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Abstract

This thesis has three main objectives. First, to initiate the investigation of the new
degrees of freedom offered by the recently proposed pattern recognition model, specif-
ically to the process of selection of the low-level primitives for structural pattern
representation. Second, to suggest that not only should the latter process not be
separated from the (high-level) recognition process, as has been practised so far, but,
moreover, it should be driven by it. Third, to continue the investigation of the prim-
itives selection model proposed by Muchnik (1974).

The metric model for pattern recognition recently proposed by Goldfarb(1990)
makes use of the concept of distance to classify the patterns during the learning stage.
The optimal value of the objective function used in the le;‘irning process can also be
used in a feedback loop to measure the appropriateness of the low level primitives
chosen by the Muchnik model. An implementation of tflis model for the handwritten
digits is presented. The results of the experiments together with the suggestions for

future work are also presented.
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Chapter 1

Introduction

When you have two young, beautiful girls, one a Caucasian and the other Oriental,
you may need to look at each girl only once to be sure that you can recognize which
is which when you see them again. But, depending on your experience of Oriental
people, you may need to look maﬁy times at two equally beautiful girls from the Orient
in order to identify the various features that enable you to discriminate between them.

The ability to identify the features which distinguish one pattern from another is
the main task of pattern recognition , a big sub-area in computer science. Pattern
recognition is defined as "the categorization of input data into identifiable classes
via the extraction of significant features or attributes of the data from a background
of irreleva.nt_detaiis,. .., however, in most pattern recognition problem ..., the de-
termination of a complete set of discriminatory features is extremely difficult, if not
impossible” [19]. In general, pattern recognition deals with all patterns such as wave-
forms, speech, voice, odours, images, etc. This thesis deals with pictorial pattern
recognition, but the general learning model is applicable to other domains of pattern
recognition.

That automatic pictorial pattern recognition cannot compete with the human
visual perception is unquestionable. It is commonly believed that in order to suc-

cessfully build a machine vision system with great ability, one needs to rely, in some



sense, on the psychophysiology of human visual perception. By great ability, people
may think of high speed, high accuracy and high capability in determining flexibie
recognition-criteria under different problem types [11]. Several existing methods pos-
sess these first two criteria but no system possesses the flexibility at a reasonable
level. As an example, in handwritten character recognition, several available systems
can yield nearly 90% accuracy of recognition with high speed computation, but the
systems are not applicable for any other images. In some of the systems, the features
‘to be extracted are fully determined by the designer [6]. Two main reasons of the
failure to develop such a flexible system are the very ad-hoc method of the feature
extraction (1ow~leve1) and the loose connections between different levels in a system.
It 1s commonly known that the feature extraction methods are provided, somehow,
by a-priori knowledge of the designers.

Those methods, clearly will not lead us close to a flexible, general system of
pictorial pattern recognition. We need, as in our above illustration, a machine that
can determine the set of features such as hair colour, shape of eyes, nose, lips, ctc.
to discriminate among the above girls without any human interference.

An even more difficult task for the machine is to select from the set of features
which are necessary to be used in specific objects. From our illustration, the hair
colour may be the only necessary feature to discriminate between a Caucasian girl
and an Oriental girl, but it may not be sufficient as the only feature to discriminate
between two Oriental girls. It is easy to see from the general block diagram of syntactic
pattern recognition in-ﬁgure 1.1 [6] that the system will, in no such way, have the
capability to flexibly change the set of discriminatory features under different objects.
Once the system has chosen the primitives (low-level) , it proceeds to the next levels
until it reaches the final level. It ignores the possibility of gefting incorrect {catures
in the low-level and it does not have any freedom to adapt to the nature of the data.

Consequently, the system may have low accuracy or it may be very uneconomical.
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Figure 1.1: The general block diagram of syntactic pattern recognition [6], pp. 9).



A new, general approach to pattern recognition proposed by Goldfarb [9], which
allows for an adaptive system of choosing primitives, seems to be capable of resolving
the above problems. The system starts with a certain set of parameters for the
primitive selection. The resulting primitives are then clustered and, based on the
clusters the learning patterns are encoded. By assigning the appropriate weights to
the selected primitives through the learning stage, the quality of the chosen primitives
can be computed. If this quality is satisfactory, which means that the classes of
pattern are well separated, then the learning process is terminated; otherwise the
system goes back to the very beginning, i.e. to the primitive selection but with
modified parameters. The steps are then repeated. The close connection betwecﬁ
every level makes the system neither too self-confident nor too apathetic.

In this thesis, [ closely follow the adaptive system of choosing primitives by using
the Muchnik method as the primitive selection method [15] and the metric model a
the learmng model [8] for numeral hand-written recognition.

Basically, the Muchnik method is a transformation of an image representation into
another representation through a pre-defined function and a searching procedure of
local properties in the new image representation. The method has several parameters
which decide the level of the detail of the image representation to be obtained. The
more complicated the objects to be discriminated, the more detail the represcenlalion
should contain. Throughout this method, the machine should be fully independent
of human judgement in extracting the features. I further believe that the Muchuik
method can also be applicable for texture feature extraction because it allows very
raw image representation as the input. The fact that the method is supported by
psychophysiology research, i.e. theory of eye movement and fixation points. mnakes
the method even more trustworthy.

The metric model to be used as the learning model is a transformation systern
(T8), which generates a parametric distance function together with the learning model

for the TS. The well-known Levenshtein TS which generates the Levenshtein (edit)



string distance function is employed here and the learning model proposed by Goldfarb
[8] is used. In our model the objects are represented by strings. By assigning the
appropriate weights to the symbols in the alf)habet during the learning stage, the
system should be able to adapt very flexibly to the nature of the training patterns.
The more important the role of a symbol in the alphabet in discriminating a class of
strings from other classes, the heavier the weight assigned to the symbol. The above
importance should be intefpreted in terms of giving as small intraclass distance as
possible and as big interclass distance as possible. At the higher level the metric model
not only provides us with a more economic system but also with higher accuracy
through the transformation system; it has the capability to correct, to some extent,
errors which may occur at the lower level.

The objectives of this thesis are, first, to initiate the investigation of the new
degree of freedom offered by the recently proposed pattern recognition model, second,
to suggest that not only should the low-level not be separated from the high-level,
as has been practised so far, but, moreover, it should be driven by the high-level,
and, third, to continue the investigation of the primitive selection method proposed
by Muchnik.

This thesis will be organized in the following way: The psychophysiology research
related to the Muchnik method, the Muchnik method of primitive selection, the im-
plementation and the result of experimenta,tion., will be presented in Chapter 2. The
metric model will be described in simplified form in Chapter 3. The interested readers
are referred to the original reference [8]. Also several examples taken from the exper-
iments are given. Chapter 4 will be devoted to the adaptive system and the numeral
hand-written recognition system. And the last chapter will contain the conclusion

and the suggestions for future work.



Chapter 2

The Muchnik Method of Primitive

Selection

2.1 Introduction

From several major problem areas in pattern recognifion summarized by Tou and
Gonzalez {19], the extraction of the discriminatory/characteristic features from input
data and the reduction of the dimensionality of pattern vectors are recognized to be
the central part. The problems usually aré complicated since the system has to decide
what discriminatory features to extract and how to extract them. From the binary or
any non-vector feature representation, specifically from the images, the common way
to select thé features is known as the image segmentation and texiure extraction.
In the image segmentation methods proposed so far, the dimensionality reduction
is not taken into consideration. Several existing methods can be categorized into
three classes : (1) characteristic feature thresholding/clustering, (2) edge detection,
and, (3) region extraction. Unfortunately, almost all of them are very ad-hoc in
nature, therefore there are no general methods available for all images. As can be
observed from [6,5,12], the mathematical method must be supplied by heuristics. The

involvement of semantics and a-priori knowledge is considered to be acceptable since




the image segmentation is a result of psychophysiological perception [17].

LB. Muchnik from the Institute of the Control Sciences (Automatica and Tele-
mechanika), Moscow, U. S. 5. R. also agreed that primitive selection is a part of psy-
chophysiological perception, but instead of supplementing his method with a-priori
knowledge, he took the research and the theory in psychophysiology into account
when he designed his method. This method, which has the capability to determine
the geometrical features to be extracted without any human intervention, is, for some
unknown reason, not sufficiently known. In the only paper published in English 15],
the algorithm and the experimental results are not presented in an adequately detailed
form.

