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- Abstract

Plan recognition is the recognition of an agent’s plan from the agent’s actions.
Recognizing the agent’s plan can help predict the agent’s next action; in a natural
language setting it can help to form a cooperative response. Most artificial intel-
Iigence research into plan recognition relies on a complete set of pre-stored plans,
a form of the closed world assumption. Faced with a novel plan, these systems
simply fail. Our approach for giving up this assumption enfails (1) providing new
planning information on demand, and (2) incorporating the new information into

the candidates that are proposed as the agent’s current pia.n. We focus on task (2).

Most plan recognition settings require timely responses. So as new information
is provided, the candidates should be be repaired rather than recalculated. We
found that existing truth maintenance systems, such as de Kleer’s ATMS, were
unsuitable for candidate repair. They introduce extra search and redundancy to
handle the disjunctions that arise in plan recognition. We provide a refinement of
linear resolution that reduces redundancy in general. Based on this refinement we |
provide a new truth maintena.nce system that does not introduce extra search or
redundancy. We then use this truth maintenance system as the basis for a pla.n

recognition system which incorporates novel information through candidate repair.

v




Acknowledgements

I am grateful to the following people:

to Robin Cohen, my supervisor for her rare gift: the ability to manage graduate
students. She gave me a free reign to explore my interests, which were often not
her own. She showed patience, but enough push to drive me through the program.
I am especially grateful for the moral support, the financial support and the “two

hour turnaround” when reading sections of my thesis.

to Fel song and Peter van Beek, for our “Friday Research Group” and to Scoti
Goodwin, Eric Neufeld, Andre Trudel and Paul van Arragon. Thanks for friendship,
support and the all too rare excursions to the Grad Club.

to my office mates Hosam AboElFotoh and Vickie Martin, whose warm friend-

ship made the office a “second home.”

to the members of my committee, James Allen, Stan Burris, Paul Larson and
Fahiem Bacchus for making the oral defence as close to enjoyable as such an ordeal

can be.

to the present and former members of the LPAIG, especially Randy Goebel and

David Poole and to John Sellens for an excellent working environment.

to all of the staff, especially Dermot Harriss, Mary Chen, Kim Gingerich, Jane
Pullin, Linda Norton, Ursula Theone and Sue Thompson.

to the gang in Ottawa, especially Steve MacKay and Gary Stewart.
to all our friends at MSA, especially Jennie and John Molson.

to Jack Dyment and the late Bonnie Jackson for the BNR Postgraduate Award,
and to Ragui Kamel and Bill Older for helping me to get it.



Dedication

To Gina, for your love and your prayers, and for all of the times you have had
to be both parents. There are easier times a.hea,d, but the best time is any time we

spend together. I love you.

To Andrea and Michelle for your joie de vivre, humor, trust, honesty, innocence

and unconditional love; for teaching me the most important things I have learned.

To my parents, for bringing me up in an understanding and loving home, and
for continuing to help in so many ways. You’ve shown me how parenting ought to

be done.

To Don, Sheila and Susan, and your families. We have always helped each other,

and I am sure you do not realize how much you have done for me.

To my parents-in-law, for coming to help us on four occasions with a newborn

or a crisis, and for welcoming me into your family. .

‘To God, for the many times there was only one set of footprints in the sand.

vi




Contents

I Assimilation in Plan Recognition 1

1 Introduction __ 3

1.1 Plan Recognition : Whatitis ... ....... I. e e e e e e e 3

1.2 Why do plan recognition? ........... e e e e e e e 4

1.3 Plan Recognition Methods ... ., . ... ... ... ... . 6
1.3.1 Likely Inference . . . . .. e e e e e e e e e e e 6

132 Abduction . . .. ... 6

'1.3.3  Kautz’s Plan Recognition System . . .. . e e e e e e T

14 The ﬁovel Plan ?roblem ......................... 8

1.5 Harry Grosz Example. . . . ... ... ... ... ...... 9

1.6 Plan Recognition with an Ofa.cle ........... PR -9

1.7 Assimilation . . . ... ... .. 12

2 Background ' 14

2.1 Kautz’s Plan Recognition Theory . . .. .. ............ | . 14



2.1.1 The Representation Language and its Semantics . . . ... .. 15
2.1.2 Representing the Plan Library . . . . .. ... .. ... ... 15
2.1.3 RecognizingaPlan .. ... ... ... ... ... ..... 16
2.1.4 [Failure to Recognizea Plan . .. .. ......... L., 18
2.1.5 Relating Different Obsen_rations e e e e e e e e e e e e - 18
2.2 Propositional Logic . . . . . ... .... e e e e e .. ..... 19
2.3 Truth Maintenance Systems . . . ... ... .. ... ........ 21
231 Proof Theory . ... ... .. ... . ..... S 21
2.3.2 Operation ... ....., e e e e e e e e 22
2.3.3 ATMS Algorithms . . .. ...... e e e e e e e e 22
2.3.4 ATMS Restrictions . . . .. ... . .. ............. 24
3 How to do Assimilation _ 26
3.1 Kautz’s Plan Library indetail . . . . .. .. ... .. ..... .. .. 27
3.1.1 Representing the Plan Library . . . . .. ... ........ 27
312 Reasonming . . . . . . . . . . i it ittt i it 30
3.1.3 ThePasta Example . . . . . . .. .. .. ... .. ...... 33
3.2 Library Assimilation . .. ............... e e 35
3.2.1  Axn Mlustration of Library Assimilation . .. ... ... ... 35
3.2.2 The Library Assimilation Algorithms . . . . . . ...... 37
3.3 Computing Candidates #nd Candidate Assimilation . . . . ... .. 43
3.3.1 An ]]lustra.tion.of Candidate Assimilation . ......... a4

vii




332 Towardasolution . .. .. ... . . o .,

3.3.3 A Recasting of Kautz’s Explain Algorithm . .. ... .. ..

3.3.4 Plan Recognition with Ground Literals . ., ... ... ...
3.3.5 Ca,ndid-ate and Candidate Assimilation Algorithms . .. .. '
3.3.6 Revisitingtheexample . . . . .. ... ......... Cee |
3.3.7 Properties of the algorithms ..................

IT Reasoning with non-Horn Clauses

4 Avoiding Duplicate Proofs
4,1 Background: The MESON Proof Format . . ... .. Ce e
4.1.1 Negated Ancestor Proof Graphs . . v . . v oo v v v n. ..
4.1.2 First Order Proofs . . . R
4.2 Foothold Proof Graphs . . . . . . .. ... ... ... . ...
4,2.1 Propositional Foothold Format . .. ... ... .......
4..2.2. First Order Foothold Proofs . . . . . .. .. ... ......
43 Ewvaluation . . . .. ... ... ..., ... R I I
4.3.1. How easily can foothold proofs be computed? ... ... ..
4.3.2 When should the foothold format be used? . ... ... .. | .
4.3.3 How ma,n‘;)r proofs are avoided? . . . . .. ... L. L.
434 Howmuchtimeissaved? . .. .. ... ... ... ......
44 Conclusion . . . o . v v v it i i e e e e e e e e

ix

46

48

49

51

56

59

63

66

)




5 Owur Truth Maintenance System _ 84

5.1

5.2

5.3

5.4

5.5

de Kleer’s Basic ATMS . . . . . ... .. ... ....... IPRT 85
51.1 Default Logic . . . ... ... ... ... . ... ... ..., 85
5.1.2 The Explanation Problem . . .o oo 86
5.1.3 A definition of the ATMS . ... ............... 87
5.1.4 And/ 01'. Graphs . . . .. .. L L 88
515 Two Operations . . . . . e o1
5.1.6 Effectivenessof the ATMS . ... .. ... .......... 94
Non-Horn Clauses and Truth Maintenance . . . . ‘ .......... 94
Our Solution . . .. ... ... ... ..... S 95
5.3.1 And/or graphs from all contrapositives . . .. .. ...... 96
5.3.2 Backedge Graphs . . ... .. ... .. ... .. ... ..., 98
5.3.3 A new truth maintenance éystem ............... 99
534 Qur TMS Algorithms . . . . . .. .. ... .. ... ..... 102
5.3.5- Restricting Backedge Graphs . . .. ... ... ....... 103
5.3.6 Backedge Path Algorithms . . . . ... ... ... ... ... 106
Comparison with de Kleer’s .Extended ATMS ........... . 108
54.1 de .Kleer’s Solution . . . ... ......... o 108
542 Comparison . .. .......... e e e e e e e 110
Our TMS applied to Plan Recognition . .. ............. 112
5.5.1 Interfacing the Plan Recognizer with the TMS . . . ... .. 112




5.5.2 Plan Recognition Algorithm (Single Observation) . . ... ..
5.5.3 Returning to theexample .. .. .. .. ... ........

5.54 Candidate Assimilation and Multiple Observations . . . ..

6 Conclusion

6.1

6.2

Contributions . . . . .. . ... i .
- 6.1.1 Recognizing Novel Plans in Plan Recognition. . . ... ...
6.1.2 Redundancy in Automated Theorem Proving . . .. ......
6.1.3 Non-Horn Clauses and Truth Ma,intenance_ ..........
Future Work . . . . . . . . . . . o e e e e e
6.2.1 Work in Plan Recognition .. .. ... B

6.2.2 Work in Automated Reasoning . .. .. .. ... ... .. .

A Algorithms and Proofs for Chapter 3

Al

A2

A3

Libr_ary Algorithms . . . ... . . .. .. .. .
A.l.1 Library Closure Algorithms . .. .. | e
A.1.2 Library Assimilation Algorithms . . . . . . .. .. .. .. .
Candidate Algorithms . . ... ... ... PRI PR

A2.1 Searching Algorithm . .. . .......... .

113
116

120

127
127
127
126
130
131
131

135 .

137



B Proofs and Algorithms for Chapter 4 : 147
Bl Proofs .. ..., e 147
B.2 Computing Foothold Proofsin Prolog . . . . . .. .. ... ..... 154

C Algorithms from Chapter 5 ' 156 |
C.1 de Kleer’s ATMS Algorithms . . . . . . ... ... ... ....... 156
C.2 Our TMS Algorithms . . . . . . .. e e 159

(.2.1 Backedge Algorithms . . . . ... .. ... .. e 162
C.3 Plan Recognition Algorithms . . . . .., .. ... BRI 164
C.3.1 Extracting Candidate Plans . ................. 164
0.3.2 Plan Recognition with Assimilation -(Siﬁ'gle Observation) . . 165

C.3.3 Plan Recognition with Assimilation (Multiple Observations) 167

o}




List of Figures

1.1

1.2

1.3

2.1

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

5.1

A General Plan Recognition Setting . . . . . ... ... ... ..., 4
PRO : Plan Recognition withan Oracle. . . . ... ... .. .... 10
Various Oracles . . ... ... .. e e e [ 11
A simple example hierarchy . .. ... .... e e e e 16
An Example Hierarchy . . . . .. . . ... ... . ... 29
The Example Hierarchy with new information .. ..... ... ., 36
Assimilating a new abstraction. . . . ... ... L L L., 41
An “is-a” plateau . . .. ... .. e [ . b4
Kautz’s combinatorially explosive hierarchy . ... ... ... . .. 60
Our combinatorially explosive hierazchy . . . . . ... ... ... .. 61
Negated Ancestor Proof Graphs . . . . .. .............. 69
Footholds on Pelletier’s Problems . . . . .. ... .. ..... ... 80
Proof Heights for Selected Problems . . . . . . ... ... ... ... 81

Adding a justification to the and/or graph . . .. . ... ... ... 92

xiii




5.2
5.3
5.4
5.5
5.6
5.7

5.8

6.1

And/Or graphs from all contrapositive forms . . . . . .. ... P

An example And/Orgraph . . . . . oo vt e 100
An example backedgegraph . . . . ... ... L L ... 100
Proof Graph from .the Inittal Libraxy . .. . ... ... ... .... 117
Proof Graph from the Library after Assimilation ... ... . ... 118
Proof Graph after a New Constraint is Added SRI ...... 121
Assimilation with multiple observations . . . ... ... ... .. .. 124
Direct Assimilation with multiple observations . Ce e 132

B.1 From § with a backedge (I, Nlj to G’ with a back edge (N, N}) . 149

B.2 Constructing G/ from G; . .. .. .. e e e 150

B.3 The effect Lemma 6 on other backedges . . . ... ... ...... 153




Part 1

Assimilation in Plan Recognition



2

This thesis is divided into two parts to discuss the two areas we have been
investigating, in plan recognition and automated theorem proving. But the two
halves are related since we solve a specific problem in plan recognition with a

specific result in automated theorem proving.

In the first half, we discuss the gemeral area of plan recognition, what it is,
why it is worth doing, and review some of the methods that have appeared in
the literature. Then.We discuss a problem that has largely been ignored in the
literature, recognizing a novel plan. Qur approach to the problem is to break it
into two smaller proBlems, discovering the information necessary to recognize the

novel plan, and assimilating it.

We focus on the assimilation problem. We have chosen to implement our as-
similation solution within Kautz’s plan recognition paradigm [16]. We have used
ideas from de Kleer’s assumption-based truth maintenance system (ATMS) [6] to

perform the assimilation.




Chapter 1

Introduction

1.1 Plan Recognition : What it is

Plan recognition is the recognition of an agent’s plan by observing some of the
agent’s actions. Knowing the agent’s plan tells us what the agent intends to do and

how he intends to do it.

In the general plan recognition setiing (see Figure 1.1) an agent is pursuing
a plan and so takes some actions. Observations of these actions are given to a
plan recognition system, which has access to a plan library, a set of plans that an
agent in this particular domain might be pursuing. The plan recognizer’s job is
to extract some candidate plans from the library, plans that include at least the
observed actions. The candidates are only tentatively proposed; new observations or
additions to the plan library might defeat their candidacy. Thus pl#n recognition is
an instance of non-monotonic reasoning. Reasoning is non-monotonic if a conclusion
which may be drawn from body of knowledge may no longer be drawn from a larger

body of knowledge.
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Plan Recognizer

PR’s Plan Library

Agent

Candidate Plan
[ Candidate PTan Plan
| Candidate Plan

A

observations

Figure 1.1: A General Plan Recognition Setting

1.2 Why do plan recognition?

Allen and Perrault [1] applied plan recognition to analyse uttera.ﬁces in matural
langnage. According to Austin[2] and Searle][28] every utterance is the result of
several actions or speech acts, with which the speaker intends to affect the hearer.
For example, the speaker may intend to inform the hearer of something or-to request
him to do so’methiﬁg. Allen and Perrault used plan recognition to identify these

intentions, in order to understand the utterances.

There are many ways in which a computer system that has a representation of
the agent’s plan can be more helpful to a user of that system than it could have

been without the plan. Here are four ways.

Knowing the user’s plan can help the system to decide what information might
be useful for the user, even though the user did not explicitly request more informa-

tion. For example, a person walks up to an information booth at a train station and
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says “When does the Montreal train leave?” From this observation, the attendant
can reason that finding out when the train leaves is a step in the plan of boarding
the train. So the attendant can presume that person wants to board the train.
Since boarding the t.ra,in requires also knowing from where the train will leave, the

attendant decides to add that information as well, and responds “3:15 at Gate 7”.

Plan recognition can also help recognize the intention behind sentence frag-
" ments. K a person asks the attendant “The 5:15 train to Windsor?”, the attendant
can recognize that the person intends to board this train. Boarding it requires
knowing from where and when it will leave. The person already knows when, so

the attendant responds “Gate 107,

Having the speaker’s plan can help the system to avoid misleading responses.
Consider a course advisor that helps students plan their curriculum. Suppose a
student that is failing numerical analysis asks “Can I drop numerical analysis?”
The student’s plan is to avoid receiving a failing grade in numerical analysis. At
this particular school, if a student drops a course while failing it, he still receives a
failing grade. If the course advisor is not sensitive to the student’s plan, he or she
(or it) will respond “Yes”. But this will mislead the student. It is necessary to have
access to the s_tﬁdenf’s plan in order to formulate a more coopera.tife response, such
as “Yes, but you will still fail the course since your mark will be withdrew-while-
failing.”

A fourth reason for plan recognition is to help predict the agent’s next action.
This can be used to improve user interfaces. An example of this is the CHemical
Engineering Computer-aided-design Systeni (CHECS) of Litman and Goodman[18].
CHECS is a cooperative tool for designing chemical processes. Its user interface is
similar to Ma.cDra.w©; icons representing equipment,_ such as pipes, reactors, and

heaters, are placed in a schematic diagram of a chemical manufacturing plant. The
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plan recognizer attempts to recognize the chemical reaction that the designer has
in mind. Having access to the reaction lets the system apply its chemical domain
knowledge to suggest more optimal designs, or detect errors. When enough details
have been specified to uniquely identify the reaction, the system can predict the _

. actions needed to complete the design and fill out the mundane details itself.

1.3 Plan Recbgnition Methods

Several different methods for computing candidate plans have been suggested in

the literature.

1.3.1 Likely Inference

Allen and Perrault [1] suggested building chains of “likely inference” from the ob-

served action to an objective. One example link is the effect/action rule:

if a speaker wants some predicate P to hold
and the action ACT achieves P

then the speaker may want ACT to oceur.

This system uses heuristics to assign numerical scores to the chains as they are
built. It controls the computation by extending the chain with the highest score, a

form of best-first search.

1.3.2 Abduct_ion

Abduction was proposed by Charniak and McDermot [5] as a method for plan

recognition. In abduction, hypotheses are proposed to build up explanations. For
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example, if we observe that B is true, and we know that A implies B, we might
propose A as an explanation for B. This is used in plan recognition. to explain
the agent’s actions by making assumptions about what else the agent is doing.
For example we might assume that some action has occurred although it was not
mentioned. If we can construct a plan from these assumed actions and the observed

actions, then the plan is the abductive explanation for the actions.

