This also reflects in the file opening times

which are shown in Table 1 and the Figures 6.1 and 6.2.

In comparison the approach which is not using the file multiple times has

smaller growth rates in relation to the connection count as well as the node

count. In case of a change in the BLIF standard the second approach bene-

fits from the fact that only the read in function of Odin II has to be adapted

in order to apply the changes also for the visualization.

Table 6.3 lists benefits and detriments of both approaches which leads to

the decision to discard the file interface and only use the approach which

utilizes Odin II.

37

6.3 Usability Evaluation

Figure 6.3: Comparison Table Between the two Approaches

6.3 Usability Evaluation

For the usability evaluation a think aloud test was created which was per-

formed with five persons who could potentially use it. All of the five persons

are students in Computer Science. The test was created during the design

phase and a list of tasks was defined in 4. Each of the testers was asked

to complete the tasks and to say everything they do and think about the

application out loudly. The task list which was completed by the users can

be found in Appendix C.

Opening the file using the hot key and using the button on the main button

group was found by all users very quickly. Dragging around nodes and ar-

ranging them as desired was also done by all users intuitively. Highlighting

a node and all connected nodes was not found by all users initially. Two

users tried to find this function in the menus or in the tool bar on the left

side, which allow to add new nodes into the circuit. After the function was

not found on the tool bar the users tried to right click a node and find the

function. The comments on this function were that it is easier to see the

connections as they are shown above nodes, which are not connected to the

highlighted one.

The task of searching for a sub-string which is included in some of the

names was found after searching by all users. No user used the hot key but

38

6.3 Usability Evaluation

tried to find the search function in the menus. The function was not found

at first sight and it was commented that the naming of the function in the

menus was not the name they looked for. Another name of the function and

a better placement would help to find it faster.

The simulation was started by all users without problems. Each user clicked

the Start button before the Next button was used. The low and high val-

ues of the connection were recognized as such but the undefined status was

not. A user proposed to include a legend into the simulation tool bar which

explains the coloring and the width changes of the wired connections.

39

7 Conclusion and Future Work

This report presented the improvement of the visualization software in Odin

II by additional features in order to assist the exploration process and the

development of visual simulation using the Odin II simulator. The report

provided a short introduction to FPGA, GUI development and presented

the VTR project as related work. By offering the visual simulation func-

tionality, the visualization software can be used not only for exploration but

also for evaluation and verification purposes.

The usability of the application was improved by adding comfort functions

such as highlight all connections or a search function which allows to find

nodes using a sub string of its name. Shapes of simple logical functions

were added into the simulation to recognizing the structure of the visualized

circuit without the need to see the name of the node.

Future development of the visualization are focused on improving the VTR

workflow. Abilities of Odin II which are not used at the current state such

as opening Verilog HDL files in combination with a hardware architecture

file and to visualize the result of the Odin II compilation will be added.

Power consumption based on activity estimation is part of future devel-

opment in the VTR CAD flow. Using the simulation, activity of outputs

can be estimated to compute three statistical values which are required for

activity estimation: static probability, switching probability and switching

activity. Using these values power consumption can be approximated and

visualized in the graph. Hotspots in the circuit can be found by developers

and causes addressed and considered in future development of the workflow.

All stages of the VTR workflow will be added to the visualization in order to

explore the changing structure during all stages in the workflow. This allow

developers to back track hotspots or other structures, which are not desired.

Once the source of this development is found the tool can be improved to

address this issue. Being able to visualize the circuit after plavement and

40

routing by VTR timing on the FPGA device can be computed and metrics

such as longest route could be determined and visualized.

41

REFERENCES

References

[1] D. Thomas and P. Moorby, The Verilog hardware description language.

Springer Netherlands, 2002.

[2] P. Ashenden, The designer’s guide to VHDL. Morgan Kaufmann, 2008.

[3] J. Rose, J. Luu, C. Yu, O. Densmore, J. Goeders, A. Somerville,

K. Kent, P. Jamieson, and J. Anderson, “The vtr project: architec-

ture and cad for fpgas from verilog to routing,” in Proceedings of the

ACM/SIGDA international symposium on Field Programmable Gate

Arrays, pp. 77–86, ACM, 2012.

[4] S. D. Brown, Field programmable gate arrays. Kluwer Academic, 1997.

[5] P. Chow, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja, “The

design of an SRAM-based field-programmable gate array. I. Architec-

ture,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 7, pp. 191–197, June 1999.

[6] H. Schmit, “Extra-dimensional island-style FPGAs,” New Algorithms,

Architectures and Applications for Reconfigurable Computing, pp. 3–13,

2005.

[7] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and

Challenges,” Foundations and Trends in Electronic Design Automation,

vol. 2, no. 2, pp. 135–253, 2007.

[8] P. Leong, W. Luk, and S. Wilton, “Floating-Point FPGA: Architecture

and Modeling,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 17, pp. 1709–1718, Dec. 2009.

[9] M. Summerfield, “Rapid GUI programming with Python and Qt: the

definitive guide to PyQt programming,” October, 2008.

[10] J. Blanchette and M. Summerfield, C++ GUI programming with Qt 4.

Prentice Hall PTR, 2006.

[11] T. Sommer, “Physics for a 3D Driving Simulator Torsten Sommer Bach-

elor Thesis,” Physics.

42

REFERENCES

[12] A. Sharma, “White Paper Merits of QT for developing Imaging Appli-

cations UI,” System, pp. 1–8, 2008.