This thesis, to some extent, continues the investigation of the method. The input
data are handwritten digits, which are digitized using software Al-Hazen on an IBM
PS/2 work station into a 128 x 128 gray level images, the Bina.riza,tion of these images
is done by using the minimum-error thresholding method [13] implemented in Pascal;
the resulting images have 0 values for the blank pixels and 1 values for the black pixels.
All of the remaining computations are done on IBM 3090 mainframe computer in PL/I
language. |

This chapter will be organized as follows: the human visual perceptioh aspects re-
lated to the Muchnik method, i.e. eye movement and fixation points will be presented
in section 2.2, the Muchnik method and the algorithm will be described in section

2.3, and the results of the investigation of the method will be given in section 2.4.

2.2 Eye movement and fixation points

It is an interesting fact that "the visual system is a discontinuous processing system
where the discontinuities are usually marked by the occurrence of jumping eye move-

ment” [7], pp. 63. Study in psychophysiology shows that from an image we look at,



we only gather some ¢mportant information about the image. The internal represen-
tation or memory of an image is a piecemeal affair : a composite of features [16].
The features that are picked out of an image are dependent upon the ejre movement,

which is adjusted by the brain (figure 2.1).

Information Information Where
quantity quantity H3h
A% HI\ E . Vg
isual ye
R oA Brain
Environment ———, /] (State”A») | |
A
Adjustment

Figure 2.1: Diagram of visual perception through eye movement theory [7].

During viewing, the eye jumps from one stable position to another. The stable
positions are called fixation points; the intermediate rapid movements when the eye
jumps are called saccade. There are also three important facts related to fixation
points. ”First, the main share of information prbcessing by the vision system falls on
fixation points; during the eye jumps(saccade) the human almost does not perceive the
image. Second, under normal conditions, the positions of the fixation points coincide
with a place where the viewer’s attention is concentrated. Third, fixation points, and
therefore the places of attention concentration, are not arbitrarily positioned in the
image; there exist image fragments that as a rule attract attention of any viewer”
(translation of {21] pp. 9 taken from [3]).

Research in psychophysiology indicates that the eye fixations are in areas with
highest spatial frequencies and in the longest durations around the angles of polygons

[2], corners [1], unpredictable contours, change directions and unusual details [14].



2.3 The Muchnik method of primitive selection

The method of primitive selection proposed by Muchnik is 1) a process of transforming
an image representation into another representation which possesses a better quan-
titative measure of information, and 2) a p.rocess of search for locations in the new
image representation which contain high information. For the transformation, Much-
nik proposes three methods; the computationally most efficient one , the defocusing

method, is chosen to be implemented in this thesis.

2.3.1 An image transformation

A defocusing mask DM, i.e. function d{a,b) defined on an image fragment of size

M x M, is simply a fixed discretized potential function of the following form :

' 1 S
K(po,p) = K, = 2.1
where pg = (p§, pf) is the central point and p = (p',p?) is the variable pixel (see

fig. 2.2).
Given an input image I, i.e. function f(z,y) defined on image of size N x N, and
a defocusing mask DM of size M x M, one can generate a defocused image DI, i.e.

function g(z,y) computed for each pixel (zp, 7o) as follows :

9(@o, Yo} = Z fz,y) x d(z,y), V (%, Yo) (2.2)
(-"?;ZI)GIF(%:!JB}

where I F(xg,70) is an image fragment of size M x M centred at (o, %), flz.y) is
the image value for the corresponding pixel, and d(z,y) is the corresponding value of
the mask .DM also centred at pixel (g, yo). The summation is over all pixels in the
image fragment of size M x M. In order to compute the values of g for the béundary
image pixels, the image is padded with blank pixels. The reader might be familiar
with the defocusing transformation in the case when the function defined over some
neighbourhoods is a filtering function in spatial domain. The algorithm for computing

g 1s presented in figure 2.3,
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Figure 2.2: (a) Defocusing mask DM of size 13 X 13 for equation 2.1 with o = 3. The
DM is always computed by discretizing and pixel reindexing at a necessary resolution
the fixed size square p € {—3,—3) x (3,3), po = (0,0). (b) Plot of (a).
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procedure DEFOCUS (f, DM, DI).

/%

This precedure applies the defocusing mask DM of size M x M to an image I' and stores
the defocused image in DI,

*/

Pad I with blank pixels of width (M — 1}/2.
For every pixel piz € I do:
Begin.
Extract a fragment I F from [ whose centre is at piz and whose size is M x M.
Compute g(piz) using equation 2.2.
nd.
End of Algorithm.

Figure 2.3: Algorithm for applying the defocusing mask.

Once a defocused image DI is obtained from algorithm in figure 2.3, a smoothing
procedure is then applied to get another representation SI, i.e. function h(z,y). A
smoothing procedure used here is simply a neighbourhood averaging procedure, Each
value of the smoothed image ST of size N x N is obta.ined'b_y averaging the values of
the pixels of DI contained in a pre-defined neighbourhood Pof (2o, Yo) of size S x S:

1
= —— . <N
h’(xﬂa yG) Sx S (x’yE)G:Pg(xa y)a 1< Y=

where S x S is the number of pixels in the neighbourhood P.

The smoothing procedure is applied in order to eliminate numerous small peaks,
In figure 2.4 an example of image representation before and after the smoothing is
shown. From now on the final image representation SI will be called the functional

image representation.

2.3.2 The search for image fragments

What remains to be done is the search for image locations that may have image
fragments of high information in the functional image representation. First. lot us
define the local extremum to be searched.

For a search window of size L x I, and an ipside window of size Rx R, R < L.
pixel (Zo,y0) = pizo € ST is defined as a local maximum if and only if it fulfils the

following requirements :

11




Figure 2.4: (a) The original image of digit 2, (b) The 3D plot of the defocused image
of (a) using the mask of figure 2.2, (c) The 3D plot of the smoothed image of (b) with
S=9.
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e h(pzo) > h(piz) V pixels piz € WR, where WR is the set of pixels in Ith'e
neighbourhood of pixg of size R x R.

o h{pizo) > h{piz) V pixels pix € WL, where WL is the set of pixels in the
neighbourhood of pizg of size L x L, WL 23 WR.

The above definition is also true for a local minimum if the sign of ST to be searched
is reversed, h(z,y) = —h{z,y).

The search algorithm for the above local extrema given in figure 2.5 is a gradient
search method. The search procedure starts from the upper left corner of the image
representation and moves along the steepest direction. Observe from figure 2.5 that
a 2D array FLAG is used to increase the efficiency of the search algorithm and also
to guarantee that all pixels have been processed.

After obtaining the set of locations of extrema from the algorithm in figure 2.5,
then the set of image fragments corresponding to it can be obtained. This set is
referred to in this thesis as the set of primstive z'magré' fragmenis of I, and is easily
extracted by positioning the centre of a cutting window of a specified size on the

functional image representation in the locations of extrema.
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procedure SEARCH(SS, L, ILCF).

i+

This procedure searches for the lacation of maxima of 57 of size N x N with the search window
of size I % L and the inside window of size B » R. It calls procedures FINDIF and FLAGING
(figure 2.6). The number of locations of extrema is dencted by NLCOF, The flags of the

pixel: in padded image, a 2D array of size (N 4+ L — 1)2, ia denoted by FLAG,.

*f

Set R2 =(R—1)/2, 12 = {L —1)/2, NLCF = 0.
Pad 51 with very smal) valued pixels of width L2,
Set FLAG to true in the padded pixels and false otherwize.
Set FLAGMAX = (N + L —1)2.
Set NFLAG te be the number of padded pixsla.
Setzx=1, g=1, GP = Si{z,y).
While (NFLAG < FLAGMAX) do:
Begin. Set WR to be a set of pixels in the B » R neighbourhood of (z,9).
Set TEMPR = CP.
Compare C'P to every PR = SI{xr,yr) € WR.
If PR > TEMPR then s¢t MAX = PR, rmeas = xr, ymaz = yr, TEMPR = PR.
If there ic at least one PRE WHR < € F then do:
Begin.
Call FLAGING{xmaz, yrmoz, 7). .
If NFLAG > FLAGMAX then go to end of algorithm.
Else if FLAG(2maz, ymaz) = true then c¢all FINDIP (zmax, ymaz}
Go to end of while.