1.3.3 Kautz’s Plan Recognition System

Kautz [16] proposed using circumscription to do plan recbgnition. He first proposed
organizing the plan library into an abstraction/decompositien hierarchy of events.
This hierarchy is a collection of fixed-format éadoms in first order logic that encode
the abstraction and decomposition relations between events. He then generalized
previous work in plan recognition by showing how to reason about events in this
first order logic. Kautz provides new operators for drawing logical inferences that
are particular to plan recognition. These new operators correspond to applications
of circumseription[20, 21]. One operator, c-entailment, sanctions conclusions based
on the belief that everything about the planning domain ié known to the recognizer.
By encoding the assumptions that allow plan recognition to proceed, Kautz makes
clear certain assumptions which were often left unstated in previous work. For
mstance, in the work of Allen and Perrault, rules have the form “if one observes
act A then it may be that it is part of act B”. But reasoning from A to B is not
a sound deduction. Kautz would instead reason from A 1:.0 the disjunction of all of
the events B of which A is a part, and base this deduction on the assumption that

all such B’s are known.

The new generalizations that result from using Kautz’s theory include: the
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ability to deal with an observation described as a disjunction of event types, the
ability to respond with a disjunction of possible plans rather than committing
prematurely to one particular plan, and the ability to recognize situations where

more than one plan is being pursued, to achieve more than one objective.

Kautz’s work is also noteworthy because the agent’s actions can be described
with the time intervals over which they have occurred, and the plans in the library

include temporal constraints that must be met for the plan to be recognized.

1.4 The Nbvel Plan Probiem

Iﬁ' this work we ask the question; what if the agent’s plan is not in the plan
recognizer’s library? This is an important question since it may be difficult to
preconceive all of the possible plans in some large domains. Also, an agent may
be pursuing an innovative plan, so it will not be in any plan library. For example,
in the chemical engineering domain if every plan were a.lrea.dﬁr known, then there

would be no reason to have a CAD tool for designing new ones.

. Most plan recogaition systems will simply fail if no candidate plan can be found
that contains the observed actions. However, to produce robust systems plan recog-

nition must be allowed to continue, rather than fail,

Our approach to this problem is to divide it into two smaller problems, dis-
covering the new information and assimilating it. Discovering the new planning
information that is required to recognize the novel plan is a form of the learning
problem. For our purposes, we will assume that there is a source of new informa-
tion, an abstract, helpful third party that we call the oracle. If the plan recognition
setting allows a dialog between the agent and the plan recognizer, then thé agent
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himself might act as the oracle. Other possibilities are an automated learning

system, such as an explanation-based learner [10], or 2 human expert.

1.5 Harry Grosz Example

Recognition of novel plans occurs naturally in dialogs between people. Harry Grosz
| is a financial expert who offers advice to callers during a radio phone-in program.
'This transcript excerpt was provided by the Department of Computer Science in
the University of Pennsylvania.

Joe: Harry?
Harry: Yeah.
Joe: This is Joe.
Harry: Welcome Joe. |
Joe: I got a simple probleni for you on the uh, tax fifty problem. On schedule .
A, deductioné.
Harry: Right,
Joe: My wife and I are both over 65. What do I put on line 407
Harry: Oh, God. I don’t know what line 40 says. What does line 40 say?

Harzy has recognized Joe'’s plan to fill out Schedule A to calculate deductions.
A step in that plan is to fill in line 40. Harry’s plan library is incomplete because
he does not know what line 40 says. So there is a detail to Joe’s plan that is novel
to Harry. In the continuation of the dialog, Joe reads the text on line 40 to Harry

and then Harry is able to give Joe advice.

1.6 Plan Recognition with an Oracle
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Figure 1.3: Various Oracles

We propose a general architecture (See Figure 1.2) for recognizing novel plans
that relies on the oracle for its new information. A plan recognizer may consult
the oracle whenever it has difficulty accounting for the observations. Several issues
arise in defining the interface between the-pla,n recognizer and the oracle. When
does the plan recognizer consult the oracle? In what form are the queries posed?
What form do the responses take? Are the responses complete and trustworthy?
Deciding these issues in various ways shifts the responsibilities between the oracle

and the plan recognizer. .

Consider the following extreme cases. (Figure 13) Let the plan recognizer
consult the oracle with “I give up,” whenever it cannot account for the current set
of observations. Let the oracle give complete and correct information that applies to
the agent’s plan. Then this oracle is omniscient in that it knows both the question

and the answer.

Alternately, if the plan recognizer is able to ask specific “yes-no” type questions,

and the oracle is allowed to give false information, then a random bit would serve
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as the oracle.

Exploring the area between these exiremes is an important future activity. In
this thesis we assume that the plan recognizer’s plan library is correct, but not
complete, and that the information from the oracle is correct. We assume that the

oracle is consulted with I give up”.

1.7 Assimilation

In this thesis, we focus on the assimilation problem, namely: incorporating new
information info the plan library and the candidate plans proposed by the plan
recognizer. It is an instance of the iruth maintenance problem, referred to by.
Etherington [13] as the update problem of non-monotonic logics, a problem solved

by truth maintenance systems[11, 6].

Two methods of .a,ssimila,tion suggest themselves; we shall refer to them as as-
similation by recalculation and assimilation by repair. To illustrate recalculation,
imagine Harry Grosz has a tape recorder, and records the part of the dialog where
- Joe provides information about himself and his problem. After Harry receives the
information about line 40, he adds it to his body of financial knowledge. Now,
1magine that he fOJI:gets everything he knows about Joe’s problem and personal sit-
uation, rewinds the tape and plays it back. Now he relates Joe’s comments to the
larger body of financial knowledge, so he does not need to ask about line 40. One

criticism of the recalculation approach is that work will be redone unnecessarily.

Assimilation as repair requires the plan library to be organized hierarchically, so
that the candidate plans will be built ﬁp from subplans. The subplans themselves

- are non-monotonically proposed. New information may contradict some of the
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subplans, and if so, they should be discarded. The subplans that remain and the

new informaiion are combined to form the new candidates.

Although the repair method does not do the unnecessary work of the recalcula-
tion method, it does require two tasks that are not part of the recalculation method:
finding and reﬁxoving the contradicted subplans and combining the remaining sub-
plans with the new information to compute the new candidate plans. One possible
criticism of the repair approach is that the cost of these tasks may overwhelm the

benefits.

In this thesis we provide one repair method which achieves assimilation in plan

recognition. We also argue for its benefit over the recalculate method.




Chapter 2

Background

This chapter provides a more detailed description of Kautz’s plan recognition the-
ory, gives the basic definitions we will need from propositional logic, and introduces

de Kleer’s truth maintenance system[6].

2.1 Kautz’s Plan Recognition Theory

It is customary to describe formal reasoning systems on three levels. The model
theory describes how the formal statements relate to the domain (the real world),
the proof theory describes what is to be computed, and the algorithms tell how to
compute it. Kautz’s plan recognition system [16] is described on these levels. In

later chapters we will adopt Kantz’s model theory and proof theory, and extend the
| algorithms with assimilation capabilities provided by a truth maintenance system.

This constitutes providing Kautz’s style of plan recognition with truth maintenance.

14

Wb
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2.1.1 The Representation Language and its Semantics

Kautz uses first order predicate logic with equality to represent the planning do-
main. Statements in the logic are interpreted with respect to the domain in the
usual manner, through models. A model provides the following: for each term in
the logic it provides an individual in the domain, for each function it provides a
‘mapping from tuples of individuals to individuals, and for each predicate it pro-
vides a set of tuples of individuals. Statements containing quantification and logical

connectives are interpreted in the usual way.

Events in the domain are considered individuals, and so they are represented as
terms in the logic. Event types are ﬁnary predicates that further describe the evenf.
Ah event may be of several types. For instance, the same event may be described
as “reading a book” or as “avoiding housework”, depending on your point of view.
In the logic, this event is represented by a term, e.g. the constant C, and described

further as ReadBook(C') and Avoid Housework({C).

2.1.2 Representing the Plan Library

In this theory the planning domain is described by axioms in the logic. The plan
librafy is described by two particular types of axioms: abstraction axioms that
express the “is-a” relation between events, and the decomposition axioms, that
| express the “has-part” relation. The set of abstraction and decomposition axioms
‘make up a hj.eraichy of events. There is a natﬁral graphical representation for this
abstraction /decomposition hierarchy. In Figure 2.1, from [16], thick grey arrows
represent the abstraction axioms. For example, 2 CashCheck event is an Fnd event.
Thin black arrows represent the decomposition axioms. A RobBank event has two

parts: a GetGun event is step sl and a GoToBank event is step s2:




CHAPTER 2. BACKGROUND 16

/ e \
Go Hunting Rob Bank Cash Check
| \ | \SZ sll
511 32\ 511 \ ¢
Go To Woods Get Gun Go To Bank

Figure 2.1: A simple example hierarchy

2.1.3 Recognizing a Plan

Although the abstraction and decomposition axioms state true things, they do not
state in a general way what events should be inferred from a given observed'event,
and what candidate plans should be proposed. Suppose that we observe the agent
getting a gun. Then the event C is described to the plan Iecognizer as GetGun{C).

One model of the abstraction and decomposition axioms (where we describe a model

by listing the positive literals assigned true by it} is {GetGun(C)}. In other words,

it is not possible to conclude anything further. The problem is: if we conclude only
what is true in all models, there are too many models of the observations and the

axioms to conclude anything useful.

One way to remove these unwanted models is to apply McCarthy’s circumsﬁrip—
tion [20, 21] operation on the axioms. Kautz provides a procedure to effectively
compute circumscription by constructing new axioms. These axioms are based on
the assumption that the abstraction and decomposition hierarchy is complete, so
they strengthen the hierarchy. When we add these new axioms the number of mod-

els is reduced; the models that remain are called covering models. Plan recognition

ol
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is based on concluding what is true in all of these covering models, instead of all
of the models. The statements that hold in all covering models are said to be

c-entailed,

The new axioms express the assumption that hierarchy is complete. There are
three sets of new axioms. EXA contains the exhaustiveness axioms which imply
that every event is of some basic event type, where a basic type is one that does
not abstract any other type. In other words, we can partition the set of events into
a number of basic types. DJA contains the _disjointedness axioms which imply that
every event is of at most one basic type. The effect of both EXA and DJA is that
we can partition the set of events into disjoint basic types. EXA and DJA deal only

with the abstraction hierarchy. Given the hierarchy in the pievious example, every

event is classified as exactly one of GoHunting, RobBank, CashCheck, GoToWoods,
GetGun or GoToBank. -

CUA contains the component use axioms, which state that every event is either
an End event, or a component in some End event; thus there are no useless events.
There is an axiom in CUA for each event type that can be used as a component
in some othel;_ event. The CUA axiom lists the possible uses for that event. In the
previous exa.n_lple; a event of type GetGun is either :-m step sl of a RobBank event,

or step s2 of a GoHunting event.

The overall effect of these three sets of new axioms is to allow a reasoner to
trace the possible uses of an observed event to find what part or parts it may play
in an End event. Formally, Kautz’s plan recognition consists of showing for every
covering model of the obéervations and the axioms that some End event must be

occurring,

Plan recognition algorithms can proceed by bujlding_ a structure that contains

first the observed évent, then the events where it may be used, and so on through

ok
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the events where they in turn may be used, until each use is eventually shown to
be impossible or leads to some End event. The structure so built represents all of
the possible plans that contain the End event and the observed event. These are

the candidate plans.

2.1.4 Failure to Recognize a Plan

Suppose that not every possible use for the observed event can be shown to be an
End event or a component; either directly or indirectly, of some End event. Then
there is a model of the axioms and the observation that is not a model of the End

event. In this case plan recognition fails.

One cause of failure is that the hieraréhy is actually incomplete, although it
was assumed to be complete. For example, if a use of the observation could not be
related to the End event and new information becomes a,vé.ilable that now allows
it to be related, then by adding this new information we would like to make plan

recognition succeed.

2;1.5 Relating Different Observations

Plan recognition systems typically operate by accepting a number of observations

and proposing the plan(s) of the agent.

The C-entailment operator cannot combine information from different observa-
tions. Kautz defines another operator, me-entailment which sanctions the inference
of a statment that is true in all covering models that contain the smallest possible

number of distinct End events.
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Just as c-entailment was related to circumscription, mc-entailment can be de-
scribed as an application of circumscription. The proof theory of me-entailment
corresponds to accepting the first consistent member in a series of assumptions.
The first assumption in the series states that all observe.d events correspond to a
single End event. If that leads to an inconsistency the second assumption is applied
which states that there are two End events, and so forth, When a consistent as-
sumption is found, say the nth in this series, then we may corclude from the set of
observations that n End events are occurring, so n different plans are being pursued.
There may be a large number of ways of grouping the observations into » sets. In

the worst case the number of ways is exponential in the number of observations.

Because of this combinatorial grouping problem, and because of intuitions about
the way people solve incremental recognition problems, Kautz provides another op-
erator for combining observations when more than one End event must be proposed.
Incremental me-entailment, or ime-entailment a.ppliés when a series of observations
is made and after each observation the non-deductive beliefs are adopted as full be-
liefs. If a subsequent observation cannot be. grouped with a set of old observations
that together relate to one plan, then this last observation will be considered part

of a new plan, and the old grouping of the previous observations will persist.

2.2 Propositional Logic

. In this section we briefly present the terminology of propositiohal theorem proving.

For a complete presentation we refer to reader to [3], and [19].

Symbolic logic considers languages whose essential purpose is to

symbolize reasoning encountered not only in mathematics but also in
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daily life. [3]

The simplest logic, propositional logic, consists of an alphabet of symbols called
atomic formulas or atoms. They are used to denote true or false propositions,
declarative sentences from mathematics or daily life. Atoms are combined with
logical connectives to build well-formed formulas. For instance, if g is an atom then
—g is a well {formed formula. This exé.mple —g is commonly called the complement
of g. Likewise g is the complement of —g. Both an atom and its complement

are known as literals. One common restriction of formulas is conjunctive normal

form, or CNF. A clause is a disjunction of literals, e.g. ¢ V —gs V gs. A formula

in CNF is a conjunction of clauses, e.g. (g1 V —gs V ga) A (=hy v —hs) A (k).

‘We will often use a set of clauses to represent a conjunctive normal formula, e.g.

{91V =92V gs,~hy V =ha, ki }. A Homn clause is a clause with at most one positive
literal. The second and third clauses in our example set are Horn clauses, ~hq V =k,

and k. The first clause ¢, V =gy V g3 is a non-Horn clause.

A clause may also be written with an .+—, where all of the positive literals are
placed on the left of the arrow and are called consequents, and all of the negative
literals are cémplemented (i.e. stripped of their =), placed on the right and called
conditions. There is an implicit V between consequents and an implicit A between
conditions. For example g1 V =g, V g5 becomes g, g5 + gs. (Another convention is
to use a O symbol in place of the arrow, and switch the left and right hand sides,

so that the example becomes g, D g1 V gs.)

Since atoms denote true or false sentences, each atom may be interpreted as

either true or false. Thus a formula containing n distinct atoms has 27 interpreta-

tions. Given an interpretation of the atoms, we can determine the truth value of

the formula under this interpretation by evaluating each atom, and by using the
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standard truth tables for the connectives. An interpretation of a formula is a model
of the formula if the formula evaluates to true under the interpretation. A formula
is valid if and only if its truth value is true under all interpretations. A formula is

consistent if and only if its truth value is true under at least one interpretation. -

In both ma.theﬁmtics and daily life we often have to decide if a statement follows
from other statements. The corresponding notion in logic is to decide if a formula
is a logical consequence of another formula. G, is a logical consequence of G if and
only if for every interpretation I if the truth value of G4 under 7 is true then the
truth value of G5 under I is true. We write G4 = G4, The operation of deciding -
if 7, is a logical consequence of Gy consists of building a formal proof of G from

G+. If this can be done we say that Gy is provable from G’I.‘and write &3 F Gs.

2.3 Truth Maintenance Systems

Truth maintenance systems were introduced by Doyle [11], in order to reason about
what remains believed (“true”) as underlying beliefs change. In [6] de Kleer intro-
duced the assumption-based truth maintenance system (ATMS). It has been used
with diagnosis systems[9], for qualitative reasoning[14], and to inteti;ret visual im-

ages [24] A similar technology appeaxs in the expert system shell ART©[33].

2.3.1 Proof Theory

The input to the ATMS is a set J of propositional axioms, expressed as clauses.
Some of the literals in the clauses are designated as assumptions, which means they

may be assumed true unless shown false,
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For each literal the ATMS computes all of the minimal, consistent sets of as-
sumptions such that each, together with the axioms, implies the literal. In symbols,
for every literal P which is an atom or a negation of an atom in J, it computes all

sets E of assumptions such that
EUJtF P,and FUJ is consistent.

In ATMS terminology, E is called an environment for P. (In Theorist [23] termi-
nology, E is called an explanation.) \

2.3.2 - Operation

- Most ATMS applications need the environments for only some of the literals. So

why does the ATMS compute them for all literals? Because for most applications

the environments for one literal depend on the environments for a significant number
of the rest of the literals. And by computing and storing the environments for the
given literals, it can amortize the cost of computing them for a new literal. (Most

of the work will already have been done.)

Contrast this with the operation of most reasoning systems. They accept a-

description of the sitwation but do no work until they are given a problem to solve,

a form of “lazy” evaluation. The ATMS is an “eager” system that anticipates all

of the {single literal) queries from a set of axioms and precomputes the amswers to

each.

2.3.3 ATMS Algorithms

Thc following illustrates the ATMS algorithms from a high level perspective. For

a detailed discussion of the algorithms, we refer the reader to [8], or to Chapter 5

o
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of this work.

Consider the following example. The initial set of axioms is { X4s1 «— A4,V4is2 «—

B} where A and B represent ATMS assumptions, and Xis1 and Yis2 are proposi-

tions.

The ATMS generates a directed graph from the clauses. Each node in the
graph contains a literal. The directed arcs represent the condition / conclusion
relationships between the literals. Each node in the graph also stores the set of

environments for its literal. This set of environments is called a label.