[13] Nokia Corporation, “Qt Reference Documentation.” http://doc.qt.

nokia.com/4.7-snapshot/index.html, Mar. 2012.

[14] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II -

An Open-Source Verilog HDL Synthesis Tool for CAD Research,” 2010

18th IEEE Annual International Symposium on Field-Programmable

Custom Computing Machines, pp. 149–156, 2010.

[15] A. Mishchenko, “ABC: A System for Sequential Synthesis and Verifi-

cation.” http://www.eecs.berkeley.edu/~alanmi/abc/, 2011.

[16] J. Luu, J. Anderson, and J. Rose, “Architecture description and packing

for logic blocks with hierarchy, modes and complex interconnect,” in

Proceedings of the 19th ACM/SIGDA international symposium on Field

programmable gate arrays, pp. 227–236, ACM, 2011.

[17] U. Berkeley, “Berkeley logic interchange format,” tech. rep., Techni-

cal report, Technical report, University of California at Berkeley, Aug.

1998.

[18] P. Jamieson and J. Rose, “A verilog RTL synthesis tool for heteroge-

neous FPGAs,” in Field Programmable Logic and Applications, 2005.

International Conference on, pp. 305–310, IEEE, 2005.

[19] J. Libby, A. Furrow, P. O’Brien, and K. Kent, “A framework for verify-

ing functional correctness in odin ii,” in Field-Programmable Technology

(FPT), 2011 International Conference on, pp. 1–6, IEEE, 2011.

[20] K. Nasartschuk, “Visualization support for fpga architecture explo-

ration,” tech. rep., Technical report, University of New Brunswick,

2011.

[21] V. Betz and J. Rose, “VPR : A New Packing , Placement and Routing

Tool for,” Technology, pp. 1–10, 1997.

43

http://doc.qt.nokia.com/4.7-snapshot/index.html
http://doc.qt.nokia.com/4.7-snapshot/index.html
http://www.eecs.berkeley.edu/~alanmi/abc/

REFERENCES

[22] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, and W. M. Fang,

“VPR 5 . 0 : FPGA CAD and Architecture Exploration Tools with

Single-Driver Routing , Heterogeneity and Process Scaling,” Computer

Engineering, pp. 133–142, 2009.

[23] D. M. Turner-Bowker, R. N. Saris-Baglama, K. J. Smith, M. a. DeRosa,

C. a. Paulsen, and S. J. Hogue, “Heuristic evaluation of user interfaces,”

Telemedicine journal and e-health : the official journal of the American

Telemedicine Association, vol. 17, no. 1, pp. 40–5, 1990.

[24] Y. Jin, N. Satish, K. Ravindran, and K. Keutzer, “An automated

exploration framework for FPGA-based soft multiprocessor systems,”

Proceedings of the 3rd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis - CODES+ISSS ’05,

p. 273, 2005.

44

A Appendix

Precompiled files of Odin II and VPR6.0, which are included in to Qt project

file:

../ODIN_II/OBJ/netlist_visualizer.o \

../ODIN_II/OBJ/multipliers.o \

../ODIN_II/OBJ/partial_map.o \

../ODIN_II/OBJ/errors.o \

../ODIN_II/OBJ/node_creation_library.o \

../ODIN_II/OBJ/netlist_utils.o \

../ODIN_II/OBJ/netlist_stats.o \

../ODIN_II/OBJ/odin_util.o \

../ODIN_II/OBJ/string_cache.o \

../ODIN_II/OBJ/hard_blocks.o \

../ODIN_II/OBJ/memories.o \

../ODIN_II/OBJ/queue.o \

../ODIN_II/OBJ/hashtable.o \

../ODIN_II/OBJ/simulate_blif.o\

../ODIN_II/OBJ/print_netlist.o \

../ODIN_II/OBJ/read_xml_config_file.o \

../ODIN_II/OBJ/outputs.o \

../ODIN_II/OBJ/parse_making_ast.o \

../ODIN_II/OBJ/ast_util.o \

../ODIN_II/OBJ/high_level_data.o \

../ODIN_II/OBJ/ast_optimizations.o \

../ODIN_II/OBJ/netlist_create_from_ast.o \

../ODIN_II/OBJ/netlist_optimizations.o \

../ODIN_II/OBJ/output_blif.o \

../ODIN_II/OBJ/netlist_check.o \

../ODIN_II/OBJ/activity_estimation.o \

../ODIN_II/OBJ/read_netlist.o \

../ODIN_II/OBJ/read_blif.o \

../ODIN_II/OBJ/output_graphcrunch_format.o \

../ODIN_II/OBJ/verilog_preprocessor.o \

45

../ODIN_II/OBJ/verilog_bison.o \

../ODIN_II/OBJ/verilog_flex.o \

../libvpr_6/ezxml.o\

../libvpr_6/read_xml_arch_file.o\

../libvpr_6/read_xml_util.o\

../libvpr_6/util.o\

../libvpr_6/ReadLine.o

46

B Visualization Software Screenshots

Figure B.1: Simulation of a Circuit with 3354 Nodes. Zoom Level: 10%

47

Figure B.2: Simulation of a Circuit with 3354 Nodes. Zoom Level: 50%

48

C Think Aloud Evaluation Task List

• Start the application.

• Open a BLIF file from the evaluation set.

• Change zoom level to 50%

• Simulate the visualized BLIF

• Step to cycle 17

• Explain what happens for one node

• Use the search function to find node ”topĉlock”

• Reset the highlighting

• Highlight a specific node with all its connections

• Reset highlighting

• Close the application

49