Begin.
For every PR = SI{zryr) € WH, zr # 1, yr # y do:
Begin.
If PLAG({#¥, yr) # true then do:
Begin.
Set FLAG(zr, yr} = true
Set NFLAG = NFLAG +1
End.
End.
Set WL to be a set of pixeliin the L x L neighbourhoods of (x,¥)}
excluding the R x R neighbourhoods.
Set TEMPW = CF.
Compare CP to every PW = SHaw, yw) € WL.
It PW > TEMPW then set zmar = tw, ymozr = ywTEMPW = PW,
If ther= is at least one PW € WL < CP then do:
Begin.
Cali FLAGING{zmaz, ymax, L).
It NFLAG > FLAGMAX then go to end of algorithm.
Else if FLAG{zmuaxymar) = true then call FINDIP{zmez, ymaz).
Go to end of while,
Enrd.
Else do:
Begin,
Set NLCF = NLCF 4 1, ILCF(NLCF)zl=z, ILCP(NLCR.yi=y.
For every PW = SI{zw, yw)} € WL dot
Begin.
If FLAG{2w, yw) # true then do:
Begin. Set FLAG{zw, yw) = true.
Set NFLAG.= NFLAG + 1.
End.
End.
Setr=x4+ L2+ 1.
Set CP = Sz, ).
If FLAG(z,y) = true then call FINDIP{z, y).
End.
End.
End of while.
End of algorithm.

Figure 2.5: Algorithm for searching the local extrema.
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procedure FINDIP(z, ).

TE .
This procedure finds the pixel (z,y) whose FLAG(z,y) # true.
*f
While FLAG(z,y) = true dot
Begin. _
H(z,y) is in the lower boundary of ST and not in the right boundary of ST thenset £ =1,y = + 1.
Else if (z,y) is in the lower boundary of ST and in the right boundary of ST then set £ = l,y=1.
" Elsez =x+41.
End.
End of algorithm.

procedure FLAGING({, j, Z).

*
This procedure sets the flags of pixel(s, 7) as well as the the Z x Z neighbouring pixels of (4,7) to true
subject to the following condition : those pixels no longer have the potential of beirg local maxima or those
pixels have already been processed.

+/

Set ZN to be a set of pixels in the neighbourhood of (1,7} of size Z x Z.
Set WZN to be a set of pixels {zwz, ywz) € ZN & (zwz,ywz) € WL.
For all pixels (zwz, ywz) € WZN,
- If FLAG(zwz, ywz) # true then do:

Begin,

Set FLAG(zwz, ywz) to true.

Set NFLAG=NFLAG+1.

End. .
End of algorithm.

Figure 2.6: Two procedures for the algorithm in figure 2.5.
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- 2.4 Experimental results

The functional image representations point to the locations of the pronounced changes
of geometric forms (corner, intersection, angle, etc.) (figure 2.7, 2.8, 2.9, 2.10). In
other words, the locations of important geometric features coincide with the locations
of the maxima. The examples of the primitive selections of each digit will be pre-
sented. In displaying the image and the corresponding fragments, only the contour
of the image is blackened in order to get the clearer picture of the fragments. The
reader should not think that any edge detection method is applied; in reality, all the
computation s done in the whole image inside the contour. For any figure displaying
digit 8, the functional representation of digit 8 is presented in a 90 degrees rotated
viewpoint, so that the peaks in the intersection can easily be seen.

The effect of the change of the defocusing mask size on a rela,tively complex iina,ge,
such as digit 8, is evident from ﬁ-gufe 2.11. The defocusing mask of size 17 x 17 can
not produce a functional image representation that points to two intersections that
are presents in digits 8 (figure 2.11(b)). The smaller the mask size, i.e. 9 x 9 the
more detailed information from the image is gathered (figure 2.11(c)). This leads to
the assumption that the more complicated the image under study, the smaller thé
size of the defocusing mask is needed to extract the primitive image fragments, and

possibly, the greater the number of primitive image fragments will be obtained.
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Figure 2.7: (a) The original handwritten digit 2, (b) the functional image representa
tion for {a) obtained by using the defocusing mask DM of size 13 x 13, (c) the image
and the corresponding fragments for the search window WL of size 9 x 9.
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Figure 2.8: {a) The original handwritten digit 3, (b) the functional image representa-
tion for {a) obtained by using the defocusing mask DM of size 13 x 13, {c) the image
and the corresponding fragments for the search window WL of size 9 x 9.
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Figure 2.9: (a) The original handwritten digit 5, (b) the functional image representa-
tion for (2) obtained by using the defocusing mask DM of size 13 x 13, (c) the i image
and the corresponding fragments for the search window WL of size 9 x 9. _
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In many cases, even if the functional image representation has the necessary infor-
" mation, the search procedure may not be able to extract all the important fragments
if the search window is not of an appropriate size (ﬁgufe 2.12). By using a search
window of size 13 x 13, the location of the right intersection of digit 8 in figure 2.12
can not be detected as a location of maxima, even though the functional image repre-
sentation clearly shows two big peaks for both intersections. Similar to the situation
with the defocusing, the smaller the size of the search window applied, the higher the
level of detail of the primitive image fragments extracted.

The only fragments used as primitives in this thesis are those corresponding to
the local maxima. However, that does not mean that the features corresponding to
the local minima are not important features. In fact, by applying a relati{fely ial‘ge
defocusing mask, the resulting local minima indicate another pronounced geometric

feature which is not detected by the local maxima, i.e. holes for digit 8 (figure 2.13).
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Figure 2.10: (a) The original handwritten digit 8, (b) the functional image represen-
tation for (a) obtained by using the defocusing mask DM of size 13 x 13, (¢) the
image and the corresponding fragments for the search window WL of size 9 x 9.
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Figure 2.11: (a) The original handwritten digit 8, (b) the functional image represen-
tation for {a) obtained by using the defocusing mask DM of size 17 x 17, (c) the
functional image representation for (a) obtained by using the defocusing mask DM

of size 9 x 9.
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Figure 2.12: (a) The functional image representation for digit 8 obtained by using
defocusing mask DM of size 17 x 17, (b) the image of digit 8 and the corresponding
fragments for the search window WL of size 17 X 17, (c) the image of digit 8 and the
corresponding fragments for the search window WL of size 13 x 13 .
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Figure 2.13: Image of digit 8 with the corresponding fragments obtained by using the
defocusing mask DM of size 17 x 17 and the search window WL of size 17 x 17
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Chapter 3

Levenshtein Transformation

System in Metric Model

3.1 Introduction

The metric model proposed by Goldfarb [8] is a new., general, evolving model for
pattern learning which unifies existing methods. The reader who is interested in the
complete concept and exposition of this general mathematical model should read [S},
since here I will only present a specific application of the general model. All of the
deﬁxﬁtions and notations are taken from (8] and [9].

The mefric model is a transformation system T = (O, S) where O is a set of iomo-
geneously sf.ructured ijects and S is a finite set of permissible rules for transforming
one object into another, together with a learning model for the transformation system,

The Levenshtein transformation system ,which is an example of the general trans-
formation system, is employed in this thesis and will be described in section 3.2. The
learning model for the transformation system will be presented in section 3.3. and

the experimental results will be given in section 3.4.
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3.2 Levenshtein Transformation System

-The Levenshtein Tra._nsforma,tion System T, is a set of strings O over alphabet A as
the object representations together with a finite set of symbol insertions and symbol
deletions S which specify permissible transformation operations for transforming one
string into another,

The intrinsic Levenshtein (edit) distance function in Ty, is the function A defined

on O x O as {follows :
Ap: 0 x 0O — N,

where
N = {0,1,2,...}, Ar{01,00) is the smallest number of transformation operations re-

quired to derive oy from 6.

zay 3 oy
zy B zby

Figure 3.1: Examples of insertion and deletion operations.

In the above example, 51 is a deletion operation of symbol @ and s; is an insertion
operation of symbol b.

The next step is to ;tleﬁne a weighted Levenshtein distance. The weighted Leven-
shtein distance in the transformation system T, is defined similarly to the intrinsic |
Levenshtein distance except for the fact that each operation has. now a weight as-
sociated with it, i.e. it is equal to the shortest weighted pa;th between 0; and o..
Next we will describe a dynamic programming algorithm for computing the weighted
Levenshtein distance (for detail see [20]).