In our example, the initial label set is

Xisl :+ A
Yis2 : B

which eésentia,lly means that Xisl depends on A, and Y452 depends on B.

When new information is given to the ATMS, in the form of a new set of con-
ditions for some conclusion, that information is added to the graph by adding new
arcs {rom the conditions to the conclusion. The environments of the conditions are
propagated aiong these arcs to form new environmeﬁts for the conclusion. Propa-
gation continﬁes to the cbnsequences of the conclusion, and so forth through their

consequences until all the effects of the new information are computed.

Returning to our example, suppose we know that Z = X + Y. Then we might
add a new proposition, Zis3. . Adding Zis3 « Xisl A Yis2 to the set of axioms
causes the labels for Xisl. and Yis2 to be propagated to Zis3, generating a new
label for Z7s3.

Zisd : AAR
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In order to keep the labels consistent, the ATMS maintains a database of min-
imal inconsistent environments, called nogoods. Two routines are used to ensure
that every environment in a label is consistent. The first checks that a new en-
vironment is consistent before being added to a label, by checking that it is does
not contain any nogoods. Whenever a new nogood environment is discovered, the
second routine scans all of the existing labels to remove any environments that are

supersets of this new nogood.

Continuing our example, if we learn that Y is not 2, we may add —Y¢s2 to the
ATMS. This causes the ATMS to find that B is contradicted, so B is added to
the set of nogoods. Any environment that is a superset of B is now inconsistent.

Remeoving these inconsistent environments yields

Xisl : A
Yis2

7183

There 1s no longer any reason to believe that Z is 3.

. Besides madintaining consistency, the ATMS also maintains label minimality by
removing subsumed environments from the label. Since all of the environments are
readily available in the label, the ATMS can compare all pairs of environments to
detect when one is subsumed by another. An environment is subsumed by another

when 1t is a superset of the other.

2.3.4 ATMS Restrictions

The basic ATMS deals with propositional Horn clauses. These are clauses with at

most one positive literal. With Horn clauses, then, it is impossible to reason by
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cases through a disjunction of two positive literals, or to conclude such a disjunction.
It is because the language is limited to Horn clauses and the reasoning is simplified

that the ATMS has been implemented very efficiently.

Attempts to extend the ATMS to general clauses by employing hyperresolution
have encountered efficiency problems [7, 8]. We return to the ATMS for general

- clauses in our discussion in Chapter 5.




Chapter 3
How to do Assimilation

In Kautz’s style of plan recognition, the first phase is to add axioms to the hierar-
chy that express the assumption that the knowledge in the hierarchy is complete.

Corresponding to this, the first phase of plan recognition with assimilation is to

compute the new axioms that express the assumption that the library consisting of B

the new knowledge from the oracle together with the old hierarchy is complete. We

call this step library assimilation since it deals with closing the new plan library.

In the othf;-r phases of plan recognition, observations are given and the candidate
plans are computed. Initially consider the case of recognizing a plan from a single
observation. {This special case will be generalized to deal with multiple observations
in Sec_tion 5.5.4.) In Kautz’s proof theory this corresponds to showing that the
observation c-entails the fact that there exists an End event. Recall that this is
performed by showing that the observation, along with the hierarchy and the closure
axioms entails the existence of an End event. The demonstration is performed by
building a proof, and the structure of the proof is taken to.represent the candidate

plans. In this phase of plan recognition with assimilation, the task is to show

26
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that the observation, the hierarchy with both the old and the new information and
the closure axioms from this larger hierarchy entail the existence of an End event.
Since the new proof encodes the new candidate plans we call this step candidate

assimzlation.

It is necessary to present some of Kautz’s plan recognition theory in more detail
than it appeared in Section 2.1. In Section 3.1 we shall look at the axioms in the
abstraction/decomposition hierarchy, and the axioms that express the completeness

assumptions.

Sections 3.2 and 3.3 contain our proposals for library assimilation and candidate

assimilation, respectively. Each section includes the proof theory, an example, and

a discussion of the algorithms. The full algorithms are presented in Appendix A.

Our solution to candidate assimilation, Section 3.3, involves using a truth main-
tenance system. To do this we need to recast the algorithms Kautz has provided,
and replace a portion of them with a truth maintenance system. In particular, we
need to explicitly identify the searching and the reasoning done in Kautz’s algo-
rithm, and split them into two separate tasks. A comparison of Kautz’s algorithms

and our own follows.

3.1 Kautz’s Plan Library in detail

3.1.1 Representing the Plan Library

The plan library is represented as an absiraction/decomposition hierarchy of events.

There are five basic sets that make up this hierarchy:

e Hp is the set of events types, including the type End.

N
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o H, is the set of abstraction axioms, which represent the “is-a” relations be-

tween two events. The general form for an abstraction axiom is
Ve Ei(z) D Eq(z)

where £y and E, are two event types. This states that any event of type E, is
also an event of type F;. We say that E, directly abstracts 1, or equivalently
E, directly specializes E,. The transitive closure of directly abstracts (directly

specializes) is written abstracts* (specializes®).

o Hgp is the set of basic event types, event types that do not directly abstract
any other types.

e Hp is the set of decomposition axioms. Collectively, they represent the way
that each event can be decomposed into a number of steps, which are them-
selves events. They also describe the constraints under which the event can
occur. There are two general forms, one for a describing a step, and the other

for describing a constraint.! The form for a step in an event is
Ve.E(z) O Ei(fi(=)).

where FE; is the type of the step, and fi is a role function (a function from

one event to another event). The form for a constraint is
Vz.E(x) D &.
where « is a constraint.

o Hg is the set of general axioms _required to describe the domain.

'Kautz places all of the steps and constraints that pertain to a particular event into a single

axiom. It is more convenient for our purposes to keep the axioms in clausal form.
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End

1

Make Pasta Dish

Make Fettueini
Alfredo

AN
sl 52

N

Make Fettucini Make
/Noodles . Alfredo
’jl 12 33\ Sauce
Measure Mix Roll

Flour Dough Dough

Figure 3.1: An Example Hierarchy

29
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There is a natural graphical representation for the abstraction decomposition hi-
erarchy. In Figure 3.1 thick, grey arrows represent the abstraction axioms, and thin
arrows represent the decomposition of an event into steps. A specialized MakePas-

taDish event is MakeFettuciniAlfredo.
Va.MakeFettuciniAlfredo(z) D MakePastaDish(x)

MakeFettuciniAlfredo can be decomposed into two steps. Step sl is MakeFettucini-
Noodles and step s2 is MakeAlfredoSauce.

Ve.MakeF ettucini Alfredo(z) D MakeFettuciniNoodles(s1{z))
Va.MakeFettuciniAl fredo(z) D MakeAl fredoSauce(s2(z)))

Note that the role functions s1 and 52 do not indicate a fémpora.l ordering. An
example constraint on the MakeFettuciniNoodles event is that the dough must be

mixed before it can be rolled, to allow it to properly rise.

- Ve.MakeF ettuciniNoodles(z) D MizDough(s2(z))
Vw.Mak.eFettuciniNoodles(9::) D RollDough(s3(x))
Vo.M akeFettuciniNoodles(z) D Before(time(s2(z)), time(s3(z)))

3.1.2 Réasoning

For a single observation, Kautz’s plan recognition at the model level corresponds to
selecting the set of models that are minimal according to several criterié, including
minimal in non-End events. Coﬁclusions that hold in all of these minimal models
are c-entatled by the observation. The process of model minimization corresponds
to applying McOaIthy’s.predica,te circumscription. At the proof level, this is accom-
plished by computing an additional set of axioms that express the supposition that
the hierarchy H describes the entire planning domain. These new axioms are com-

bined with H to produce the closure c/(H). Kautz shows that c-entailment from H
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corresponds to ordinary entailment from cl(H). So techniques for truth-preserving

deduction can be applied to recognize a plan from a single observation.

Closing

Closing the hierarchy means computing a new set of axioms based on the axioms
already in the hierarchy. They éxpress the assumption tha,t. the hierarchy is com-
plete for the planning domain. Three sets of axioms are computed: EXA, DJA and
CUA.

EXA expresses the notion that all ways of specializing an event are known.
There is an EXA axiom for every non-basic event type. Suppose that {E1,..., E,}
are all of the event types that directly specialize Fy. Now a new axiom will be in
EXA that says if an event of type Fy is occurring then that event must also be of
type E; for at least one . In symbols, |

.Vm. Eo(z) D (Ex(2) V...V E.(x)).

From the example in Figure 3.1, since there is only one way to specialize

MakePaéiaDish an elen:_ient of EXA is

Vm.MakePa,staDish(m) D MakeFettuciniAlfredo(z)

To discuss DJA and CUA we first need a.deﬁﬁition: E, and E, are compaiible

event types if there is an event type Ez such that £y and E, each abstract* Es.

The axioms in DJA express the a.ssumption't.hat event types are disjoint, unless
stated otherwise. This is used to categorize every observed event into exactly one

basic event type. For every pair of event types that do not abstract® some common
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event type, there is an axiom in DJA that says two the event types are disgjoint. In
symbols,

V. Ei(z) V —Ey(2)
if B, and E, are not compatible,

Among the axioms in DJA from the example in Figure 3.1 is

Va.~End(e) V ﬁMdkeFettuciniNoodles(zc).

The axioms in CUA depend on two ideas: every possible use for an event is in
the hierarchy, and every observed event will be used to achieve some End event.
There is a CUA axiom for an event type if that event type, or some compatible
event type, appears as a step in some decomposition. The CUA axiom lists the
possible uses for that event. This allows us to infer up the hierarchy toward the
End event. To form the axiom for an event type E, a (;ollection is made of every
event F; such thé.t E (or some type compatible with E) appears with role function
fi; in the decomposition of E;. Then the axiom is built that states: from observing
an event of type ¥ we can conclude either.tha,t it 1s an End event or that some F;
has also occurred and that the observed event plays the f;; role in E;. Let m be

the number of times an event compatible with E appears in the decompositions.

‘Then we write

Ye.E(z) D End(z)V

Fy-(Eu(y) A fuly) = z) v
eV

(En(y) A fni(y) = =)
From the example in Figure 3.1, a member of CUA is

Vz.MakeFettuciniNoodles(z) D End(z)V
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Fy.(MakeFettuciniAl fredo(y) A s1(y) = )

Recognizing the Plan

Kautz shows that conclusions which are c-entailed by the abstraction/decomposition
hierarchy are entailed by the abstraction/decomposition hierarchy and the axioms
EXA, DJA and CUA. Thus reasoning can proceed via ordinary deduction from a
single observation to conclude that some End event is occurring. In this way a
plan can be recognized, a plan that depends upon the belief that the hierarchy is

complete.

3.1.3 The Pasta Example

Given the axioms defined in the previous section, some simple plan recognition
problems can be solved. Consider the cooking domain hierarchy described in Fig-
ure 3.1. If the agent is observed measuring flour, we can recognize his plan to make
fettucini, and then reasoning up the hierarchy through fettucini alfredo, we can

conclude he is planning to make a pasta dish. In symbols,

1: Observation MeasureFlour(M)
2: CUA axiom Ve MeasureFlour(z) D
End(z)v

(Jy.MakeF ettuciniNoodles(y) /\ si(y) = =)
3: Universal Instantiation  End(M)V
and Modus Ponens(1,2)  (Jy.MakeFettucini Noodles(y) A s1(y) = M)
4: EXA axiom Ya. -~ End(z) V - MeasureFlour(z)
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5: Universal Instantiation = —End(M)

and Resolution(1,5)
6: Resolution(3,5) (Jy.M akeFettuciniNoodles(y) A sl(y) = M)
7: Existential Instantiation MakeF ettuciniNoodles(N)

(N is a new symbol) '
8: EXA axiom Ye. ~End(z) V ~MakeF ettuciniNoodles(z)
9: Universal Instantiation  —Bnd(W)

and Resolution(7,8)
10:CUA axiom Ve MakeFettuciniNoodles(z) D

End(z)v
(Hy.(MakeFettuciniAlfré&o(y) Asl(y) = =)

11:Universal Instantiation  End(N)V _

and Modus Ponens(7,10)  (Jy.(MakeFettuciniAlfredo(y) A sl(y) = N)

12:Resolution(9,11) Jy.(MakeFettuciniAl fredo(y) A s1(y) = N) |

| 13:Extract Conjunction dy.MakeF ettucini Al fredo(y)
14:Existential Instantiation M akeFettucini Al fredo(P)

(P is a new symbol)
15:Abstraction axiom V. MakeF ettucini Al fredo(z) O MakePastaDish(z)
16:Universal Instantiation MakePastaDish{P) | _

and Resolution{14,15) =
17:Abstra,ction axiom Ve.MakePastaDish(z) D End(z) -
18:Universal Instantiation  End(P) .

and Modus Ponens(16,17)

‘Once we have shown that there exists an End event, in this case End(P), then

plan recognition is complete.
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3.2 Library Assimilation

In Kautz's style of plan recognition, the first step is to compute c/(H), the closure
of the hierarchy H, by computing the sets EXA, DJA and CUA. The corresponding
first step in assimilation is to compute cl{ H*) where H* is the superset of H that

also contains the new plan knowledge given by the oracle.

The axioms EXA, CUA and DJA were described in the previous section. Our
algorithms in Appendix A build these sets of axioms directly from the descriptions

in a straightforward way.

To do Library assimilation as recalculation, we would calculate cl{ H+) directly

from H™, using the library closure algorithms.

Library assimilation as repair requires calculating the changes to cl(H) that
result from the additions to H. Since the closure operation is non-monotonic there
are in general two sets that need to be computed, the deletions C'~ and the additions
C7, such that

cd(HY\C~uCt =cl(HY)

(where \ is the set difference operator.)

3.2.1 An Illustration of Library Assimilation

In our example from Figure 3.1, suppose the oracle gives us new information that
MakePastaDish can also he specialized as MakeFettuciniMarinara, and that one
step, s1, in MakeFettuciniMarinara is MakeFettuciniNoodles. (See Figure 3.2.)

To do library assimilation, first it is necessary to remove the axiom in CGUA

asserting that all of the previously known uses of fettucini noodles, namely in
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Figure 3.2: The Example Hierarchy with new information
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fettucini alfredo, is a complete list. (A use of an event type is any event type which
appears in its CUA axjom.) This axiom will be replaced by a new axiom that
lists the both the new and old uses of fettucini noodles, in fettucini marinara and

fettucini alfredo.

It is also necessary to remove the EXA axiom that says that the only special-
ization of MakePastaDish is MakeFettuciniAlfredo. It must be replaced with one
that says that a MakePastaDish event is either a MakeFettuciniAlfredo event or a

MakeFettuciniMarinara event.

3.2.2 The Library Assimilation Algorithms

In this section we describe at a high level the library assimilation algorithms to

compute C~ and Ct, The full details are presented in Appendix A. (Numerical

~ labels are provided in the discussion and corresponding labels are provided in the

algorithms.)

The oracle could provide new information into any of the sets of axioms in the
hierarchy: the abstraction axioms Hy, the decomposition axioms Hp, or the general
domain axioms Hg. The geﬁeral axioms do not affect the structure of the library
so we will not consider tilem further. An addition to Yp may either be a new step
event added to the decomposition of an event, or it may be a new constraint on the
decomposition of an event. A new H, axiom adds a new abstraction relationship

between two event types.
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New Constraint

Taking the easiest case first, suppose the oracle adds a new constraint x on the

event type E. Then the clause
Ve . E(z) D &

should be added to Hp.

This addition only affects the structure of the hierarchy if E is a event type
that was not previously in the hierarchy. In that case, it is not compatible with

any event type, so for each existing event type F,;; a new axiom needs to be added

to DJA that states that £ and E. 4 are disjoint,

V2.~ E(z) V ~Eay(z).

New Step

(1) If the oracle indicates that an event Emp is the R step in the event type E,
then a new clause should be added to Hp,

Va.E(z) D Euep( B(z)).

(2) Consider each event Eom which is compatible with Egep. (Eytep itself is such
an event.) Suppose the CUA axiom for B, is
V. Eoom(2) D End(z)V

39-(Ba(v) A fui(y) = @) V
.. Y
(En(y) A fri(y) = @)
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This axiom will need a new disjunct

E(y) A B(y) = =.

Therefore the existing CUA axiom must be removed, so it is put into CUA~. A

new one with the new disjunct is put into CUA™.

For example, when the new decomposition
V. MakeFettuciniMarinara(z) D MakeF ettucini Noodles(si(w)).

is added to the pasta hierarchy, giving the hierarchy in Figure 3.2, the old CUA
axiom for MakeFettuciniNoodles is removed, because there is now a new use for
fettucini noodles. We put into CU A~ this axiom:

VYeMakeFettuciniNoodles(z) O End(z)V
Jy.(MakeFettuciniAlfredo(y) A sl{y) = z).

The new CUA axiom is computed by adding fettucini marinara to the possible uses -

of fettucini noodles. We put into CU A™* this axiom:

Va:Ma,keFettyciniNoodIes(;c) D End(z)V

Jy.(MakeF ettuciniAlfredo(y) A sl(y) = z) V

(MakeFettucini Marinara(y) A sl(y) = z)

(3) As in the case of adding a constraint, if either of the event types E.z., and
E are new to the hierarchy, new axioms need to be added to DJA to assert that

the new event is disjoint from all of the previously existing events.

In the example, MakeFettuciniMarinara is new, so we add, for example,

Ve.~MakeF ettuciniM arinara(z)V —~Measure Flour(z).
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New Abstraction

(1) When the oracle indicates a new abstraction, that E,, abstracts E,p., then
the clause

Ve Egpec(2) O Egps()

is added to H4. As many as four other types of changes to the closure axioms could

result.

(2) Suppose that the EXA axiom for F,, before the addition was
V. Bas{z) D Ei(z) V...V E(x).

The new abstraction also adds the disjunct F,,..(z) to the EXA axiom for Eyp,,
yielding _
V. Eas(2) D Br(2) V..oV Bn(®) V Egpec{ ).

From the example in Figure 3.2, when the new abstraction axiom
Ve.MakeFettuciniMarinara{x) O MakePastaDish(x)
is added, the' EXA axiom for MakePastaDish, which was

Vm.MakePastaDish(:c) D MakeFettucim’Alfredo(w)

is replaced by the axiom

Ve.MakePastaDish(z) O MakeFettucini Al fredo(z)v
MakeF ettuciniM arinara(z)

(3) Define sets A and B such that A contains event types that abstract* E,, and
B contains events types that are compatible with E,,.. through some lower bound.

(See Figure 3.3.) The new abstraction has made every event type in A compatible
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-/A use

~use
=

B =B1U B2

Figure 3.3: Assimilating a new abstraction

with every event type in B. Those pairs A and B thal were not compatible before

had DJA axioms so stating. These axioms need to be removed.

In the example in Figure 3.2, suppose the new decomposition was added before
the new abstraction. Then just before the abstraction is added MakeFettuciniMari-

nara and MakePastaDish are disjoint so there is a DJA axiom
Ve.~MakeFettuciniMarinara{z)V ~MakePastaDish(z).

Once the new abstraction axiom is added, making MakeFettuciniMarinara. and

MakePastaDish compatible, this DJA axiom ought to be removed.

(4) Again consider the sets 4 and B in Figure 3.3. Since the CUA axioms
for event types depends upon the compatible rela,tion.;. the CUA axiom for each
event type in A and in B might be affected. Here is the effect: the list of uses for

each event type in A must now include the uses for every event type in B, such as
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Byse(z). Similarly, the uses for every event type in B éhould now include the uses

for every event type in A, such as A,..(z).

In the example in Figure 3.2 the set corresponding to A is {MakePastaDish}.
There are no decompositions that include MakePastaDish so this type of change
does not arise. Instead consider an example where B,,.,: is an event type in B,

from Figure 3.3. Let the CUA axiom for Beyen: be

V&.Bevent(£) D End(z)V
Iy Buea(y) A gi(y) = 2) V

(Buse?.(y) A g?.(y) = x)'
Let Acpens be an event iype in A. Let the CUA axiom for Ag-,,em be

V. Aevent(2) D End(z)V
By'(Au.sel(y) A fl(y) = 55') v
(Auss) A Fo0) = o).

Then the new CUA axiom for B.,.,.; 18

V. Bevent(z) O End(z)V
| Yy (Busa(y) A g1ly) = 2) V
(Buse2(y) A g2(y) = =) V
(Auer(9) A fily) =) V
(Ause2(y) A fa(y) = ).

(5) Finally, as in the addition of a new constraint and a new step, we must
consider if a new event type has been added to the hierarchy, and if so add an

axiom to DJA for each event that is not compatible with it.
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3.3 Computing Candidates and Candidate As-

similation

The second step in plan recognition is computing the candidates. The candidate
plan consists of events that are c-entailed by the observation and the hierarchy
H. Kautz shows that these events are entailed by the observation and the closure
c(H).

In this thesis we shall directly perform candidate assimilation only imto can-
didate plans from one observation. In section 5.5.4 we discuss how this can still
contribute to assimilation into candidate plans from a number of observations. More

discussion on this matter may be found in section 6.2.1.

Recall that the plan recognition task is to determine from the observations what
the agent’s objective is, and how he intends to achieve it. Therefore the candidate
plan should at least contain the events in the hierarchy that relate the observation
to the End event, since the End event is the “top level” objective in the domain.
Our plan recognition algorithm, like Kautz’s, builds a proof that the End event
is occurring, from thé observation and cl(H). It constructs a disjunction of End
events, at least one of which must be occurring. The proof encodes all of the

candidate plans. In symbols, we compute a proof P which shows that
d(H)UT &
where T" is an observation and € is a computed disjunction of End events.

Candidate assimilation is the incorporation of new information, from the oracle,
with the previously derived candidates that were proposed as the agent’s plan. Let
H* be H with the additional information from the oracle. We want to know for

each observation the events that are c-entailed by both the new plan hierarchy,
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H*, and the observation, I'. We are especially interested in the events that directly
relate the observation to the End event, since they tell us what the agent intends

to achieve and the way he intends to achieve it. Tn symbols, we compute a proof
P* which shows that
AHNUT EQF

where Q% is a computed disjunction of End events and Q2 may be different from

Q.

Candidate assimilation done via recalculation computes Pt and QT directly

from cl(H™) and I, using the same algorithm that proposed the original candidate.

If library assimilation has been done as repair, the sets of library changeé ¢,
deletions from cl(H), and C*, additions to cl( H), are available. Candidate assim-
ilation as repair means using these changes to calculate the changes to P and £,

and so derive Pt and QF,

3.3.1 An Illustration of Candidate Assimilation

Recall the pasta example from Section 3.1.3 where MeasureFlour has been observed.
Now consider this example with the new information of Figure 3.2 given by the
oracle and assimilated into the library. In order to assimilate the new information

into candidate plans, a new proof will be needed. Continue the previous proof from

line 7.
T - MakeFettuciniNoodles(N) _
8: EXA axiom V. ~End(z) V ~MakeFetiuciniNoodles(z)

9: Universal Instantiation = —End(N)
and Resolution(7,8)
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10:CUA axiom V. MakeF ettuciniNoodles(z) D
End(z)V
(Jy.(MakeFettuciniAl fredo(y) A sl{y) = )V
| (MakeFettuciniMarinara(y) A sl(y) = z))
11:Universal Instantia.tion. End(NYv
and Modus Ponens(7,10)  (3y.(MakeFettuciniAl fredo(y) A sl(y) = N)v
| (MakeF ettucini Marinara(y) A s1(y) = N))

12:Resolution(9,11) - dy.(MakeFettuciniAlfredo(y) A sl(y) = N) V.
(MakeFettuciniMarinara(y) A sl(y) = N)

13:Distribution of Jy(MakeF ettucint Al fredo(y)V

V over A MakeFettuciniMarénara(y)
14:Existential Instantiation MakeF ettuciniAlfredo( P}V

(P is a new symbol) MakeFettucini Marinara(P)
15:Abstraction axiom Vo.MakeF ettuciniAlfredo(z) O MakePastaDish(z)
16:Universal Instantia.tion MakeFettuciniMarinara( P) |

and Resolution(14,15) VMakePasfaDésh(P)

17:Abstraction axiom Ve.MakeF ettuciniMarinara(2) O MakePastaDish(z)
18:Universal Instantiation MakePastaDish(P) '
and Resolﬁtion(lﬁ,l?)-

" 19:Abstraction axiom Voz.MakePastaDish(z) D> End(z)

20:Universal Instantiation = End(P)
and Modus Ponens(18,19)

By referencing lines 7, 14, and 18, we can see that the plan includes making
fettucini noodles for use in either fettucini marinara or fettucini alfredo, but in

either case a pasta dish.
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3.3.2 Toward a solution

The proof immediately above, and the proof in Section 3.1.3 are identical in the
first 9 steps. After that they follow similar lines of reasoning. Candidate assim-
ilation, roughly, is the process of tra,nsformi.ng the previous proof into the proof
here. We say “roughly” only because these proofs are not in the format that we
will use for our candidate plans. But they still serve fo illustrate the problems
of candidate assimilation. There are two problems. First, as the underlying as-
sumptions are removed, it is necessary to identify which of the conclusions should
be retained é,nd which should be rejected. For example, after the original CUA
axiom for MakeFettuciniNoodles is rejected, MakeFettuciniNoodles(N} is still
c-entailed from the measure flour observation, but MakeFettuciniAlfredo(P) is
not, because we cannot necessarily conclude Alfredo over Marinara. Second, it is
necessary to combiﬁe the new information with the conclusions that were not re-
jected, in order to derive the new resulting conclusions. The new CUA axiom and
the new specialization of MakePastaDish are combined with the old specializa-
tion for MakePastaDish, and the old conclusion MakeFettuciniNoodles to again
derive MakePastaDish(M).

Characteristics of a solution

Based on this discussion, we need a reasoning system with four special characteris-
tics. First, becé;use of the non-monotonic nature of plan recognition it must be able
to reason with hypotheses or assumptions. Next, it must retain at least some of its
derived conclusions from stage to stage, in particular the derived candidate plans
between additions of new planning information to the library. Third, it must be

able to relate a conclusion to the assumptions or hypotheses on which it depends,
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so that that conclusion can later be rejected if the assumptions that imply it are
rejected. Finally, it must be able to combine the old information with the new

information to derive the new results.

Create or remodel?

To acquire a new tool which meets a set of criteria, one has the choice of using a tool
that is already available, if any is already adequate or can be rendered adequate,

or devising a new, special purpose tool.

" A special purpose system for candidate assimilation would transform the proof
P into Pt diréctly. Whatever form the proof takes, whether it is a sequence of
formulas, as in the examples so far, or a graph as Kautz computes, the special
purpose system would directly remove the rejected conclusions and combine the

new information with the retained conclusions.

The ATMS is an existing system which can store and manipulate propositional
proofs. It meets the four criteria listed in the previous section for the language of
propositional Horn clauses. If the ATMS can be rendered adequate for candidate
assimilation, ..this approach has at least two advantages over 'constructing a new
special purpoée tool. First it allows us to break the candidate assimilation problem
into two simpler problems: the problem of notifying the truth maintenance system
of the changes to the plan library, and the problem of computing the effects of those
changes with the truth maintenance syétem. As a second advantage, we would have
a new truth maintenance system which may apply to problems other than candidate

assimilation.
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Overview of the solution

We will remodel the ATMS and make it adequate for candidate assimilation. Two
issues remain. The language of cl(H) differs from the language of the ATMS in
two ways. Statements in CZ(H) use first order logic but the the ATMS accepts
propositional clauses. Not all of the clauses in cl(H) a,re'H.orn clauses but the

ATMS is effective only for Horn clauses.

We deal with the first problem in the rest of this chapter. The solution is based
on recasting Kautz’s algorithm for plan recognition from a single observation. The
recasting is necessary for separating the searching task from the reasoning task., We
use a search algorithm to identify the space of solutions. The space is described by a
set of ground instances of the clauses in ¢/(H). Linear resolution and Skolemization
guarantee the instances are ground. In principle, limiting the reasoning to ground

clauses does not affect completeness.

Once the search space is identiﬁed, the problem of reasoning within that space is
handed over to the truth maintenance sys.tem that can deal with non-Horn clauses.
In Part II we discuss what happens inside in the truth maintenance system. In
Section 5.5 we describe how to interpret the results computed by the truth mainte-
nance system, and we provide an overall description of the resulting plan recognition

system.

3.3.3 A Recasting of Kautz’s Explain Algorithm

Kautz provides an algorithm, called explain, that shows that 3w.End(z) is ¢
entailed by an observation. Using the structure of the hierarchy as a guide, it
searches from the observation toward the End event and identifies disjunctions of

events with their types that are also c-entailed. From these events it constructs a
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graph, called an explanation graph or e-graph that explains how the observation re-
lates to the objective. An e-graph can either be interpreted as a proof of 3z.End(z)

or as the disjunction of candidate plans.

Since we have adopted Kautz’s proof theory we will also compute c-entailment
and we will use the sets EXA, CUA and DJA to compute it. Our task, candidate
assimilation, makes it necessary for us to use a different algorithm. In Kautz’s
algorithm the space searched and the conclusions drawn are in lock-step. As a result
it is impossible to withdraw some of the conclusions without also withdrawing a
record of having searched the space where they were found. For our task we want
to withdraw the parts of the candidates that depend upon assumptions that have
been violated (because of the new information from the .6ra.cle) but we do not
want to again search the space where they were found, since that would amount to

assimilation as recalculation.

3.3.4 Plan Recognition with Ground Literals

The ATMS is a propositional truth maintenance system, that is, the literals it
stores are treated as propositions. The langnage of cl(H) is first order logic with
equality. Literals from a first order logic can contain variables. When manipulating
a proof containing literals with variables, some variables may become bound, for
instance if a new resolution is made. It would not be correct to treat these literals
as propositions, that is to ignoi:e the bindings, since the variable bindings must be

applied to all literals in a clause.

Perhaps surprisingly, we can use a propositional truth maintenance system to
store the proofs that arise in plan recognition from cl(H). We employ standard

techniques (Skolemization and linear resolution) to ensure that the literals in the
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proofs are ground. Ground literals contain no variables, so they may be treated as

propositions.

Our truth maintenance system, like the ATMS, builds proofs in a particular

linear resolution format.

Definition 3.1 [3, (p. 130)] A lnear deduction of C, from (4, given a set S of
clauses is a sequence C,...,C, such that Ciy1 s a resolvent of C; and B;, and B;

is either a clause in S or is some C; for j < 4.

We use Skolemization[3, (p.46)][29] and linear deduction to guarantee that a
proof that contains only ground literals can be built if and only if any proof exists.
Therefore restriéting the reasoning to ground literals does not limit the ability to

recognize any plan.

To translate a clause to Skolem standard form, replace each existentially quan-
tified variable y in the scope of the universal quantifiers Vz4,...,Vz, with a new
n-place function f(z1,...,2,), and delete.the quantifier Jy. The only clauses in
cl(H) with existential quantifiers are in CUA. Recall that the general form of a

clause in GUA is

Ve E(z) D End(z)V

Fy.(Ev(y) A fuly)y=2) v
LV

(B (y) A frily) = ).
Replacing y with the Skolem function sk (z}, the Skolemized form of this clause is

Ve.E(z) D End(z) v
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Ei(ski(2)) A fru(ski(z)) = =) V
LV

(Brn(sk1(2)) A Fns(sHs(2)) = .

Theorem 3 Let cl(H) be the closure of the abstraction/decomposition hierarchy
H. Let T be a ground observation such that cl(H)UT = 3z End(z). Suppose that
cl{H)sk £ 2. End(z).2

Then for each Skolemized form cl(H )y of cl(H) there exists a disjunction Q of
literals of the form FPnd(z), and a linear deduction from I' to Q given cl(H ).

A proof of this theorem and the next may be found in Section A.3.

Theorem 4 Let cl(H ), be the Skolemized closure of the abstraction / decompo-
sition hierarchy H. Let I' be an ground literal that represents an observation and
let © be a disjunction of End events. If there is a linear deduction of Q from T

given cl(H ), then every clause in the deduction is ground.

Theorem 3 shows that a proof must exist and by Theorem 4 we know that it |
will be a ground proof. Therefore this restriction to ground proofs does not aflect

our ability to recognize any plans.

3.3.5 Candidate and Candidate Assimilation Algorithms

In this section we give a high level description of the candidate assimilation al-
gorithm. See Appendix A for more detailed descriptions. Recall that the ATMS

computes for every literal P all environments F (sets of assumptions) such that

EFEUJF Pand EUJ is consistent.

*The condition that 3x.End(z) is not already entailed eliminates the case where plan recogni-

tion may succeed without having any observaticns.
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For our task, J will be the observation I' and ground instances of clauses in
cl( H)ap,. Our truth maintenance system will compute a disjunction © of End events,
in addition to a proof for and the environments for that disjunction. (Note that
there may be an environment for a disjunction when there is no environment for each
of the disjuncts considered separately, because a disjunction represents a weaker

conclusion. We deal with disjunctions in a TMS in Chapter 5.)

Handling non-monotonic clauses

Assumptions in our truth maintenance system will arise from the non-monotonic
clauses in cl{H),,. The non-monotonic clauses in ¢l(H),, are all and only the
clauses in EXA U CUA,, UDJA. (Only CUA needs to be Skolemized since only
it contains existential variables.) Let € be in a clausein EXAU CUA, U DJA,
and let = be the ﬁniversa,lly quantified variable in C. Replace C by the clause
Ac¢(x) D € where Ac is a new, unique predicate symbol. That is, each of the non-
monotonic clauses are given an extra condition. When the clauses are ground, the
ground instances of these extra conditions will hecome assumptions to our truth

maintenance system.

These new assumptions allow us to assimilate the deletion of clauses, those
clauses that appear in '~ from the library assimilation phase. Let ¢ be a clause
in ¢'~. To remove the effect of C, for each instance C(NN) of C that was added to
the TMS we now add the clause

—Ag(N).

In the case that C is from CU A, there will be a Skolem constant in . After

the assumption is denied, that constant can be “freed up”, available for use in a
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new clause. Thus when a new CUA axiom for this literal arises, it can reuse this

constant.

Identifying the Search Space

Although linear resolution tells us that ground literals suffice, it does not tell us
which ground literals to use. There is an infinite set of ground literals that could
be used, since the Herbrand universe is infinite. In this section we give a high level
description of two algorithms, Search and AssimSearch, that identify a finite space

that contain the candidate plans.

The intuition behind our algorithms is the same intuition that is behind Kautz’s
explain algorithm. They explore paths in the hierarchy from the observation toward

the objective. (This corresponds to tracing the observation to an End event, see

Section 2.1.3.)

There are in fact two searching algorithms; they perform similar tasks but Search .
is applied when the event is first observe&, and AssimSearch is applied after ad-
ditions are made to the plan library. Co.nsider Search first. It takes as input a
disjunction of event types that describe an observed event, and identifies instances

of the axioms in cl{(H).

When Search first encounters a literal, the constraints on it, stored in Hp, are
checked to see if the event that it Iepresentﬁ can possibly occur. If it cannot then
no further searching from this liferal occurs, and the reasoner is advised that the
event is impossible. Otherwise paths ate pursued from this literal according to the
arrows in the hierarchy associated with the event type. As each hierarchy arrow is
traversed, the reasoner is given the ground instance of the clause that represents

both the arrow and the direction of traversal. The following table shows what
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Eabs

VA

E specl Especz

Figure 3.4: An “js-a” plateau

clauses are given for the arrow and the direction.