A cost function 7y is defined as a function which assigns a non negative real number

to each of the operation in 8. Let 01 and o3 be finite strings in O, 0y(z) is the sth
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symbol in string 01, 01(2 : j} is a substring composed of the ith through jth symbois
of 0; and | 01 | is the length of string 0.

Now, let a trace 7 be a set of operations in S which transforms o, ﬁo 02 (ignoring
the order of the operations). As an exarnple, let us take two strings 01 and o3 ; then

a trace 7 from 01 to 09 can be given as follows :

01 : abcaaadba
f7i s/

02 : bedadbed
The two same symbols from 01 and o3 are joined by lines meaning that no operations
are required. Any symbol in 0y which is untouched by a line means that the symbol
is deleted, while any untouched symbol in 02 means that the symbol is inserted. The

cost of T is defined as follows :

cost(T) = 27(01(1') — A) + Z’Y(A — 02(7}},

el jetS - _
where I and J are the sets of position in 01 and 03 not touched by any line in 7, A
is the null string.
Now, in order to compute the minimum cost trace Az{01, 02)among all the possibl.e
traces from 0; to 0y, the set of the traces is split to get the inductive solution. A trace
7 from o; to 03 can be split into two traces 77 from og3 to 091 and T3 from 013 to 0os,
if and only if there is no line in 7 connecting symbol in 01; to symbol in oy; for 7 # 7,
t,7 € {1,2}. In any ca.s-e, trace 7 always can be split into two traces 77 and 75 such
that | 012 | and | 022 | €1, and at least one of | 012 |,] 092 | is not zero. Several more

notations are introduced as follows :
s 01(2) = 01(1 : 7).
[ ] Oz(j) = 02(1 j)

e D(i,5) = 8(0r(3), 02(5)),0 < i <| 01 1,0 < j <| 02 |, where 6(0x(i), 0u() is the

minimum cost trace from o1(z) to o0(7).
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The D(¢,7) is computed as follows :
D(i, 7) = min{ D(i — 1, ) + y(01{r) — A}, D(4, 5 — 1) + ¥(A — 02(5))},

for all ’i,j,l < Zg[ 01 |,]. S}_<_|02 |
Figure 3.2 gives the detailed algorithm for the weighted Levenshtein string distance.
The function Af satisfies the following three parametric axioms (the proof can be

found in [8], pp. 600).
o Ar{o1,02) = 0if and only if 03 = 0s.
» V(O],OQ) e0Ox0 AL(Ol,Oz) = AL(Ol,Og) = AL(OQ,OI).

¢ V(01,02),(02,03) € O x O A(01,02) + A(02,03) = A(01,03).

3.3 Learning model for the transformation sys-
tem

The fundamentally new concept in the learning model for the transformation system
is the concept of the parametric family of distance function Ap, = Ay, w € Q, and

is defined as follows :
m
Q={weR™|w=(wui. .., u™), > D,;w‘: 1},
where each member of A, is obtained from the intrinsic distance function Ay by
assigning to each operation s; € S a non-negative weight w*.
Before we come to the discussion of the learning model itself, we should define on

the weight space R™ two functions which are the main tools in the model.

Let O be a set of disjoint classes O;(1 = 1,2), and let O; be a finite set of the cor-

responding training objects; O; = {041,042, ...,0i,}, and II be any distance function

defined on . The average intraclass I1- distance for training class O; is defined as

28



function LEV.DIST(OB1,0B2,W).

/* |

- This function computes the distance between string OB1 of length L1 and string O B2 of
length L2. EA is the number of symbols in the alphabet. W is the weighting scheme of
insertion/deletion operations and RW is the weighting scheme of substitution operations.In
this implementation, since substitution operations are not considered, the weights of sub-
stitution operations are assigned with very large values .

*/

Set D(0,0) = 0.
For ¢ from 1 to E£4 dos
~ Begin.
For j from 1 to EA do:
Begin.
If i # j then set RW(@ J) = bigvalue.
Else RW(i,j) =
End.
End.
For 2 from 1 to L1 do:
Begin.
/* Initialize the cost of deletion of string O B1 into the null string«/.
Set D(¢,0) = D(I - 1,0) + W(OB1(4)).
End.
For j from 1 to L2 do:
Begin.
/* Initialize the cost of insertion of string O B2 from the null string */.
Set D(0, /) = D(0,5 — 1) + W(OB2(5)).
End.
For ¢ from 1 to L1 do:
Begin.
For j from 1 to L2 do:
Begin. _
ml = D(i — 1,7 — 1) + RW{OB1(i), 0 B2(5)).
m2 = D(i - 1,7) + W(OB1(1)).
m3 = D(i,j~ 1) + W(OB2(5)).
Set D(%,j) = minimum value over m1, m2, m3.
End.
End
Return (D(OB1(L1),0B2(L2)).
End of algorithm.

Figure 3.2: Algorithm for computing the distance between two strings.
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follows :
2 k,‘—l k;‘

ki(ki—1) kz;i 1=zk+:q

for k; > 1, and an(0;) = 0 for k; = 1. The mingmum interclass I1-distance for

an(O) = {04k, 01),

training class Oy to O3 is defined as follows :

,8{{(01, 02) = min H(Og‘, Oj).
o€y
o€,

The average intraclass IlI-distance for O; is the average distance between the ob-
* jects in O; and the minimum interclass II-distance between O; and Oy is the minimum
distance between the objects in (J; and Os.

In our specific application, II is the function Ay defined in section 3.2. From now
on the average intraclass Az-distance will be called the intraclass distance and the
minimum interclass Az-distance will be called the interclass distance.

Now we are ready to discuss the learning model. The learning model used in this
thesis is the hierarchical learning model ({8], pp. 603-605) which generates a binary
decision tree at each node of which the following optimization problem is being solved

fi(w)

max f(w), w€ Q, f(w)= ma

where

fi{w) = Ba (01, 0),
fow) = aa,(01) + @a (O2),

and ¢ is a small positive constant to avoid overflow (when the values of f; approach
Z€ero). |

In the above formulas, O; or Oy denote the union of several fra,ining classes and not
necessarily one training class. Each child node in the binary decision tree corresponds
either to the set O; or Oz and for each of them the optimization process is repeated.

The algorithm for the weight learning is presented in figure 3.3.
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The weight learning process tries to make classes O; and O; as compact as possible
and to move class O as far as possible from class Oy. The solution set for the above
optimization problem will be denoted by Qmax.. Each weight in the weighting scheme
w* € {lmax indicates the irhportance of the corresponding insertion/ deletion operation
for the recognition of the pattern.

In the next section and next chapter we will see how J(Smax) acts as the evaluation
measure in the learning process. The classes are considered to be well-separated if
at least the interclass distance is equal to the sum of the two intraclass distances,
or f(Qmax) = 1 for the terminal nodes. For the nonterminal nodes, due to the fact
that Oy and O, represent union of several classes, the value f; may not be sufficiently
small and therefore f({Imax)} > 0.5 is acceptable. In this situation, the values f{{lnax)
are satisfactory.

This learning model is a static version of the general learning model proposed in
[8, 10], i.e. the set of operation S remains unchanged during the learning process.

The training sets to be dealt with in this thesis are D2, D3, D5, D8. which are
sets of strings, each string represents a handwritten digit 2, 3, 5 or 8 respectively.
These string representations are obtained by first, finding primitive image fragments,
clustering them (forming the alphabet for the primitives}, and tracing the images in
certain directions. In section 4.2 the corresponding details will be presented. In the
case of those four classes are the training classes, the binary decision tree will look as

it in figure 3.7.
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procedure LEARN(C, sat, DT').

/¥

This procedure performs the learning process in the metric model for the training set as
in the example in section 3.3. In the first level of the binary decision tree, the algorithm
attempts to separate the four classes, i.e. D2, D3, D5, D8 into two union classes 01 =
D2U D3 and 02 = D5U D8. In the second level, each single class is to be separated. This
procedure calls the procedure OPTI (figure 3.4).

*/

Read D2, D3,D5, D8 from C.

Set OR = D2U D3Uv D5U D5.