(The current event is represented by the ground term xp. Initially the current
event is the observed event. As searching progresses, it is a event in which the

observed event is a component.)

Arrow Type Axiom
E.=E | Hay  Eu(z0) D Es(z0)
E,<FE |EXA E(z0) D Ey(zo) V ...
E.— R-Ey | CUA | E(2) D End(z) V By(ski(zo) V ...

All possible paths are pursued from the observation to the End event, with two
exceptions (as in.[lﬁ]). First, decomposition links are not pursuéd, since paths from
a decomposition lead to deeper levels of detail in the hierarchy. Plan recognition
is usually concerned with relating the observation to the objectives, so searches in
this direction are usnally unnecessary.® Secorid, no path is followed that includes
an abstraction link upward imfuedjately followed by another abstraction link down-
ward. (See Figure 3.4.) This pair of links, known as an “is-a” plateau, does not

represent any necessary relation between the two specialized events.

3However this is one reason why Kautz’s system and our system are incomplete.
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AssimSearch is applied after the oracle has made additions to the library, and
after library assimilation has occurred. It takes as input the changes ¢~ and ¢
to el(H). It identifies the instances of assumptions made by Search (and previous
‘invocations of AséimSearch, if any, e.g. if more than one piece of ne{v information
comes from the oracle) that have been invalidated. It also identifies the additions
to the search space. In fact, it pursues exactly the paths that would have been
pursued by Search during the plan recognition phase, if the new axioms had been

available then. However, it does not pursue paths that were already pursued. (This

helps reduce the input to the reasoning system.)

Search and AssimSearch maintain a set Visited of visited literals (as in [16]).
When a path leads o a literal that is not already in Visitéd, the literal is added
to Visited, and then paths from that literal are considered. If some path leads to
a literal already in Visited, then we know that this path has merged with some
previous path. Therefore paths from thié literal are already being considered, so
there is no need to pursue them again. The graph search from this point can be

stopped.

AssimSearch uses the set of visited literals to identify the boundaries of the
search space. If a member of Visited is an instance of the condition (left-hand side)
of some new axiom, then new paths from the visited literal that start from this

path need to be added to the search space.

Equality

In this simple implementation, as in Kautz’s, explicit equational reasoning is not

required. Therefore we ignore equality literals where they arise.
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3.3.6 Revisiting the example

Reconsider the example in Section 3.1.3 where we have observed the agent measur-
ing flour,

MeasureFlour(M),

and we have the simple hierarchy in Figure 3.1.

Search

Follow the decomposition arrow in a reverse direction to arrive at
MakeFettucini Noodles.
This signals Search 1o generaie this Skolemized instance of a clause in CU A:

CU A1 A MeasureFlour(M) D
End(M)V MakeFettuciniNoodles(ski(M))

where sk is the Skolem function selected for the existential variable in the clause
(discussed in Section 3.3.4), and CUA; is the assumption assigned to this non-

monotonic cla.uée (discussed in Section 3.3.5).

Pursuing the reversed decompaosition link, this time from MakeFettuciniN oodles ,
Search arrives at MakeFettucini Al fredo, and generates the corresponding clause

instance to the TMS,

CUA; A MakeFettuciniNoodles(sk;(M))
D End(sky(ski(M))) V MakeFettucini Al fredo( sky(sk;(M)))

where sk, is the Skolem function chosen for the existential variable in this clause,

and CU A, is the assumption.
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Search pursues successive abstraction links to arrive at

MakePastaDish(sky(ski(M)))

and then at
End(sky(ski(M)).

The clauses generated are
MakeFettucini Al fredo(sky(ski(M))) D MakePastaDish{sky(ski(M)))

and

quePastaDish(skz(skl (M))) D End(sk, ('_S‘kl (M)))

The complete set of visited literals is .

{MeasureFlour(M), End(M), MakeF ettuciniNoodles(ski(M)), End(ski(M)),
MakeF ettuciniAl fredo(sky(ski(M))), MakePastaDish(sky(ski(M))),
End(sky(ski(M))}

AssimSearch

Since the CUA clause for MakeFetiuciniNoodles is in €™, it is to be eliminated.
This means every assumption associated with some instance of this clause is no

longer consistent. There is only one instance, so we add

~CUA,.

There is a new axiom in CUA™

VeMakeFettuciniNoodles(z) O End(z)V
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Jy.(MakeFettuciniAlfredo(y) A sl(y) = z) V

(MakeFettucini Marinara(y) A s1(y) = z)

which, when Skolemized, stripped of the equality literals, given a unique assumption

and made into the appropriate instance, becomes

CUAs A MakeF ettuciniNoodles(ski(M)) D
End(sk.(M))V
MakeFettucini Al fredo(skq(sk (M)))V
MakeFettuciniM arinara(skq(ski(M)))

Since MakeF ettuciniNoodles(sky(ski (M))) was visited, new paths are explored
that use this axiom. MakeF ettuciniAl fredo(sky(ski(M))) was already visited, so

searching in this direction halts. AssimSearch also considers
MakeFettuciniMarinara(sky(sk (M)))

so this literal is put into Visited, and paths from it are considered. There are none

at this point."

Next the new abstraction
Ve.MakeFettucini Marinara{z) > MakePasta(z).

is assimilated. Since MakeF ettucini Marinara(sky(ski(M))) is now in Visited the

instance
MakeFettuciniMarinara(sky(ski(M))) O MakePasta(sky(ski(M)))

of the new abstraction axiom is generated.
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The literal MakePasta(skq(ski(M)) is in Visited, so searching stops. The final
result of searching is a set of ground clauses that will be given to a reasoning system

so that a proof of a disjunction of End events can be constructed.

In this case, the disjunction is
End(M)V End(ski(M)) V End(sk,(ski:(M))),

which can be reduced to End(sk;(ski(8))) due to DJA axioms. We discuss the

reasoner in Chapter 5.

3.3.7 Properties of the algorithms
Disjunctive Observations

Although Kautz’s c-entailment is defined for an observation which is described
with a disjunction of possible event types, the graph algorithm requires the event

be described by a single type.

Our system does handle disjunctive ob.serva,tions. Qur search algorithm iden-
tifies the search space including each of the event types in the disjunction. Our '
truth ma.inteﬁa.nce system accepts general clauses so disjunctive observations are
acceptable. For example in [17] there is an example where MakeFettucini or
MakeSpaghetti is observed so we would accept the input MakeFettucini(C) V
MakeSpaghetti(C). '

Soundness and Completeness

Since our algorithms generate instances of the axioms, what follows from the in-
stances must follow from the axioms. If the reasoner is sound (in our case the truth

maintenance system, which is sound) then the overall system must be sound.
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end

Figure 3.5: Kautz’s combinatorially explosive hierarchy

Neither our system nor Kautz’s system is complete. Both sacrifice completeness
for efficiency, by only admitting a part of the total search space. If we find that
some desired inferences are not in the space identified by the search algorithm, then
we have the option of extending the search algorithm to enlarge the space. The

truth maintenance system is complete, so the desired inferences will be made.

Complexity

Both Kautz’s algorithm and our own may search a space that is exp_onenﬁally large
in the size of the abstraction/decomposition hierarchy. However Kautz’s example,
taken from [16] and reproduced in Figure 3.5, is handled by our system in time
which is a polynomial in the number of layers in the hierarchy. In Kautz’s system

this example requires time which is exponential in the number of layers.

Kautz’s explain algorithin merges graphs at absiraction points. Abstraction
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end

Figure 3.6: Our combinatorially explosive hierarchy

61
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points in the abstraction/decomposition hierarchy are event types that have many
specialized types. This means, for example in Figure 3.6 if a path from al to b has
previously been pursued so that some instance of b has been visited, and now a
pé.th from a2 to b is being pursued, the algorithm will not continue to pursue this
second path, even though the second instance of b is different from the first. It is

“good enough” to know that an event of type b is occurring.

Kautz suggests one way to control the combinatorial explosion: use an algorithm
that merges graphs at abstraction points and de.sign the hierarchy so that there
are many abstraction points. As a result, Kautz’s explain algorithm does not
require exponential time to pursue paths through the graph in Figure 3.6. Our
algorithm does not merge paths at abstraction points, so it (ioes require exponential

time for this example. We have implemented and tested a version of Search and
AssimSearch that also merges search paths at abstraction points. We have found
that this algorithm requires only polynomial time on these examples. (We have not
used this version because of two extra complications that arise as a side effect of
separating the searcher from the rea.soner,. which was required for assimilation. In
the version that merges search paths, the searcher must advise the reasoner of the
mérged pa,thé, and the reasoner must keep track of these merges so that when it

reports candidate plans it also shows the merges.)



Part 11

Reasoning with non-Horn

Clauses
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In Part I we deferred the problem of reasoning with non-Horn clauses within
a truth maintenance system. The method proposed by de Kleer appears in the
extended ATMS[7], and the extension is a routine that reasons by cases with a
method based on hyperresolution. Reasoning by cases is required when non-Horn
clanses are present. de Kleer notes that the extended ATMS exhibits extreme
inefficiency in some cases, and that hyperresolution does not integrate well into the
ATMS algorithms(8]. One cause for the inefficiency is that the extended ATMS,
unlike the basic -ATMS, searches much of its database at many steps to perform
hyperresolution. The basic ATMS proi)agates mformation from where it is derived
to all of the places where it will be needed, so searching is not necessary. But the

basic ATMS is not capable of reasoning by cases.

We provide a truth maintenance system that reasons by cases and propagates
information from Whére it 1s derived to all of the pIa.ceS where it is needed. Our
solution is based on linear resolution, rather than hyperresolutio'rll. The search at
propagation time is eliminated. Our system uses the same algorithm as the basic .
ATMS, with a single additional propagation step, so 1t integrates well into the
ATMS algorithms. However, our system depends on building a new and/or graph
to propagate .the results from one case to another when reasoning by cases. This
causes a new.problem: if there are many instances of rea,soning' by cases, then a
large and/or graph will be needed to represent the different ways of propagating
results from one case to another. Only one of these ways is necessary; the rest are

redundant.

Peeling the next layer from the onion, we investigate the problem of redundancy
in linear resolution. We describe a variant of linear resolution called the foothold
proof format. It is a refinement of the well-known the MESON proof format|19], but

it admits fewer duplicate proofs than MESON. The duplicates arise when reasoning




65

by cases.

The foothold format can be used within an implementation of a first order

theorem prover. The refinement depends on a simple condition that can be checked
quickly, and can detect redundancy before the proof is completely generated. This
is important from a practical point of view, since the earlier redundancy is detected,

the more unnecessary work can be avoided.

The foothold result can be applied to remove the redundancy that arises when
reasoning by cases in our truth maintenance system. Our resulting system exhibits
a performance improvement over de Kleer’s extended ATMS for non-Horn clauses.
We then apply this new truth maintenance system with reduced redundancy to the

problem of assimilation in Kautz’s style of plan recognition.




Chapter 4
Avoiding Duplicate Proofs

Wos [34] asks

What strategy can be employed to deter a..rea,soning program from
deducing a clause already retained, or from deducing a clause that is a

proper instance of a clause already retained?

Although our procedures in this chapter are computing proofs rather than clauses,
the question still stands. It takes time to computé a redundant proof, and more

time to decide if the proof is redundant.

We consider the setting of first order logic without equality where we are given
a poal literal and a set of clauses and we wish to know which instances of the
literal follow from the clauses. To do this we use a proof pr<l)cedu1'e to compute
substitutions for the variables in the literal. Prolog is a special case of this setting.

A redundant substitution duplicates or is an instance of another substitution.

In the next chapter we consider the default logic setting described in-[6, 23].

We are given a set of clauses that represent the known facts, and a distinguished

66
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set of literals called assurnptions that represent the hypotheses we are prepared to
believe, in the absence of contrary evidence. An explanation for the goal is a set
of these assumptions that (1) is consistent with the clanses and (2) that together
with the clauses implies the goal. For example, de Kleer’s assumption-based Truth
Maintenance system[6] (ATMS) computes propositional explanations. A redundant

explanation duplicates or is more specific than some other explanation.

These two settings have one feature in common: the results computed are prop-
erties attached to a proof of the goal. Redundancy arises in each setting when two
proofs give us the same result, or when one result is more specific than the other.

In this chapter we consider the first variety of redundancy, duplicated results.

We introduce the foothold format[30] for linear resolution proofs that admits -
fewer duplicate proofs than MESON[19], a well-known proof format. The duplication
we avoid arises in MESON when reasoning is done by cases. Reasoning by cases is
required to handle clauses with more than one positive disjunct, clauses that do
not fall into the Horn subset. Thus this type of duplication does not arise in
Prolog, nor in the basic, Horn ATMS. It does arise in non-Horn extensions to
Prolog [31], and in non-Horn extensions to the ATMS [27, 7], and therefore in our
implementation of Kautz’s plan recognitioﬁ system with trﬁth maintenance. It also

arises in Theorist[23], a first order default reasoning system.

4.1 Background: The MESON Proof Format

In this section we introduce negated ancestor proof graphs, which is a new definition
for Loveland’s MESON proof format. "The new definition makes it convenient to add

a new condition which eliminates certain redundant proof graphs.
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4.1.1 Negated Ancestor Proof Graphs

Linear resolution [3, 19] can .be used in our first order logic setting to generafe the
instances for a goal literal by building a proof of the goal from the clauses, and
applying the resulting substitutions to the goal. We consider one form of linear
resolution, based on Loveland’s MESON format, and we introduce a new definition
of this format. Given a goal and a set of clauses we show that the goal follows from
the clauses if and only if there is a proof graph of the goal that is built from (some

- of) the clauses.

We begin with two preliminary definitions.

Definition 4.1 If g is a literal then let 7 be the complement of ¢. That is, the
overbar function adds the - connective if it is not present in g, and removes it if it

is.

Definition 4.2 For a clause g; V ...V g, there are n contrapositive rules as

follows:
Yi=1,...,n

g — G1 -+ Gia Giyx - Gy

Informalljr, to construct a negated ancestor proof graph of a goal g, begin by
constructing a node that contains g. This node will be the root of the graph. Given
a partial negated ancestor proof graph, and a goal node containing the literal A
(initially % is g) there are two ways to complete the graph. Either (case a) find
a node already in the gréph containing » which is connected to this node by tree
edges, and introduce a back edge from the goal node to this ancestor. Or (case b)

find a contrapositive rule with & on the left hand side, make a new node for each
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o

) -

\L L,

Figure 4.1: Negated Ancestor Proof Graphs

member of the right hand side, and introduce a iree edge from the goal node to

each new node. Recursively prove each new node.

For example, consider the clauses

p VYV —a
p v —b
a V b

and the goal p. The contrapositive rules are

pP—a ﬁd(—ﬂp
p—b —be—p

g« b b —a

There are two negated ancestor proof graphs of p, as shown in Figure 4.1. As in
the conventional presentation of trees, the root is at the top, child nodes are lower

than parent nodes, and tree edges have no arrows. Our back edges point upward.

Now we can formally present negated ancestor proof graphs.

Definition 4.3 Let P be a set of propositional clauses, and ¢ a literal.

4.3.1 A negated ancestor proof graph of g is a directed graph (V,E). Each

node in V contains a single literal. There is exactly one node G called the root,
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and it contains g. (V, E) is an NAl proof graph of G and the ancestor path it

contains is empty.

4.3.2 An NAl proof graph of a node G containing the ancestor path A is a directed
graph (V,E). E = T'U B, where T is the set of tree edges, B is the set of back
edges, T' and B are disjoint and (V,T) is a tree. Each node in V contains a
single literal. 4 is a sequence of nodes that represents a path of tree edges,
which are the ancestors of G.!' Let ¢ be the literal in G. One of the two
following conditions must be met:

(case a) There exists a node N in A such that N contains the literal g and
there exists a back edge from G to NV in the NA1 proof graph.
(case b) There exists a contrapositive rule ¢ « g;...g, ‘from some clause in P
| and for each ¢ = 1,...,n there exists a node G; containing g;, a tree
edge (G, G;) and an NA1 proof graph of G; containing the ancestor
path (4, G).

To illustrate the definition we start with one of the proof graphs in Figure 4.1.

We show it again, with labels on the nodes.

N ' .

NID)
N9
N D

g

1G is not the root of the NA1 graph; :rat.her, the first member of A4 is.
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We will illustrate the definition by showing how this graph satisfies the con-
ditions. It is a negative ancestor proof graph of p if it is an NA1 proof graph of
N1 with the empty ancestor path. So we check N1 against Definition 4.3.2 with
A, the ancestor path, set to (). (Case a) cannot hold since there is no member of
4, so we try '(case b). Choosing the rule p «+ a, we note that there is a node N2
containing @, and a tree edge to from N1 to N2. If we can satisfy ourselves that
there in an NAL proof of N2 containing the ancestor path (N1) we will be done.
Apply Definition 4.3.2 again. (Case b) applies, with the rule a <+ —b, and there is
a node N3 containing —& and a tree edge from N2 to N3. We now must check that
there in an NA1 proof of N3 with the ancestor path (N1,N2). Again (case b) of
the definition applies and, using the clause =& «— —p we see that there is a node
N4, which contains .-ﬂp and a tree edge from N3 to N4. Finally we ask if there is
an NA1 proof graph of N4 containing the ancestor pafh (N1, N2,N3). This time
(case a}) applies since there the node N1 in A contains p which is the complement
of -p. Therefore we are satisfied that there is an NA1 prodf graph.of N4, which B
allows us to conclude there is an NA1 proof graph of N3, and so forth for N2 and
N1. We conclude that this is an negated ancestor proof graph of p.

The part of the MESON format we have extracted preserves the important prop-

erties of soundness and completeness.

Theorem 5 Let P be a consistent set of propositional clauses, and ¢ a literal.

P |= g if and only if there exists a negative ancest_or.proof graph of g using clauses

in P.

. Proofs for the theorems in this chapter are found in Appendix B.1.
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4.1.2 First Order Proofs

We will assume that the reader is familiar with first order logic, as presented in,

for example [3].