Set 01 = D20V D3 and 02 = D5 U D8, .

Set DT to be a pointer pointing to a node containing M, I, E and the label of OR.
Set DT — L and DT — R to be pointers pointing to the left and right child of the node
pointed by DT, i.e. the nodes containing the labels of O1 and 02 respectively.

Set sat = true.

Call OPTI(DT, sat).

Call OPTI(DT — L, sat).

Call OPTI(DT — R, sat).

Set WM AX = dummy for all leaf nodes.

End of algorithm.

Figure 3.3: Algoriﬁhm for learning in the metric model.
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procedure OPTI(P).

/* |
This procedure performs the optimization of f(w). Two functions INTERDIST (figure 3.5)
and INTRADIST (figure 3.6) are called,

*/

Set CON ST to be a very small value.
Set FMAX =0. :
For the weighting scheme W({) in the unit simplex do:
Begin.
F1 = INTERDIST(P — L,P — R,W).
F2 = INTRADIST(P — L,W).
F3 = INTRADIST(P — R, W).
F=FL/(CONST + F2 + F3).
If F > FMAX then do:
Begin.
Set FMAX = F.
Set WMAX =W,
End.
End.
If P points to the root of the tree then dos:
Begin.
If FMAX > 0.5 then sat = true & sat.
Else sat = false & sat.
End.
Else do: -
Begin.
If FMAX > 1 then sat = true & sat.
Else sat = false & sat. _
End. =
Store WM AX and FMAX in the node pointed to by P. :
End of algorithm.

Figure 3.4: Algorithm for optimizing f{w).
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function INTRADIST(C1, W).

[*

This function computes the intraclass distance of C'1 using W as the weighting scheme; N S
is the number of strings in C1, '

f

Set sum = 0.
For every pair of strings (STR1,STR2); STR1,5TR2 € C1 do:
Begin.
Set tempdist = LEV_.DIST(STR1,STR2,W).
Set sum = sum + tempdist.
End.
Set IF2 = (2 X sum)/(N§(C1) x (NS(C1) - 1)).
Return (I F2).
End of algorithm.

Figure 3.5: Algorithm for computing the intrinsic intraclass distance.

function INTERDIST(C1,C2,W).

/®

This function computes the interclass distance from C'1 to €2 with the
weighting scheme W,

N

Set min = bigvalue.

For every pair of strings (STR1,STR2); STR1 € C1, STR2 € C2 do:
Begin. _
Set tempdist = LEV.DIST(STR1, STR2,W).
If tempdist < min then min = tempdist.
End.

Return (min).

End of algorithm.

Figure 3.6: Algorithm for computing the intrinsic interclass distance.
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Figure 3.7: A binary decision tree generated by the weight learning process.

3.4 Weight learning for handwritten digit train-
ing patterns |

Several examples taken from the experiment.ai results are presented in order to show
how the weight learning works. All of the examples have iraining sets consisting
of only two classes of strings representing handwritten digits. In each example, the
images, the image fragments, and the clusters of the fragments are provided. The

description of the process of obtaining the string representations will be presented in
chapter 4. In this section the word primitive is used for describing the symbol/label

of cluster.

35



3.4.1 Example one

In this example, the training sets are D3 and D8. Figure 3.8 shows the images and
the corresponding fragments of the two training sets of digits. Image fragments are
obtained by using a defocusing mask, a searching window and a cutting window of
size 13X 13, table 3.1 contains the clusters of all the fragments in the training set (see

section 3.3). In the notation of the previous section we have Ol = D3, 02 = DS.

CLUSTER | FRAGMENTS
a 1,6,8,12,17,20,21, 24,26, 30,33
b 2,3,4,5,7,9,10,11,13,14, 15,16, 18,19,22,23, 25,27,28,29,
31,32,34

Table 3.1: Clusters of fragments for the training sets of figure 3.8.

D3 ={bbabb,ab, abb, babb}

D8 = {abbabb, ababb, ababbb, abb} _

The binary tree in figure 3.9 is produced by using the weight learning scheme described
in the last section.

The f(Qmaz) is equal to zero since the numerator is zero, i.e. the corresponding
interclass distance is zero. This distance is zero because of the existence of the two
identical strings each belonging to a different class (the third string in D3 and the
fourth string in D8). Obviously, this situation occurred because the second intersec-
tion of the correspondiﬁg digit 8 was not detected by the machine (figure 3.8). To
summarize, because there is a serious error that occurred in the process of primitive

selection, the weight learning can not correct it.

3.4.2 Example two

The training sets for this example also consist of D3 and D8. The images and the

corresponding fragments of the two training sets of digits are presented in figure 3.10.
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Figure 3.8: (a) The images and the corresponding image fragments of the first training
set, (b) the images and the corresponding image fragments of the second training set.
Image fragments of (a) and (b) are obtained by using defocusing mask, searching
window and cutting window of size 13 x 13. :
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w*=1(1,0)
S (Qnax) =0

< @3

Figure 3.9: Binary decision tree for the training sets of figure 3.8 and table 3.1,

The image fragments are obtained by using defocusing mask of size 13 x 13, searching
window of size 5 X 5 and cutting window of size 17 x 17. The clusters of fragments for
these training sets are presented in table 3.2. In the notation of the previous section
we have O1 = D3, 02 = D8,

D3 = {bcabe, beac, cach, bach}

D8 = {accabc, acace, acaccec, abac)

CLUSTER | FRAGMENTS
a 1,8,10,15,20,93,94, 27,29, 33,37, 30
b 9,5,6,12,14,17,21,36
¢ 3,4,7,9,11,13,16,18,19,22,25 26,28, 30, 31,32,34,35,38

Table 3.2: Clusters of fragments for the training sets of figure 3.10.

Observe from figure 3.11 that the f{Qnq;) has a very big va.iue due to the fact that
both intraclass distances are zero. The only nonzero weight value in the weighting
scheme is associated with the insertion and deletion operation of primitive @ which
represents the intersection (or corner}) (see table 3.2. In other words, the rest of the

primitives (b and ¢) are disregarded in recognizing the digits 3 and 8. Digit 3 is
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Figure 3.10: (a) The images and the corresponding fragments of the first training
set,(b) the images and the corresponding fragments of the second training set. Image
fragments of (a) and (b) are obtained by using defocusing mask of size 13 x 13,
searching window of size 5 x 5 and cutting window of size 17 x 17.
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w* =(1,0,0)
F(Qmax) =1 x 109

. G

Figure 3.11: Binary decision tree for the training sets of figure 3.10 and table 3.2.

recognized by the presence of a single primitive @, which yields the intraclass distance
for class D3 to the zero, and digit 8 is recognized by two primitives «, which also
yields the intraclass distance for class D8 to the zero. This shows us how nicely the
weight learning chooses the discriminatory fragments by assigning the big weights to
insertion/deletion operation of tmportant primitives. In addition, if we compare the
examples one and two, which are based on the same training sets, we can see that the
sizes of the defocusing mask, searching window and cutting window are important

parameters in the primitive selection which will be dealt with in the next chapter.

3.4.3 Example three

In this example, the training sets are D2 and D3. Figure 3.12 shows the images and
the corresponding fragments of the two training sets of digits. Image fragments are
“obtained by using defocusing mask, searching window and cutting window of size
13 x 13, table 3.3 contains the clusters of all the fragments for that training sets.
The Oy = D2 and Oz = D3 is the following.
D2 =(ac, bac, bbac, bbacc)
D3 = (bbabbd, ab, abb, babb)
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Figure 3.12: (a) The images and the corresponding image fragments of the first
training set, (b) the images and the corresponding image fragments of the second
training set. Image fragments of (a) and (b) are obtained by using defocusing mask,
searching window and cutting window of size 13 x 13.
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CLUSTER | FRAGMENTS
a 1,4,6,12,15,20,22.26
b 3,8,9,10,11,16,17,18,19,21,23, 24,25, 27,28
c 2,5,7,13,14

Table 3.3: Clusters of fragments for the training sets in figure 3.12.

The binary tree in figure 3.13 is the result achieved by using the described weight

learning. The only nonzero value in the weighting scheme is assigned to the inser-

w* =70,0,1)
f (Stmax} =2

Figure 3.13: Binary decision tree for the training sets of figure 3.12 and table 3.3.

tion/deletion operation for primitive ¢, which is present only in the strings of class
D2. With that weighting scheme, of course, the intraclass distance for class D3 is’
zero. In class D2, the fourth string, contrary to the rest of the strings in the class,
has two primitives ¢. This results in a nonzero value 0.5 for the intraclass distance for
D2 and in value 2 for the J(Smaz). Here, we can see again that the weight learning
process can decide which primitive(s) are tmportant in recognizing different classes
of strings. In this example the direction of a primitive fragment is important, i.e.

primitives b and ¢ differ only in the direction.
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3.4.4 Example four

To show, once more, how the weight learning chooses the discriminatory primitive(s),
let us take D2 and D5 as the training sets. Figure 3.14 shows the images and the cor-
responding fragments of the two training sets of digits. Image fragments are obtained
by using defocusing mask, searching window and cutting window of size 13 x 13,

table 3.4 contains the clusters of all the fragments in the training sets.

CLUSTER | FRAGMENTS
a 1,4,6,12,15,17,19,20,23, 26,27, 28
b 3,8,9,10,11,16,18,21,22, 24,25, 29
¢ 2,5,7,13,14

Table 3.4: Clusters of fragments for the training sets of figure 3.14.

The training sets O1 = D2 and O; = D5 are the follo.v‘ving.

D2 = (ac, bac, bbac, bbacc) '

D5 =(aabb,aabb, baab, aab)

The binary decision tree in figure 3.15 shows us that the discriminatory primitive is
a. Observe that even though the primitive ¢ only constructs the string that is present
in class D2, the weight learning does not .assign any weight to the insertion/ deletion
operation corresponding to primitive c. If it would, the intraclass distance would not
be zero, beéause the fourth string in class D2 would have two primitives ¢ instead of
one as in the rest of the strings in the same class. The fragments corresponding to
primitive a are the corners. All digits 2 have only one corner, while all digits 5 have

two corners.
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Figure 3.14: (a) The images and the corresponding image fragments of the first
training set, (b) the images and the corresponding image fragments of the second
training set. Image fragments of (a) and (b) are obtained by using defocusing mask,
searching window and cutting window of size 13 x 13.
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w* =(1,0,0)
F(Qnax) =1 x 10°

%

Figure 3.15: Binary decision tree of training sets of figure 3.14 and table 3.4.
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Chapter 4

Dynamic selection of primitives in

the metric model

4.1 Introduction -

When designing an automatic system of visual pa.ttefn recognition it is important
to also take into consideration the psychophysiological research of the human visual
system, since both the feature extra,ctlon process and, indeed, the whole system of
visual pattern recognition are based on perception. A system of signs [11], which
developed through the experlmental investigations of visual perception in adults,
children and mentally-ill or brain damage persons, has some successive dlstmct stages
which are most likely present in the human visual system.

The proposed dynamic primitive selection system which will be described in 4.3
has similar levels to those of [11]. This dynamic system of primitives selection provides
a flexible method for choosing pattern primitives for different problem types. Unlike
the existing pattern recognition systems (see section 4.2), all levels in the proposed
system are closely connected. Moreover, the high level gives feedback to the low level,
which enables the system to reselect the primitives. The construction of the binary

decision tree in the dynamic system is discussed in section 4.4. The results of the
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experiments done with the handwritten digits as the images are given in 4.5.

4.2 The existing visual pattern recognition sys-
tems

In general, an automatic pattern recognition system has several levels. The first
level is the acquisition of the objects under study (sensing problem). The second
level is the feature extraction and the dimensionality reduction, and the third one is
the determination of optimum decision procedures for classification and identification
[19]. Here I only want to consider the last two levels, the second level is referred to as _
the low level and the third level is referred to as the high level. All existing systems |
so far proceed through those levels when designing(updating) the pattern recognition
system. The low level gives only the input to the high level and there is no other
interrelationships between the levels. _ |

In principle, there are three main categories of methodologies for automatic pat-
tern recognition: heuristic, mathematical, and syntactic. The heuristic methods gen-
erally are very ad-hoc and developed for very specialized recognition problems. Iﬁ
term of _genefaliza.tion and automation, these methods are not useful. The mathe-
matical methods have two subdivisions : deterministic and statistical. Both types of
the approaches are based on the mathematical framework except that in the statisti-
cal approach the sta,tist-ical properties are employed. In the third group of methods,
the syntactic methods, a pattern is described by its primitives (subpatterns) and the
relationships among them. These methods are capable of recognizing the complex
pattern which can not be adequately represented in a vector fbrm.

Let us recall the syntactic pattern recognition diagram (figure 1.1). The diagram
views the recognition system as being partitioned into two major parts : analysis
and recognition. In the analysis part the system works with the training set, i.e.

selects the primitives and builds the grammatical (structural) inference. The primitive
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selection is ”largely influenced by the nature of the data, the specific application in
question, and the technology,available for implementing the system. There is no
general solution for the prinﬁﬁive selection problem at this time” ([6]; pp. 79). For
each specific a,pplication, the designer selects beforehand the primitives to be used
(e.g. stroke segments and the corresponding relations among them are chosen to be
the primitives in the chinese character recognition system [6]). The second step is
the construction of grammars which generate the language for describing the patterns
under study. Let us once again quote the comments of K.S. Fu, the most prominent
scientist who worked in the syntactic pattern recognition area. "Ideally, it would be
nice to have a grammatical inference machine that would infer a grammar from a set
of given strings describing the patterns under study. Unfortunately, such a machine
has not been available except for some very special cases. In most cases so far, the
designer constructs the grammar based on the a-priori knowledge available and his
or her experience” ([6], pp. 93). In his hand-written character recognition system,
Fu selected the primitives first and then constructed manually the grammar for each
character under study . We can see from the above diagram how big the syntactic
system’s dependency is on the human designer, how big the inflexibility of the system
for different problem types is, and, consequently, how poor the degree of automation

of the system is.

4.3 Proposed dynamic system for primitives se-
lection

In order to automate more systems we have to give more freedom to the machine to
select the primitives, to learn from the data, to evaluate the learning process, and
to make it self-adjusting based on the learning process evaluation. In other words,
the system checks how well the primitives are capable of representing the patterns in

the training set from the discriminatory point of view. The need of such an adaptive
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system of pattern recognition has been noticed in the early 1970’s. »When we wish
to design a pattern recognition system which is resistant to distortions, ﬁeﬁcible under
Iargé pattern deviations, and capable of self-adjustment, we are confronted with the
adaptation problem” ([19], pp. 15). Even a functional block diagram of such a system
has been suggested (figure 4.1). There is no automatic pattern reco.gnition system
yet developed based on the diagram, simply because there are no available tools for
some of the levels. Referring to the diagram in figure 4.1 , the separation between
the "contextual analysis” and "estimation, adaption, learning” should not be present

in the corresponding system.

CONTEXTUAL
ANALYSIS
b
, . PREPROCESSING .
Object M 5] Feature vectots Pattern
2T SENSING [ieteurements AND CATEGORIZATION |y
FEATURE or primitivee Classes
SELECTION
ESTIMATION
ADAPTATION
LEARNING

Figure 4.1: Functional block diagram of an adaptive pattern recognition system [19]
pp. 16

The dynamic selection of primitives proposed in [9] is conceptually different from
the above. The difference mainly comes because of the existence of the evaluation
function f(w) in the learning process (ﬁgure.4.2) which allows the system to seli-
adjust. In this model, the high level drives the low level by means of the evaluation

measure: the low level changes the parameters and reselects the primitives if the

49




measure is low. Also, there is no separation between contextual analysis and the

adaptation learning; the learning model manages both tasks.

1 beagin ’

Initialize the segmentation parametera
and segment the lenrning patterns

3

Cluater the resulting pat tern aegments
and form the primitives

Represent the learning patterns
using the chosen primitives

Perform the weight learning stage and

check if the valve of f ia eatisfactory

no

end Update the segmentation parameters
and segment the learning patierns

Figure 4.2: Block diagram of the dynamic selection of primitives [9] pp. 22. -

This thesis follows exactly the diagram in figure 4.2 and uses the Muchnik method
as the primitive selection method (see chapter 2). The learning model used is dis-
cussed in chapter 3.