Suppose we are given a set P of clauses and a literal ¢ and we want to find the
instances of g that follow from P. Procedures that build first order MESON proofs
can also build substitutions for the variables in g. For example if P = {g(a)} then
the proof of g(x) returns the substitution z := a. There may also exist indefinite
instances of the goal, as defined by a disjunctive set of substitutions. For exa.mble
if P ={g(a)Vg(b)} then the proof of g(z) should return z := aVz := b. Green [15]
provides a method for computing disjunctive answers. Stickel [31] describes how

disjunctive answers can be computed within the MESON format:

Indefinite answers can be obtained by solving the quéry with its negation
included among the axioms, and examining the proof to find the query’s

instantiations.

Completeness of the MESON format extends from the propositional case to the
first order case [19]. To see why, recall Herbrand’s theorem which states: a set
of clauses is unsatisfiable if and only if there is a finite unsatisfiable set of ground
instances of these clauses. If P |= g then P U {g} is unsatisfiable, so there is an
unsatisfiable set P'U{g;,...,7,} where P’ is made up of ground instances of clauses
of P, and each g; is a ground instance of g. Therefore P U {G9s---»Tnf E o1 .Since
ground literals may be treated as propositions, and since the propositional MESON
format is complete there is a propositional MESON proof of ¢; from P'U{7,,...,7,}-
A lifting argument can now be made to show that from the propositional proof, the
appropriate first order p.roof can be constructed which produces the disjunction of

substitutions.
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4.2 Foothold Proof Graphs

In this section we present foothold proof graphs, a refinement of negated ancestor
proof graphs that does not generate as many redundant proofs, but retains com-
pleteness. The basic idea is to break up the symmetry in duplicate negated ancestor
proofs. In Figure 4.1, the duplication is due to the symmetry of the two contrapos-
itive rules of a Vb, namely a « —b and b + —a. In a foothold proof we assign labels
from the set {-1,0,4-1} to the literals on the right hand side of the contrapositive
rules. For this example the symmetry is broken by assigning the label (41) to —b
and (—1) to —a.

To build the labeled contrapositive rules for a general clause, first separate the
positive literals from the.negative literals. Put all of the literals of each type into
an ordered sequence. Any ordering will do. For each p; from the positive literals,
build a contrapositive rule as follows. Put p; on the left hand side. On the right
hand side put the complements of the other literals in the clause. To each positive
literal that appears before p; in the ordered sequence assign the label (+1), and
to each literal that appears after p; assign (—1). To each negative literal assign
(0). Also, build a rule for each negative literal n; as follows. Assign (41) to each
negative literal that appears before n;, assign (—1) to each negative literal that

appears after »; and assign (0) to each positive literal.
In the example the labeled contrapositive rules are

p ~— a(o) L — —|p(0)
p — b9 —b — —pl®
a — =t p o -1
This labelling is based on the ordering b, a for the literals in the clause ¢V b. Now,

build the negated ancestor proof graph using these labeled contrapositives. During
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the search for a negated ancestor, sum up the labels of all of the literals encountered.
If the sum is positive when we reach the negated ancestor, then accept the proof.

Otherwise reject it.

In the example the foothold proofs graphs are

o o
|

—|b(+1) _‘&(_ )

| f
Lo Lo

The first of them is accepted and the second is rejected.

The name “foothold” refers to an analogy between reaching the negated ancestor
and climbing a tree. If there are more positive labels than negative labels, there is
a foothold on which we can climb. If there are more negative labels than positive

ones, there is no foothold, so it is impossible to climb.

This simple idea can now be presented more formally.

4.2.1 'Prbpositional Foothold Format

Definition 4.4 Let P be a set of propositional clauses.

4.4.1 The foothold rule set of P is the union over clauses C’ in P of the set of

foothold rules of .

4.4.2 Let U be a propositional clause. Let (I1,...1,) be an ordered sequence of the

negative literals in C and (ry4,...7,) be an ordered sequence of the positive

o
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literals. The foothold rules of ¢ with respect to these orderings are

Vi=1,...,n
Loe 1L 1Y R P
Vi=1l,...,m
roe w0 A AR L L

4.4.3 The superscript (s) on each literal on the right hand side of a foothold rule
is called the foothold label. A foothold label written () is one whose value

we disregard (a “don’t caze”).

Definition 4.5 Let P be a set of clauses, g a literal, and Fp be a foothold rule set
of P. '

4.5.1 A labeled negated ancestor proof graph containing Fp is a negated
ancestor proof graph with an integer label assigned to each node and to each
back edge as follows: |
(1) to the root, assign an unspecified label, (x).
(2) to each child node G}, containing ¢; assign (I;) where the parent node

contains g, the cbntra,positive rule choseﬁ for g was g «— g1, G050 n s Gn,
and the corresponding foothold rule is g + g:(lll), .- ,gy‘), ey g,
{3) to each back edge (I, N;) assign X2 ,l; where Ni,..., N, is the path of
tree edges such that N, and N; contain complementary' literals, and N; has
the label (7).

4.5.2 A foothold proof graph is a labeled negated ancestor graph such that every
back edge has a positive label.
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Theorem 7 Let P be a consistent set of propositional clauses, and g a literal. Let
Fp be a foothold rule set of P. P |= g if and only if there exists a foothold proof
graph of g from Fbp.

4.2.2 First Order Foothold Proofs

Foothold labels can be assigned to first order clauses in exactly the same way that
they are assigned to propositional clauses. First order foothold proofs are defined
as first order negated ancestor proofs, with the additional restriction that each

backedge from a goal to its negated ancestor has a positive foothold sum.

Completeness of first order foothold proofs is also preserved. The argument in
Section 4.1.2 for the completeness of first order negated ancestor proofs also applies
to first order foothold proofs. The only property of propositional negated ancestor
proofs that was used in that proof was propositional completeness, a property
shared by propositional foothold proofs. Since foothold proofs are a sﬁecia,l case pf -
negated ancestor proofs, the same lifting lemma may be applied to generate first

order foothold proofs.

4.3 Evaluation

' 4.3.1 How easily can foothold proofs be computed?

Like the MESON format, the foothold format leads to proof procedures that are
simple to implement. Appendix B.2 contains a Prolog procedure for computing
foothold proofs. Any theorem prover that is based on the MESON format, such as

PTTP [31] can easily be converted to the foothold format.




CHAPTER 4. AVOIDING DUPLICATE PROOFS 77

Procedures that compute MESON proofs can take advantage of an important
pruning rule. If a goal is encountered that is the exact duplicate of a goal in the
ancestor sequence, then this branch of the tree can be ignored and no success is
reported. There is no reason to pursue a proof of this goal, because this condition
arises when the procedure has entered a loop. Procedures that compute foothold
proofs can take advantage of the same pruning rule, for the same reason. The

Prolog procedure in the appendix implements this pruning rule.

4.3.2 When should the footheld format be ﬁsed?

The foothold format should be used whenever one is reasoning with clauses that
extend beyond the Horn subset and the objective of the search is to find more than
one result. If the objective of the search is to find a single solution, or to show that
a set of clauses is unsatisfiable, then foothold proof procedures are not necessarily

better or worse than MESON proof procedures.

If the objective is to find a proof with minimum height, where the height of
a proof is the maximum size of the ancestor set, then the foothold refinement
should not be used. The shortest negated ancestor proof may be rejected by the
foothold condition, while a longer proof, composed of the same clauses in a different

arrangerent, meets the condition.

Proof height is an important consideration for “iterative deepening” proof meth-
ods. By restricting the search to a preset limit, and iteratively iﬁcreasing this limit,
depth first search strategies can be preventied from running down infinite paths.
They will find each proof up to that limit. Thus depth first search achieves the

-coinpleteness_ of breadtli-first search, without also requiring exponential space.

The iterative deepening strategy can be used with the foothold refinement.
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Because the minimum height proof may be eliminated, the searcher may be forced
to look deeper to generate the same number of distinct proofs. The reduction in.

search space helps offset the cost of the additional depth. (See Figure 4.3.)

4.3.3 How many proofs are avoided?

The amount of redundancy reduced depends on the clauses, but we are guaranteed
that the foothold procedure will generate no more redundancy than the negated
ancestor procedure, since the foothold format is strictly more specific than the

negated ancestor format.

There are some examples where the foothold format still admits an exponential
amount of redundancy, in the sense that more than one proof can be built from ihe
same set of clauses. Redundancy in these examples is due to interaction between
features of the clauses, including the non-Horn feature. In the following example
different parts of the prodf must use djﬁ'ereﬁt subproofs to prove the same literal.
Redundancy arises becaunse in yet another part of the proof the same literal can
be proved by any of the subproofs. There are II%_,! foothold proofs of p from the
following: \. |

PV p V...V op,

Vi Ve Vi=1...n—1
Pa ¥V Da

»mVae ' YVi=1l...n

There are some examples where the foothold procedure eliminates all redun-
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dancy. Consider the following:

pY V.oV op,

i V ma; Vi=1l...n
p; V —b; Vi=1l...n
a; Vb Vi=1l...n

For each n there is exactly one foothold proof of p from the above, but _thére are 2™
negated ancestor proofs. In the following table we compare the time to calculate all
proofs of p from this program for different values of n. (All programs in this chapter
were written in Quintus Prolog, and run on a VAX 8600. Times are reported in

milliseconds.)

Value of | Foothold | Negated
7 Ancestor
1 16 17
2 33 33
3 33 100
4 67 216
5 83 417
6 150 1033
7 184 2583
8 200 5483
9 300 12100
10 367 26400
30 3850 ~ 1010

As expected, the time to build the 2" negated ancestor proofs increases expo-
nentially with n, but the time to build the only foothold proof, which has n literals,

increases linearly with n.
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Figure 4.2: Footholds on Pelletier’s Problems

: #  Time Count
FO 1 16 1
NA 1 - 17 1
FH 2 33 1
NA 2 33 1
FH 3 17 1
NA 3 0 1
FH 4 33 1
NA 4 17 1
FH 5 33 1
NA 5 33 1
FH 6 - 34 1
NA ¢ 17 1
FH 7 17 1
NA 7 17 1
FH 8 17 1
NA 8 0 1
FH 9 50 1
NA 9 50 4
FO 11 33 1
NA 11 33 1
FH * 12 766 1
NA 12 222450 4096
FH 13 17 1
NA 13 33 1
FH 14 50 1
NA 14 50 4
FH 15 17 1
NA 15 33 1
FH 18 0 1
NA 16 17 1
o 17 67 1
NA 17 67 2
FI 18 33 1
NA 18 16 1

# Time Count
FH 19 17 1
NA 19 17 1
FH 20 50 1
NA 20 33 1
FH 21 67 2
NA 21 167 12
FH 22 4800 207
NA 22 50167 3782
FH 23 167517 4620
NA 23 1437117 97200
FHE 24 100 1
NA 24 200 8
FH 25 2583 5
NA 25 . 4533 36
FH 27 67 1
NA 27 83 2
FH 28 34 1
NA 28 50 1
FH 30 50 2
NA 30 67 4
FH 31 50 1
NA 31 17 1
FH 32 50 1
NA 32 50 1
FH 35 0 1
NA 325 16 1
FH 36 50 4
NA 36 67 4
FH 37 483 29
NA 37 550 36
FH 39 33 1
NA 39 67 8
FH 44 50 1
NA 4 66 2
FH 45 16683 16
NA 45 1524550

9589
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# Count at each height

3 4 5 6 7 8 9 10
FO 221 14 17 23 29 35 41 47
NA 2214 73 165 298 467 672 913 1190
FO 232 106 108 276 516 828 1212 1668
NA 238 82 1350 4716 9990 17208 26370 37476
FH 25 ' 2 2 1
NA 25| 5 9 10 6 4 9
FH 37 |1 4 4 4 4 4 4 4
NA 371 5 5 5 5 5 5 5
FH 45 ' 9 7
NA 45 ] 7 147

708 8722

Figure 4.3: Proof Heights for Selected Problems

4.3.4 How much time is saved?

In Figure 4.2 we compare two procedures for producing proofs. We report on the

time to build each proof and the number of proofs built. The procedure NA builds |

all negated ancestor proofs; FH builds all negated ancestor proofs that conform to
the foothold condition.? If FH finds that a part of the proof does not conform to the
foﬁthold condition then it does not continue expanding that proof. The procedures
are otherwise identical. They prune branches with identical ancestors, and they
prune the search after a height of 10. We have run these programs on the tests

suggested by PelletieJ;[ZZ].tha.t do not include equality axioms. .

Pelletier’s tests are unsatisfiable sets of clauses ; we converted each set of clauses

‘into a problein of showing that a literal is entailed by a set of clauses by introducing

2Checking this condition adds an extra numerical operation each time we search up the ancestor
path and an extra logical check if a complementary ancestor is found. The extra costs for these

operations are negligible.

o
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a new literal into the one clause in the set, and asking if the negation of that literal

followed.

We report on problems for which a proof can be found in the reduced search
space in a reasonable amount of time. Some problems required sound unification,

with the occur-check. Because we nsed Prolog’s unification, these could not be run.

In these tests the foothold refinement is never more expensive than the negated
ancestor procedure, except in simple problems, such as 3 and 8, where the times
are so small they have little significance. The time saved by the foothold restriction
varies from a negligible amount to better than two orders of magnitude. More
complex problems exhibit more savings. This suggests that :_E_or stall larger problems

the savings will continue to be significant.

Figure 4.2 indicates that the foothold format is never slower than the negated

ancestor format, and can be much faster.

Figure 4.3 reports the number of proofs of each height for some of the more

complex problems. In Problems 25 and 45 the minimum height proof is rejected.
Proofs are found after 1 and 2 more levels, respectively. In these tweo examples
the search spaces are especially reduced. This result suggests the the search space

reduction will compensaté for the loss of the minimum height proof.

4.4 Conclusion

In settings where results are computed from proofs, such as first order logic and
default logic, to compute more than one result requires computing more than one
proof. Duplicate proofs produce the same result. Time is wasted computing the

duplicate proof and checking the result for redundancy. We have presénted the
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foothold format, a refinement of the MESON format that admits fewer duplicate
proofs. Procedures that compute these proofs can detect redundancy before the
entire prqof is constructed. Empirical evidence shows a simple foothold procedure
is never slower and sometimes much faster then the same procedure without the

foothold refinement. The savings are greater for more complex examples.




Chapter 5

Our Truth Maintenance System

While the assumption-based Truth Maintenance System is uniquely well-suited for
somme reasoning problems where the information contains no disjunctions, 1t cannot
handle situations where it is known that one of a number of facts holds, but it is not
known which one. Plan recognition is such a situation. On observing some event
that could be part of several plans, we conclude that one of the plans is occurring,
but we cannot tell which one. In this chapter we discuss our efforts toward extending

the ATMS to reason with disjunctions,! i.e. with non-Horn clauses.

Our goal has been to _integra.te our new procedures with the well-designed, ex-
isting ATMS procedures. Therefore we will discuss the existing procedures in more

detail first. Then the new work is described in relation to the old.

As we indicated at the beginning of the previous chapter, we will apply the
foothold restriction, that eliminates redundant proofs, to our truth maintenance

system.

1By disjunctions we mean disjunctions of positive literals.

84
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5.1 de Kleer’s Basic ATMS

A high-level description of de Kleer’s ATMS was given in Chapter 2,

In this presentation we give a more formal description, and a motivation for

truth maintenance systems by relating them to default logic.

5.1.1 Default Logic

Commonly in artificial intelligence, conclusions must be drawn despite the absence
of complete knowledge about the world. In these cases it may be possible to use
knowledge of typical cases that is often true, but may admit exceptions. For ex-
ample, if we are asked if a specific bird flies, since we know that most bir.ds fly, it
may be reasonable to assume that this is one that does; ‘This type of reasoning is
called non-monotonic reasoning because the set of conclusions we can reach may

‘decrease or increase as we add more knowledge.

A default logic, such as Reiter’s[26], is one that allows us to express that a

statement it typica.lly true. The following default rule expresses that birds typically
fly: | :
' Bird(z) : M Fly(z)
Fly(z)

-Here M is to be read as “if is consistent to assime”.

Defaults of the form | :
B(z) : M afz)
o)

are called normal defaults.

A normal default can be translated to a set of ordinary first order formulas and
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a default of the form
M a(x)
a(x)

where a is a single literal. This translation has two steps.

o If o) is not a single literal then replace az) with a new literal a'(2).

B(z):Ma(z) Blz):Md(e)
oz ale)

¢ Replace the default conditioned on B(z) with an unconditional one, where

and a'(z) — ofz)

a(z) is a new predicate.

B(z):Md(z) :Ma(z)
a'(z) | = af{)

The bird example would be translated to

, and a'(z) P_hﬁ(m),a(x)

: M Birds fly(z)

: ds 1
Fly(z) « Bird(z), Birds fly(z), and Firds fly(z)

In some systems for default reasoning, such as Theorist[23] and the ATMS,

single literal defaulis are represented by designating the literal as an assumption.

5.1.2 The Explanation Problem

In systems that represent defaults by designating literals as assumptions the expla-

nation problem is

Given a formula J, where some literals of .J are designated as assump-

tions, compute a set F of assumpfions such that for some literal I
EUJ =1, and FU J is consistent.

E is called an explanation of 1.
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5.1.3 A definition of the ATMS

The ATMS can be defined as a system that solves a special case of the explanation

problem, with the following syntactic restrictions:

J is a conjunction of Horn clauses, i.e. each clause is a disjunction containing

at most one positive literal.

All literals in J dre propositions.

¢ 1s a positive literal.

Only minimal explanations are computed.

All minimal explanations are computed for all positive literals.

(This definition is equivalent to Reiter’s and de Kleer’s characterization of an ATMS
27.)
Recall that the clause
aV b V...V b,

1s equivalent to
| ae—biA...Nb,.

Since the ATMS computes explanations for only positive literals, and since support -

for a positive literal can be expressed with positive literals, there is no need for the

ATMS to explain aﬁy negative literals.