Once the set of primitive fragments from the training images is obtained (by
Muchnik method), the city-block distances between each pair of primitive fragments
are computed to obtain a matrix of dista.nce(ﬁgure 4.6). Using the average link'age
cluster analysis provided by SAS software with the distance matrix as the input, the
clusters of the primitive fragments are obtained. Neit, the primifive fragments are

labelled according to their clusters.
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Each image is encoded as a string of cluster labels corresponding to each primitive
fragment and is generated by tracing the image starting from a certain initial position
(figure 4.3). In this thesis, we are not concerned with the algorithm for generating
string representation when the primitive fragments have been chosen since this topic

has already been addressed in the pattern recognition literature.
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Figure 4.3: Tracking direction and the initial position of encoding of each four digit.

The obtained representations become inputs for the learning process discussed
in chapter 3. If the evaluation measures are satisfactory then the resulting binary
tree is the binary decision tree for the pattern recognition system, otherwise, the
three parameters in the Muchnik method of primitive selection are changed and the
primitive selection process is repeated until the evaluation measures are satisfactory
(figure 4.4). Section 4.4 will discuss the construction of the binary decision tree. The
pattefn recognition system is completed once we have the final binary decision tree.

Next, we will discuss é.bout the recognition stage. At the low level, the primitive

fragments of the digit to be recognized are selected by the Muchﬁik method using the

81



fixed defocusing mask size, fixed search window size and fixed cutting window size
stored at the root of the final binary decision tree. Then, following the same procedure
as for the training sets, the digit is encoded into the string. At each node of the binary
decision tree, using the weighting scheme corresponding to this node weighting scheme
(stored at this node), the string representing the input digit is classified ﬁsing the
corresponding distance measure by the minimum distance classification rule. The
digit is recognized to be in the class corresponding to the leaf node at which the

recognition process terminates. The algorithm is presented in figure 4.5.
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pracedure MAIN(NI, UM, LM, UL LL U E, LE);
/*

This main procedure generates the binary decision tree whose root is pointed by a pointer DT for the training sets
of NI number of images of I each of size N x N with the UM, LM, UL, LL, U E, LE are the upper and lower range
of RANGE of the size of the defocusing mask, search window and cutting window respectively. It calls procedures
DEFOCUS(figure 2.3), SEARCH(figure 2.5), FR.DIST(figure 4.6} and LEARN(figure 3.3). DM is the de-focusing
mask, DI is the de-focused image and ST is the smoothed-image. The positions of local maxima are stored in LOF
and the extracted fragments are stored in F RAGMENT. The distance matrix between the fragments in the training
set is stored in MATRIX. C denotes the set of strings representing the images; the value of sat indicates whether
the values F in the learning process are satisfactory or not. Fori = 0or § =0, Wi, 7) denotes the weight of the
insertion-deletion operation.

*/

For a from 1 to NI dot read I{a).
For M from UM to LM by RANGE do:
Begin.
Generate defocusing mask DM of size M x M (equation 2.1).
For a from 1 to N1 do:
Begin.
Call DEFOCUS{!(a), DM, DI{a}).
Apply the smoothing procedure on DI and get ST as the result,
End.
ForL from UL to LL by RANGE do: -
Begin.
For a from 1 to NI call SEARCH(SI(a), M, LCF(a)).
For F from LE to U E do:
Begin.
For e from 1 to NI do:
Begin.
Extract fragments from S7(a} whose centers are positioned
in LCF(a) of size E x E, and store them in FRAGMENT.
End.
Call FR DIST{FRAGMENT,MATRIX).
Cluster the fragments based on the distance matrix MATRIX by
using the average linkage method in 5 AS and label each cluster.
For a from 1 to NI do:
Begin.
Trace I{a) according to the tracking direction presented in figure 4.3 and
_encode it as C(a) according to the labels correspoading to its primitive fragments.
End. ) .
Call LEARN(C, sat, DT).
If sat = true then go to end of algorithm.
End.

End of Algoritm.

Figure 4.4: Algorithm for dynamic system of primitive selection.
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procedure RECOG(DT,0BJECT, RO);

[+ |

This procedure recognizes O BJECT using the binary decision tree whose root is pointed
to by DT as class RO. It calls procedures DEFOCUS(figure 2.3) and SEARCH(figure 2.5).
M, L and E are read from the vertex pointed to by DT and are the proper sizes of the
defocusing mask, search window and cutting window respectively.

x/

Read M, L and E from the root of the binary decision tree.
Call DEFOCUS(OBJECT, M, DOBJECT).
Apply the smoothing procedure on DOBJECT and get SOBJECT as the result.
Call SEARCH(SOBJECT,L,0LCF).
Extract the fragments of size £ x E from SOBJECT in position of QLCF and store
it in OFRAGMENT. Compute and find the nearest fragment in
the training set FRAGM ENT from each fragment in OFRAGMENT by using
the same method of distance computation, i.e. the distance -
between two fragments is given by the procedure FR.DIST (figure 4.6).
Label the fragment in OFRAGMENT according to the Iabel of its nearest
fragment in FRAGMENT.
Encode OBJECT as OSTRING.,
Set CE = DT.
Set O'N as the node pointed to by CE.
While (CE # null and WMAX in CN # dummy) do:
Begin. '
Using the weighting scheme WM AX, compute the string distance
between OSTRING and each string in subtree of CN, and find mins
y 1.e. the string whose distance to OSTRING is a minimum.
Set CE to mins.- '
Set C'E to be a pointer pointing to the child of a node pointed to by CE.
End. =
Set RO = mins ' .
OBJECT is recognized to be in the same class of RO.
End of algorithm.

Figure 4.5: Algorithm for object recognition.
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procedure FR_DIST(FRAGMENT, MATRIX).

/*

This procedure computes the distance between every pair of fragments in FRAGM ENT
and store the distance values in M ATRI X.

*/

For every pair (FR1, FR2); FR1,FR2 ¢ FRAGMENT do:
Begin.
Pad FR1 with blank pixels of width 1.
Set min = bigvalue.
For the center of FR2 coincident with that of FR1 as well as the center of FR2
shifted in all 8 directions by a radius of 1 pixel from the center of FR1 do:
Begin.
Compute the distance dist by adding the absolute value of the difference between
each corresponding pixel in FR1 and FR2.
If dist < min then min = dist.
For rotation of FR2 by 90, 180, 270 and 360 degrees do:
Begin.
Compute the distance dist by adding the absolute value of the difference between
each corresponding pixels in FR1 and FR2.
If dist < min then min = dist.
End. -
: End. : o
Store min as the distance value of (FR1, FR2)in MATRIX.
End.
End of algorithm,

Figure 4.6: Algorithm for computing the matrix distance among fragments.

4.4 On the reasons why the construction of the
binary decision tree is possible

It is important to remember that during the construction of the binary decision tree
the optimization problem is solved separately for each consecutive node, i.e. the sizes
of the three window - defocusing mask, search window, cutting window - are adjusted

within the corresponding loop (figure 4.4) for the classes associated with the node.
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Once the parameters for all parents of the leafes are obtained, the final parameters are
set as follows : we choose the smallest defocusing mask, the smallest search window,
and the largest cutting window. With these parameters, the new string representation
of all the digits as well as the final optimal weighting schemes for each of the tree
nodes are constructed. |

Please note that the loop for defocusing mask decreases the size, the loop for the
search window also decreases the size, and the loop for the cutting window increases
the size. The reasons for these are as follows : with the decrease of the defocusing
mask size and the search window size, no geometric features are lost, only new could
be generated (recall section .2.4); and with the increase of the cutting window size
only relative distances between the similar features decrease, such that the better

clusters are obtained.