The ATMS is a storage system. The minimal explanations for a literal p can be
stored as a set of sets of assumptions. These explanations are called environments

in the standard ATMS terminology. The data structure that contains this set of

sets is called a label. The label for a literal is stored with the literal. (The set
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of sets represents a disjunction of conjunctions, which is also called a disjunctive

normal formula.)

The ATMS is also a maintenance system. It accepis new clauses into J, and
allows new literals to be designated as assumptions. Given these changes, it com-
putes the resulting changes to each of the expiana.tions. This feature makes the
ATMS applicable to situations where the set of clauses is given incrementally, but
explanations are required after each addition to the clauses. The ATMS is designed
to keep the explanations up-to-date by applying changes to them directly, rather
than by resorting to recomputing them from the original clauses. Section 5.1.5

describes how this is done.

For situations where explanations are needed for only gome of the literals, it
may appear wasteful that the ATMS cﬁmputes explanations for all of the literals.
The ATMS is intended to be used with a problem solver that distills pertinent
information from a problem domain, and presents the ATMS with a tightly-coupled
set of clauses. Then the ATMS strategy of explaining all literals makes sense, since
the explanations for a literal will depend directly on the explanations for other

literals, and indirectly on a significant fraction of the set of all literals.

5.1.4 And/Or Graphs

The ATMS operates by constructing an and/or graph from the clauses in J, and
propagating information through this graph. |

An and/or tree is a set of and-nodes, a set of or-nodes and a set of directed edges

that connect either an and-node to an or-node, or an or-node to an and-node.

The ATMS will associate a positive propositional literal with each or-node. A

deduction of a positive literal from a set of Horn clauses can be represented by an
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and/or tree where all of the literals are positive and there is only one and-child for

each or-node. For example, given the clauses

p «— aAb
a — ¢
b — ¢

¢

a deduction of pis represented by this and Jor tree. (And-nodes are shown as circles.
An or-node is represented, non-uniquely, by the literal it contains. 'An and-node

with no children represents “true”, e.g. the and-node child of the or-node containing

¢ says that c is true.)

o —8
o— 0 —8—T

To represent more than one deduction with a single structure, we can allow

more than one son for each or-node. For example, add these two clauses to the
previous example.
p — d

d «— a

Then we can show the other deduction of p.
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p

S

0 —O—mn
a0 —e- U
—— o —e- L

— 0

By colleciing all or-nodes that contain the same literal into one node we reduce

the number of nodes, but we change the tree to a graph..
p
d ' .
\
| a b
oS
I .

Here there is a one-to-one correspondence between the and-nodes and the Horn
clauses. If we add in all of the clauses, then the graph represents all of the proofs
of all of the positive literals in the clauses. The ATMS builds these and/or graphs
to represent all of the proofs. Since explanations are built by building proofs, all of
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the explanations can be buili from this graph. As they are built, the explanations

are stored in the labels, in the or-nodes.

An or-node containing the literal | is always present in an ATMS graph. L

represents “false”. A Horn clause with no positive literal
—by V...V ob,

is equivalent to

.j*{—bl/\.../\bn.
These negative-only clauses correspond to the and-children of the | node. The
minimal explanations of L are the minimal inconsistent sets of assumptions, and

are called nogoods. Since the labels are complete, every inconsistent explanation is

a superset of some nogood.

5.1.5 Two Operations

The ATMS routines operate on a graph where each label is assumed to contain
all of the minimal explanations of its literal. When the ATMS accepts new infor-
mation either a new clause is added to the gra,ph,_or a hiteral 1s designated as an
a.s_sufnption. After the routines complete, the labels again contain all of the minimal

explanations.

A new clause

A new clause

G(—blA..-Abn

is to be added. (See Figure 5.1.) A new and-node is added to the graph, cor-

responding to the new clause. An edge is constructed from the and-node to the

N}
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cons

/§\ /i\
d1 dn a
'bl - 'bn

Figure 5.1: Adding a justification to the and/or graph

or-node containing . For each ¢ an edge is constructed from the or-node containing

b; to the new and-node. The new edges are shown as double lines.

New explanations for & may result from the new clause. To construct them,
the ATMS builds the conjunction of the b; labels. This conjunction of disjunctive
normal formulas is converted to one disjunctive normal formula. Each conjunction

in the new disjunctive normal formula that is consistent is an explanation for a.

For example, suppose there are just two b’s, b, and b;, and their labels are
{cAd)V(eNfAg)and (cAe)V(d) respectively. Conjoining these and converting

~ is done by considering each pair of conjunctions. The result is (cAdAe)V {(cA
eAfAGVI(eAd)V{dren frg) If elsewhere we have derived that (dAg)isa

nogood, then the fourth conjunction is discarded because it is inconsistent.

These new explanations for ¢ are combined with the existing explanations. To
ensure thai only minimal explanations are computed, any explanation that is a
superset of another explanation is discarded. In the example, the first explanation

(¢ Ad Ae)is discarded because of (c A d).
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If the label for ¢ changes as a result of the new clause, the new explanations
will contribute to new explanations for the consequences of a. Suppose there is an

existing clause for cons, a consequent of a,
cons —di A...Ad, \a.

Then the new explanations for a will be combined with the explanations for the d;
to form the new explanations for cons. We say that the effect of the new clause
has been propagated from a to cons. Likewise it is propagated to all comsequences

of cons, and to other consequences of a.

If 2 new explanation is found for L then a new nogood has been discovered.
Existing explanations that are supersets of this nogood are now known to be incon-
sistent. Every label is checked to see if it contains an explanation made inconsistent

by this nogood, and if so the explanation is removed.

If the label for a literal is not changed by the new explanations propagated to
it, then it is not necessary to propagate to the consequences of the literal. In this

way propagation eventually halts.

There may be loops in the graph, so a label may be updated several times. But
propagation is guaranteed to terminate since there are only a finite number of ex-
planations and each update to a label adds to the number of consistent explanations

in the graph.

- A new assumption

A new assumption may be added to the ATMS, or an existing literal may be
designated as an assumption. An explanation for an aésumption is 1tself, assuming

it is consistent. Adding a new assumption to the graph, then, is simply a matter of
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adding a new explanation to its label, consisting of itself, and using the propagation
algorithm described in the previous section to propagate the effect of that new

explanation through the graph.

The basic ATMS algorithms proposed by de Kleer [8] are presented in more
detail in Appendix C.1.

5.1.6 Eﬂ'ectiveness of the ATMS

Since the ATMS is providing a service to a problem solver to help it become more
efficient, it is important that the ATMS do its own work, building and propagating
explanations, as efliciently as possible. Two features of the algorithms streamline

propagation.

e Calculating the new explanations does not require searching. All of the infor-

mation needed to calculate the new explanations is propagated to the or-node.

e Redundant and inconsistent information is not propagated. Since the label
contains all of the explanations, any duplicate or subsumed explanation can
easily be detected. Inconsistent explanations are supersets of a nogood, so

they can be detected.

5.2 Non-Horn Clauses and Truth Maintenance

There are some domains that cannot be adequately described by Horn clauses, yet
would benefit from a truth maintenance system. Plan recognition is an example of
one. The problem is to find a truth maintenance system that maintains complete

support for its literals, yet deals with non-Horn clauses.
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A desirable feature of a solution is that it integrates well with the existing ATMS

algorithms, since that will help ensure its effectiveness.

5.3 Our Solution

Negated ancestor proof graphs from Chapter 4 bear a close resemblance to the
ATMS and/ of graphs. Both represent the dependency of a consequent on its con-
ditions using edges in the graph. Since negated ancestor proof graphs can represent
~ a deduction from non-Horn clauses it is natural to ask if they can become the basis

for a truth maintenance system for non-Horn reasoning,.

The and/or graphs of the basic ATMS are insufficient for representing negated
ancestor proof graphs in two ways. The negated ancestor proof graphs may need
to use different contrapositive forms of the same clause, and and/or graphs do not

contain anything corresponding to backedges.

In Section 5.3.1 we will show that and/or graphs can be built that contain all

possible contrapositive forms. We call that the main graph.

To handlé the backedges, in Section 5.3.2 we introduce a companion graph,
called an backedge graph, to be used in conjunction with the and/or graph. Like
the main graph, the backedge graph is also an and/or graph, with nodes that

contain literals and edges defined by contrapositive forms of the clauses.

Following that we construct a new truth ma,intenancé system based on and Jor
| graphs and backedge graphs. Like the ATMS each or-node contains a label where
the explanations for the literal are stored. We show that the propagation algorithms
for keeping the labels up-to-date are the same as the original ATMS algorithms,

except that under certain conditions propagation occurs from the backedge graph
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and the main and/or graph. Therefore the system is well integrated, and exhibits
the same properties that account for the ATMS’s efficiency.

5.3.1 And/or graphs from all contrapositives

In Section 5.1.4 we showed how all of the proofs of positive literals from a set of
Horn clauses could be represented by an and/or graph that only contained positive

literals. There was only one and-node for each clause in that graph.

But if there are non-Horn clauses, such as @V b, then to represent all proofs the
graph must contain some negative literals since negative literals can now provide
support for positive ones, as in @ « —b. To guarantee we have all of the possible
proofs represented, first we must build the and/or graph with all contrapositive
forms of the clauses. Thus for a clause of n literals there are n and-nodes present

in the graph.

And/or graphs from all contrapositive forms have some interesting symimetries.

See Figure 5.2.

Extracting proof graphs from and/or graphs

We can extract some negated ancestor proofs from an and/or graph, by first se-
lecting one and-node for each or-node, producing an and/or subgraph, and then
replicating or-nodes that have more than one and-parent, so. that each or-node has
at most one and-parent. This produces an and/or tree. (As a byproduct of the
extraction two different nodes may contain the same literal — as in the tree on
page 89.) Trivially an and/or tree can be comverted to a negated ancestor proof

graph by replacing each and-node such as
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Hexagon Steps / p Lantern /
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‘Figure 5.2: And/Or graphs from all contrapositive forms
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But negative ancestor proof graphs that contain backedges are not represented
in the and/or graph with all of the contrapositive forms. To represent them we also
need to add something that corresponds to the backedges in the negated ancestor

proofs.

5.3.2 Backedge Graphs

In the previous section when we converted an and/or graph into a negated ancestor

Y

proof graph we did not have any baékedges to deal with. As a result these graphs

cannot represent a deduction that arises from reasoning by cases, the deduction
that is represented by a backedge. We propose to allow this type of reasoning by
building a companion and/or graph, which we call a backedge graph.

Recall that a backedge in a negated ancestor proof graph connected a node

containing a literal, say I, to an ancestor node containing the complement literal,
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1. The edges on the path from the node to the ancestor came from specific con-
trapositive forms. We construct the companion graph from the nodes and edges
necessary to include these contra.positive forms. This conipa,nion graph represents
the parts of negated ancestor proof graphs that give rise to backedges from I to [.
We call this companion and/or graph the backedge graph for I.

For example, given the clauses

goal «— p
r — q
pVg «— Asng
P o 7
r «— Asng

(where Asn; and Asn, are literals designated as assumptions.) Figure 5.3 is a

portion of the and/or graph from these clauses.

Because there is a path from —p to p, we can construct a backedge graph for

—p, as shown in Figure 5.4.

5.3.3 A new truth maintenance system

Our truth maintenance system builds the two structures we have discussed (1) an
and / 0;' graph from all conirapositives, and (2) from some of the paths in this graph
from a literal / to I, a backedge graph for 1.

Recall that for the a.nci/ or graph in the basic ATMS, each or-node contains both
a,.litera,l and a label that is interpreted as the explanations of the literal. Likewise
in our and/or graph, each or-node contains a label. F‘uﬁhermore or-nodes in the
backedge graph for [ contain labels; they are interpreted élightly differently. These

labels contain the explanations that would hold if I were true.
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goal

b
AN
:

\ Asn2
p Asn1

Figure 5.3: An example And/Or graph

/

q ' -

- p Asn

Figure 5.4: An example backedge graph
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In the main and/or graph, reasoning is accomplished by propagating labels from
conditions to consequences, along the edges in the graph. In the backedge graph
for I, reasoning is done in exactly the same way, so the original ATMS algorithms

are used for propagating within the backedge graphs.

To do reasoning 'by cases we need to propagate information from the backedge
graph for { to the main and/or graph. In the backedge graph for { one of the nodes
is 1 and its label has a special property. Unlike other labels in this graph, it does

-not depend on assuming [ is true. Why? If F is an explanation of { assuming [ is
true then I — (E — 1), so IA E — 1. This means E Al is inconsistent, so E — 1.

In other words, E is an explanation of I.

Based on this observation, the propagation algorithm performs one new funec-
tion: the label for [ in the backedge graph for I should. be propagated to the [ in

the main graph. The new function gives our system the ability to reason by cases.

Return to the example of Figure 5.3. Since Asn; and Asn, were assumptions,
each is its own explanation. Propagating these through the and /or graph in Fig-
ure 5.3 yields the following labels:

goal : {{Asn,}}
p : {{Asna}}
r o+ {{4sn.}}
g : {}

-p : {}

Since —p and ¢ have no support each of them has the label {} which contains no

environments, and represents false.

Note that Asn, is also an explanation for goal, but that the and/or graph cannot

create it.
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In the backedge graph for —p (Figure 5.4) the label for —p is set to {{}} which
contains the empty environment and represents true. (This is done because the
labels in this backedge graph are interpreted as if —p were true.) This label is
conjoined with the label for Asny, which is just {{Asn,}}, and propagated to ¢ in
the backedge graph. Subsequent propagation of the labels through this backedge
graph yields

p ¢ {{4sm}}
q ¢ {{Asm}}
-p = {{}}
Since p has an environment Asny in the backedge graph for —p, it is propagated
to p in the main and/or graph. As a result it is propagated to goal, so the label
for goal becomes {{Asn;}{Asn,}}, and this is the complete set of explanations for

goal.

5.3.4 Our TMS Algorithms

The propagation algorithms for our TMS are adapted from the algorithms for the
basic TMS, in Section 5.1.5, by three simple changes.

Recall that we are using two fypes of and/or graphs, the main and/or graph
that contains all of the contrapositive rﬁles of all of the clauses, and the backedge
graph that contains only the contrapositive rules needed to identify backedge paths.
We must propagate information through both of these gra.phs. We can use the same
algorithms to do it if we add to each TMS routine a parameter that specifies which
graph is being affected.

As new information is added to the system, the effects of that information must

be propagated through the backedge graphs as well as the and/or graph. To do
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this we add a new statement to the end of Propagate (the routine which performs
propagation) so that after an incremental update is applied to a literal in the main

graph, it is also applied to backedge graphs that contain this literal.

‘The new environments that the backedges allow us to find, and that the backedge
graph computes must be propagated into the main and/or graph. If there is an
upda.te to the node conta.iniﬁg Iin the backedge graph for [ then, according to the
discussion on page 101 there should also be an update to the node containing 7 in

the main and/or graph. A line at the end of Propagate accomplishes this.

See Appendix C.2 for a full description of our TMS algorithms.

5.3.5 Restricting Backedge Graphs

In this subsection and the next we describe how backedge éraphs can be constructed
with backedge path algorithms. The TMS algorithms in .Appendix C.2 together
with the backedge path algorithms, is our solution to TMS with non-Horn clauses, -
to be compared to the extended ATMS of de Kleer’s[7].

Every deduction that can be represented by a negated ancestor proof graph can
also be represented by our truth maintenance system. Therefore if the backedge
graphs contain every possible backedge path our truth maintenance system will be

complete.

There may be an exponential number of paths through the graph from a literal to
its complement. Can we avoid adding all possible paths into the backedge graphs?
There are two types of paths that we never need to add. A non-minimal path is a
path from a literal to its complement that contains a complementary pair of literals

(that are not at the ends of the path.) A path that does not conform to the foothold
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condition never needs to be added because, as we saw in Chapter 4, such backedges

are never needed.

Two other conditions may arise in a specific domain that eliminate the need to
find all backedge paths. If a complete set of explanations is required for one literal,

or a small number, but not for all, then searching can be restricted.

Non-minimal paths

A non-minimal path connects a literal to its complement but contains another pair

of complementary literals. For example, from the clauses

g «— P

There is a path from —gq to ¢
g—op—o b—oa—op—g

that contains a path from —p to p. If we add to the backedge graph only the path
from —p to p, then the backedge graph will provide the deduaction of p. Knowing
p allows us to deduce ¢. The other deduction of ¢, from the non-minimal path, is

redundant.

The Foothold Condition

The foothold condition in the previous chapter can be used to eliminate a large,

possibly eprnential, number of the paths. Foothold labels can be assigned to the

Y
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contrapositives and paths that do not conform to the foothold condition should not

be added to the backedge graphs.

For example, from the clauses in the previous section, there is are two paths
from —p to p:

p—-b—oa—p
p— g —b—op

If we assign foothold labels to the contrapositives of a V b as follows,

a «— —b(-1}

b — ""‘Ia(-l_l)
then the paths become

ﬁp(o) —) ﬁb(_l) —3 a(o) j— P _

—p{® 5 =gt 5(0) P.

We only a,ccept the second path since it has a positive foothold sum. We do not
need to add the second path to the backedge graph for —p.

Selective Completeness

In some a,ppli.ca,tions that use truth maintenance systems the problem may be to
produce a complete set of explanatioﬁs for only some literals, and not all literals.
This is called selective completeness, and can be viewed as a further restriction to
the minimal path and foothold conditions. With selective completeness, the TMS
finds fewer backedge graphs, i.e. only those that contribute support to ome of the
literals of interest. Suppose [ is one of these literals. To ensure that its label is
complete, a scarch is done from [, similar to the search required to build a foothold

proof for I, described in Section 4.2.

o
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For example, if we are given the clauses in the example on page 99 with the
additional clause «— p A ¢, and we are only interested in the literal goal, then only
the backedge shown in Figure 5.4 is constructed. Another backedge graph exists

from the full set of clauses, namely

g« Op +— g.