4.5 The Experimental Results.

In this section, the final binary decision tree generated by the dynamic system of
primitives selection is presented as well as the results for the test patterns. The final
binary decision tree correponds to the following parameters for the primitives selec-
tion : defocusing mask of size 9 x 9, search window of size 5 x 5, and cutting window
of size 17 X 17. The images together with the corresponding primitive fragments
obtained by using the above parameters are presented in .ﬁgures 4.7 and 4.8 and the
final binary décision tree is presented in ﬁgufe 4.9. Table 4.1 shows the corresponding
primitive fragment clusters. The training sets are the following :
D2={efbd, eebd, dfebgg, debgd}
D3 = {debfe, gebe, ebeh, dbeh}

- D5={hccee, cbee, hebfe, heefh}

D8 = {aeeafe, aebfe, acacecee, a fae}
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In order to show how the dynamic system works, an intermediate binary decision
tree and the cofresponding primitive fragments are given (figures 4.10,4.11 and 4.12
and table 4.2). The training sets are listed as follows:

D2={ad, gad, bgad, bgadd,}
D3 ={bgagg, ag, agf, bagb,}
D5 = {cceg, cceg, bcag, ccg, }
D8 = {abeagf, acagf, acagfg, abg,}
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Figure 4.7: (a),(b) The images and the corresponding primitive fragments obtained
by using defocusing mask of size 9x 9, search window of size 5x 5 and cutting window
of size 17 x 17 for training sets D2 and D3 respectively.
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Figure 4.8: (a),(b) The images and the corresponding primitive fragments obtained
by using defocusing mask of size 9x 9, search window of size 5 x 5 and cutting window
of size 17 x 17 for training sets D)5 and D8 respectively.
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CLUSTER | FRAGMENTS
58,61,62,67,71,75,77
1,6,9,17,20,27,29,34, 43, 46,65
37,40,42,49,51,52

4,8,14,15,19,24, 33
2,5,7,13,16,22,23,26,28,30,32, 35,38, 41,44, 45,
47,56,57,60,63,64,68,69,70,72,73,76
3,12,21,50,53,59,66, 74

10,11,18,25 |

31,36,39,48, 54,55

™ £, 0 o8

D Sy

Table 4.1: Clusters of fragments for the training sets of figure 4.7 and 4.8.

D2uD3uDsUDs
w* =(.5,.0,.5,.0,.0,.0,.0,.0}
F(Chmax) = .5
D2U D3 D5uD3
w* = (.0,.125,.625,.0,.25,.0,.0,.0) w* ={.125,.0,.0,.0,.0,.0,.875,.0)
F(Bmax) =1 F(max) =2

& ® © &

Figure 4.9: The final binary decision tree for the training sets of figure 4.8.
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Figure 4.10: (a),(b) The images and the corresponding primitive fragments obtained
by using defocusing mask of size 13 x 13, search window of size 13 x 13 and cutting
window of size 13 X 13 for training sets D2 and D3 respectively.
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Figure 4.11: (a},(b) The images and the corresponding primitive fragments obtained
by using defocusing mask of size 13 x 13, search window of size 13 x 13 and cutting
window of size 13 x 13 for training sets D5 and D8 respectively.
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CLUSTER | FRAGMENTS

3,8,11,16,17,18,21,23,27,30,36,38,43,47, 54,56,60,63

a 1,4,6,12,15,20,22,26, 37,46, 49,50,53, 55, 59,62
b 9,10,19,25,28,39, 48,61

¢ 29,31,33,34,40,41,42

d 2,5,7,13,14

e 32,35,45,52, 58

f 24 44.51,57

g

Table 4.2: Clusters of fragments for the training sets of figure 4.10 and 4.11.

D2UD3U D50 D8
w* = (.25,.375,.125,.0,.125,.0,.125)
F{Shmax) = 0.3111

D2u D3 D5 Dg

w* ={.0,.0,.0,.125,.875,.0,.0) w‘—(00125 .875,.0,.0,.0) .
Fmax) =2 F(Omax) =2

s o 5

Figure 4.12: An intermediate binary decision tree for the training sets of figure 4.10
and 4.11.

The values f (Qmax) of each node of the final binary decision tree in figure 4.9
- are satisfactory, whereas those in the figure 4.12 are not. Observe also the difference
between the primitive fragments obtained by using the final and the intermediate pa-
rameters for primitive selection (figures 4.7,4.8 and figures 4.16,4.11). We can see that
using the intermediate set of parameters (figure 4.10,4.11), some essential primitive
fragments such as the intersection in digit 8 was not detected. This situation can only
be corrected by reselecting the primitive fragments, i.e. changing the parameters of

selection. On the other hand, several unessential primitive fragments are also added
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(figure 4.7,4.8). These fragments, however, are in fact ignored since the 1;axa'eight learn-
ing process assigns zero weights to the insertion/deletion operations corresponding to
those primitive fragments.

The test patterns consist of digit 2, 3, 5 and 8 (three of each). Their images
and the corresponding primitive fragments obtained by using the final parameters
of sélection, l.e. defocusing mask of size 9 x 9, search window of size 5 x 5 and
cutting window of size 17x 17, and the corresponding strings representing the images
are shown in figures 4.13,4.14,4.15 and 4.16. The binary decision trees with the
corresponding minimum distances for each node of the tree (computed using the
corresponding weighting scheme)} are given as well. Since we use only the final binary
tree which are already presented in figure 4.10 all the time, the weighting schemes
and the values f{Qmax) are not shown in the figures. All digits are récognized to be in
the proper classes, therefore we can see that the final binary decision tree generated |

by the dynamic system is the right decision tree for solving the recognition problem:
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eebg egeebyg N ebyg

DiunpauDsuDs DiuD3upsu 03

[ pzups ] i DSU D3 [ b2uDs | LDs‘uDa Lmu'oa—[ [ D5U D3 ]

dist=0 / dm:n.:ﬁ/ ' dist=0 /
@@@@ @@@@ @@@@

(b)

Figure 4.13: (a) Three digits 2 with the corresponding primitive fragments obtained
by using the final parameters for selection and the corresponding string representa-
tions, (b) The binary tree with the corresponding minimum distances.
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dbhh be fbfeh

DU D3UDsSU D8

DIub3uDsU DS

dist=10

N

| D2U DS 1 I D5 D3

'\disi:
@ 0 @ o

(b)

Figure 4.14: {a) Three digits 3 with the corresponding primitive fragments obtained
by using the final parameters for selection and the corresponding string representa-
tions, (b) The binary tree with the corresponding minimum distances.
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cbfe gcceeh gcbeh

D2U D3y psu DB D2uD3uDbsu b3 B2U D3 DsUDS

\ dist=0 \ dist=0 \ digt=0

DIuDs ] [ psups ] D2U D3 ‘ I psups | ! D2uDs | | DSU D8 |

disi=0 / [\ dint= 087§ dist= 0877
@@@@@@@@@@@@

(b)

Figure 4.15: (a) Three digits 5 with the corresponding primitive fragments obtained
by using the final parameters for selection and the corresponding string representa-
tions, (b) The binary tree with the corresponding minimum distances.
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ceeaee afbee faebee

D2uD3uUbsLU DS D2uD3UDsSL DS Di:up3uDsu D3

dm_o daai_O dms_o

D2u D3 Dsups | D2u D3 DSy D3 I D2 U D3 D5uU D3 ]

\ dist =0 \ digt =0 \ digi=1

(b)

Figure 4.16: (a) Three digits 8 with the corresponding primitive fragments obtained
by using the final parameters for selection and the corresponding string representa-
tions, (b) The binary tree with the corresponding minimum distances.
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Chapter 5

Conclusion and Future Work

The dynamic selection of primitives in the metric model for pattern Iearhing is very
differeﬁt conceptually from the existing models and, therefore, provides new freedom
and flexibility. No system prior to this one makes use of the high-level analysis to
drive the low-level analysis. The high-level analysis, i.e. the learning stage in the
metric model, is able to correct, if necessary, some errors that occur in the low-level
analysis, i.e. the primitive selection. If the errors can not be corrected, the high—levél
analysis commands the low-level analysis to repeat the primitive selection process. -

The result of this thesis shows how easy and naturally the model handles the
handwritten digit recognition problem. This ease promises us that the model should
also work for other types of problems. |

For the future work on the dynamic selection of primitives using the Muchnik

method in the metric model, the author suggests the following topics :

¢ Instead of having only one set of parameters for the primitive selection, one

may want to develop a system with several sets of parameters.

o The simple insertion/deletion operations in the distance computation are, per-
haps, not enough for more complex problems. The introduction of several other

operations may be necessary.
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¢ An extension of the Muchnik method to the gray level images for texture anal-

ysis may produce very interesting facts.

* Instead of encoding images as one-dimensional string, a more sophisticated en-
coding scheme may be used. Thus, the usage of the two- dimensional iconic
indexing (4] can be considered. Also in these cases the distance algorithm will

be replaced.
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