5.3.6 Baékedge Path Algorithmms

The algorithm that finds backedge paths should be guided by the restrictions in the
preceding section. In Section 5.5, for the case of assimilation in plan recognition, we
will use selective completeness incorporating the foothold condition. We describe
here the algorithm FindPaths for finding the backedge paths (inherent in the con-
trapositive rules) according to the selective completeness and foothold restrictions,
and the algorithm AddPath for adding these paths to the backedge graphs. These
algorithms are presented fully in Appendix C.2.1. '

The FindPaths algorithm assumes that the set of contrapositive rules has been
Iabelled with some foothold labelling so that a foothold label is associated with
each condition in each rule. This assignment needs to be done only once for each
clause. A convenient pla«:;e to do it is near the beginning of AddClause (the routine

which serves to add clauses to the TMS) where the contrapositives are formed.

FindPaths is given a start literal, say /, from which it begins the search. It uses
an a.ncestﬁr sequence to keep track of the partial backedge paths. This corresponds
to the ancestor path A used in the deﬁnition of NA1 proofs, Definition 4.3.2. Ini-
tially the ancestor sequence is empty. Given a literal and an ancestor sequence
FindPaths checks that this literal is nof already in the ancestor path {as that

would be mean a loop has been encountered, and paths with loops are one type
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of non-minimal path, so they are not allowed.) If the complement [ of the literal
is found among the ancestors, {(case a) of Definition 4.3.2, then a backedge path
has been found. If this backedge path satisfies the foothold condition then this
ba.ckedge path can be added to the backedge graph for I, used by the TMS. This
addition is done by AddPath, below. Regardless of whether the foothold condition
holds, no further searching is needed from this literal. If the complement of the
literal is not among the ancestors, then FindPaths steps through (case b) of Defi-
nition 4.3.2, non-deterministically choosing a contrapositive rule and a condition.?
The algorithm eventually backtracks so that all of these non-deterministic choices

are considered.

The set of backedge paths found are given to the algﬁrithm AddPath which
adds them to a backedge graph. For the example on page 69, one of the negated
ancestor proof graphs is shown on page 70. There is a béckedge path from —p to p.
Here is the corresponding backedge graph with both the and-nodes and or-nodes

shown.

(P06

AddPaths would generate this graph as the backedge graph for —p.

“When choosing a contrapositive, it is not necessary to choose one taken from a clause in

CUA™ or EX A~ since those clauses are defunct,
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AddPaths works as follows. For each rule in the path, a new and-node is put
into the graph. An or-node must be put into the graph for each literal in the rule.
(If a node does not already exist for some literal then a new one is created and
it is given the same label as the label for that literal in the main graph. In this
way the labels in the backedge graph are always more specific than those in the
main graph. This is important since the backedge graph labels are interpreted with
the extra condition of assuming —I is true.} Once these or-nodes are in place, the
or-node for the conclusion of the rule becomes the parent of the new and-node. The
or-nodes for each condition become the children of the and-node. Any propagation
that results from these additions is done next. As its final step AddPath ensures
‘that the label for —! is {{}}, and any propagation that arises is done.

5.4 Comparison with de Kleer’s Extended ATMS

5.4.1 de Kleer’s Solutio.n

The extended ATMS [7] allows the problem solver to express disjunctions only in

a restricted form

choose {A1,...,A4,}

where each A; is a positive assumption. It is possible to encode any clause as a set
of Horn clauses and a set of disjunctions of positive assumptions. Four encoding
methods are given in [7]; each method involves infroducing newl assumptions which
are not relevant to the problem at hand. These so-called encoding assumptions
ought not to be revealed to the problem solver, so any explanation that involves an

encoding assumption should be ignored.

In order to reason with disjunctions, two new procedures are needed, positive
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byperresolution and negative hyperresolution. The negative hyperresolution proce-
dure finds nogoods that arise as a consequence of disjunctions. It implements the

following rule:

choose {44,... ,A.n}
nogood o; where A; € o; and A;; € o; for 2ll 4
nogood Uf{a; — {A:}]

In order to perform this step we must find a choose such that for each assumption
there is a nogood with a singleton intersection with the choose. Then from the

remainders of these nogoods we build a new nogood.

To discover all nogoods with the negative hype_rresoluﬁbn rule, this procedure
must be applied whenever a new choose or a new nogood is given or discovered.
- Whenever the procedure succeeds, a new nogood is disco{rered, and the search must

begin anew.

The positive hyperresolution procedure finds the new environments for propo-
sitions that arise from the chooses. Let (8, A} be the node containing the literal 3

and the label A. Positive hyperresolution implements the following rule:

choose {A1,.1 ., An}

(8,2)

nogood[{A;} U ;] or {4;} U € A, and Az & o for all
{8, {Vas} U A*)

where A* is A with all supersets of Ua; removed.

Whenever a new choose is given, a new nogood is found, or a new explanation
is found for a literal 3, the positive hyperresolution procedure should be applied

to find any new explanations for 5. The procedure searches for a choose such that

i}
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for each assumption in it, there is a nogood or an explanation of 8 that has a
singleton intersection with the choose. From the remainders of these nogoods and
explanations we build a new explanation for 8. After such a new explanation is
found, the positive hyperresolution procedure must be invoked again if completeness

is to be assured.

Various special cases of each of these rules can be efficiently implemented. For
example when a choose is a singleton, it can be removed from each nogood. The

general cases, however, are still necessary.

5.4.2 Comparison

The hyperresolution procedures in the extended ATMS are cdn_sidered expensive

[7, 8]. Let us point out some of the reasons for the high cost.

¢ Encoding adds work. Besides the cost of automatically translating non-Horn
clauses into ATMS inputs, each assumption introduced for encoding adds
some work to the ATMS. In the worst case, each assumption could double
the amount of work, since the amount of work is proportional to the number

of explanations, which is expoﬁential in the number of assumptions.

» .Hyperresolutidn must be applied frequently, to guarantee comsistency and
completeness. Both positive hyperresolution and negative hyperresolution
will be invoked each time a new choose is declared and each time a new
nogood is discovered. Positive hyperresolution will also be invoked as a new

environment is added to a label, which is the most common operation.

¢ New information is not propagated to where it is needed. Hyperresolution

must search for relevant information. For instance, a new choose requires
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positive hyperresolution to search the entire database, and parts of it many
times, This is contrary to the design philosophy of the basic ATMS, where

discovered information is propagated to all of the places it is needed.

¢ Hyperresolution might produce uninteresting information. Positive hyperres-
olution may add environments containing encoding assumptions, that will be
ignored on output. Negative hyperresolution may discover nogoods with en-
coding assumptions, so explanations with them would not have been reported

anyway. In these cases the results are not relevant to the problem solver.

Our solution, with backedge graphs, does not exhibit these causes of inefficiency.
Since the input form of the clauses is not restricted, there are no encoding assump-
tioms. This covers the first and last causes. The second does not apply. As for the

third, our system does propagate discovered information to where it is needed, and

integrates well with the basic ATMS.

Three criticisms can be raised against our solution. Our and/or graph contains -

all of the contrapositives of the clauses, while de Kleer’s extended ATMS just
contains one form of each clause. Next, our system requires a search for backedge
paths. In Section 5.3.5 we pointed out how and in what situations this search can
be controlled. Finally ouir solution finds explanations for all positive and negative
literals, whereas de Kleer’s only explains positive literals. (This is actually an an

advantage of our system, when there is interest in explanations for negative literals.)

How can we decide which truth maintenance method is more effective? Compar-
| ing by performing experiments is subject to questions about the effectiveness of the
particular implementations. Deciding based on worst case analysis is problematic
since it has been shown that the truth maintenance probiem is NP-complete [25, 12].

We conclude by pointiﬁg out that for our problem domain, plan recognition, our

o
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truth maintenance system has lead to an effective solution to the assimilation prob-

lem. It is to this solution we now turn our attention.

5.5 Owur TMS applied to Plan Recognition

In this section we will put together the parts of our solution to assimilation in plan
recognition into an overall algorithm. Initially we consider only the case of a single

observation; multiple observations are handled later.

- 5.5.1 Interfacing the Plan Recognizer with the TMS

Before the entire solution can be described, three points must be made about in-
terfacing the plan recognition system with the truth maintenance system. First,
the TMS generates proofs, but stores them in its internal and/or graphs. We need
access to these proofs because they represent the candidate plans. Next, the TMS
only considers single-literal queries, but fof plan recognition we need to generate a
 disjunction of End events. Finally there are a large number of backedge paths that
could be addéd to the backedge graph, but only some of these are necessary. How

do we find the ones necef;sa.ry for plan recognition?

For the first question, we can reconstruct a negated ancestor proof graph from
the TMS’s and/or graph for a literal by the algorithm Extract, included in Ap-
pendix C.3.1. This algorithm traverses the and/or graph and produces one and-
node for each or-node. The and-node chosen is the one that contributes support -
to the or-node. Since support in the TMS is sometimes in the main and/or graph,

and sometimes in one of the backedge graphs, this algorithm must check both.
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For the next question, to render our TMS able to compute candidate plans add
the clause

end «— End(z)

for each instance of End(x) that is in the search space identified by the search
algorithm, (in Visited). Then the TMS generates the explanations for end, by
building an and/or graph, and a backedge graph for —end. We use the Extract
algorithm to extract a negated ancestor proof graph for end from the TMS. We can
examine this proof graph for occurrences of —end, and the associated instances of
End give us the disjunction of End events. (This operation is analogous to Stickel’s

method for generating disjunctive answers, in Section 4.1.2.)

~ For the final question, we can use the selective completeiless restriction and the
foothold restriction of Section 5.3.5 to limit the search for backedges. We are only
interested in a proof of the literal end, so only the backedges paths produced by
FindPaths{end) are added to the TMS. The algorithm appears in Appendix C.2.1,
and 1s described in Section 5.3.6. After the paths ére found, the algorithm AddPath
is called for each path, to add it to the TMS and initiate propagation along these
paths.

5.5.2 Plan Recognition Algorithm (Single Observation)

Given an abstraction/decomposition hierarchy representing a plan library, and a
single observation which is described indefinitely as a disjuncti;:)n of possible event
types, our aim is to generate a candidate plan, which is represented by a disjunction
of End events and a proof of that disjunction. The first step is to call CloseLibrary
~ {this could have been done before the observation was given) to generate the sets

of first order axioms, CUA, EXA and DJA. The CUA axioms are Skolemized, and
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both the CUA and EXA axioms are given new, unique assumptions. Then Search is
called to generate ground instances of the first order axioms, and store them in the
set Axioms, Thé ground instances of any corresponding assumptions are put into
a set called Assumptions. Search also generates Visited, the set of literals visited
in the course of searching. The Reasoning task then begins. The TMS routines to
add new clauses and new assump'tions are used. Each ground axiom in Axioms is
now added to the TMS with AddClause. Assumptions in the set Ne\#Assumptions
are added with AddAssumption. For every literal End(M) in Visited, the clause
end <+ End(M) is also added with AddClause. FindPaths finds all backedge paths
that contribute support to end that conform to the foothold and minimal pafh
restrictions, and AddPath adds each path found to the one of the backedge graphs
in the TMS. TMS propagation is invoked as each contrapositive form of each clause
1s added, as each assumption is added and as each bacicedge path is added. After
all of the additions are done, this propagation guarantees that the labels in main
and the backedges graphs are up to date. Extract is called to generate the negated B
ancestor proof graph for end, and the disjﬁnction of End events can be read directly

from this graph.

Now suppbse new information is given by the oracle.® This means there are new
abstraction rélationships for H,, new steps for Hp, new constraints for Hp, or any
combination of these. Consider each new clause 1n turn. We call Libr.aryAssimjla.te
with the clause and so generate C~ and C*. AssimSearch is called and makes
used of ¢~ and CF. During its operation AssimSearch idéntiﬁés new clauses to be

added to the TMS, and puts them into the set NewAxioms. The ground instances

3We have deferred the issue of interfacing the Plan Recognizer with the Oracle. One scenario
is to have the Plan Recognizer consult the oracle with “I give up” if there is no candidate plan

possible.
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of the assumptions in CUA' and EX AT are put into the set NewAssumptions.
Ground instances of assumptions in CUA™ and EXA~ (identified by literals in
Visited) are put into the set OldAssumptions. Then the Reasoning stage begins.
The operations in this reasoning stage affect the same main and backedge graphs
used by the TMS after the initial observation. AddClause adds each new clause in
NewAxioms to the TMS. The new assumptions in NewAssumptions are added with
AddAssumption. Each old assumption is removed, by addihg a clause of the form
OldAssn D false. For every literal End(M) put into Visited by AssimSearch, the
clause end +— End(M) is also added with AddClause. FindPath(end) and AddPath
are called to add the new backedge paths to the TMS. Each addition to the TMS
initiates propagation. Propagation through the and/or graphs and the backedge
graphs might affect the proof for end. If there is no effect then Extract will extract
the same proof. Otherwise there may be no proof, so Extract will indicate that, or

there may be a new proof, and Extract will return that new proof.

This description is summarized by the following algorithm. A more detailed

version of this algorithm appears in Appendix C.3.2

procedﬁre PlanRecognition-SingleObs

% : i

‘Let H be the intial hierarchy

Let E(Obs) V ...V E,(Obs) be the single observation
call CloseLibrary(H)

call Search(E1(Obs} V ...V E,(0bs))

% The Reasoner

Add each ground clause in Axioms to the TMS with AddClause

Add each new assumption in NewAssumptions with AddAssumption -
For each End(M) in Visited call AddClause end «— End(M)

% Deal with the Backedges '

call FindPaths(end)

For each Path found call AddPath(Path)

Y
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call Extract(end) to get the candidate plan

loop
Accept Newlnfo from the Oracle
call LibraryAssimilate{NewlInfo)
call AssimSearch to get the additional ground clauses, the additional
assumptions, and the old assumpiions which were violated

% The Reasoner

Add each new clause to the TMS with AddClause

Add each new assumption to the TMS with AddAssumption
For each old assumption OldA call AddClause(OldA D false)
% Deal with the Backedges

FindPaths(end)

for each Path found call AddPath(Path)

call Exiract(end) to get the candidate plan
go to loop

end procedure PlanRecognition-SingleObs

5.5.3 Returning to the example

Recall the e.x.a,mple from in Figure 3.1. From observing the agent measuring flour
the plan recdgnizer generates the ground clauses and assumptions described in
Section 3.3 and they are given to the TMS. There are no backedge paths generated -
for this example. Extract gives us the proof graph pictured in Figure 5.5. (For the
sake of simplicity we do not show the End disjunct in the CUA axioms. In all of

our cases they are eliminated by some DJA axiom.)

Now the oracle provides the new information about fettucini marinara, shown
in Figure 3.1. After library assimilation, AssimSearch generates new claﬁses and

assumptions, and the old CUA axiom for MakeFettuciniNoodies is removed. The
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end

¢

End(sk2(sk1{obsl)))

¢

Make Pasta Dish
(sk2(sk1(obsl))

Make Fettucini .
Alfredo(sk2(sk1{obsl)))

CUA

Make Fettucini
Noodles(sk1(obsl))

CUA

Measure
Flour(obsl)

Figure 5.5: Proof Graph from the Initial Library

final proof graph exiracted is shown in Figure 5.6.

In this example FindPaths generates the following backedge path

MakePastaDish{sk2(skl(obsl))) —
MakeF ettucini Al fredo(sk2(sk1(obsl)).
MakeFettuciniAlf?edo(stI(skl(obs 1)) «
MoakeF ettuciniNoodles(sk1{obs1))A.
—~MakeFettucini Marinara(sk2(sk1{obs1))

117
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end

ot
End{sk2(ski{obsl)))
K
Make Pasta Dish
(sk2{sk1{obsl))

Make Fettucini
Alfredo(sk2(sk1(obs1)))

CUA
Make Fettucini _ ‘:Make Fettucinl
Noodles(sk1(obs1)) Marinara(sk2(sk1(obs1)))
| CUA

: ] "Make Pasta Dish

Measure (sk2(sk1{obsl)))
Flour{obs1) | ~
o _

~ Figure 5.6: Proof Graph from the Library after Assimilation
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—MakeF ettucini Marinara(sk2(sk1{obsl)) «
~MakePastaDish(sk2(skl(obsl)))

If it were not for the foothold condition, another backedge path would have been
édde_d. It differs only in the MakeFettuciniAlfredo is swapped with MakeFettucini-

Marinara. Footholds remove this symmetry.

MakePastaDish(sk2(sk1(obsl))) «—
MakeF ettucini M arinar Marinara(sk2(skl(obsl))

MakeFettuciniMarinara{sk2(skl(obsl)) «
MakeFettuciniNoodles(skl(obs1))A
—~MakeFettucini Al fredo(sk2(sk1{obsl))

~MakeF ettucini Al fredo(sk2(sk1{obsl}) «
ﬂMakePa,staDish(st(skl(obsl)))

Hlustrating assimilation of constraints

Our algorithms for plan recognition using truth maintenance can be applied to a
variety of assimilation problems. We illustrate the case of assimilating comstraints

here.

Continuing with our example, suppose the oracle provides a new cons_traint on
the making of fettucini, that the agent must have a strong hand to mix the fettucini
noodles and the alfredo sauce, because the sauce becomes thick as it cools. (This
does not occur with marinara sauce.) When this néw knowledge is assimilated, a
check of the constraint is made. If it is known to the plan recognizer that the agent
is not strong then it is reasonable to reject the fettucini alfredo plan and propose

that the agent is making fettucini marinara,
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The general form of the constraint is
V. MakeF ettucini Al fredo(z) D strong(agent(z))

When AssimSearch notices that MakeF ettuciniAlfredo(sk2(sk1(obs1)))is in Vis-

ited it generates the appropriate instance

MakeFettucini Al fredo(sk2(skl(obsl})) D strong(agent(sk2(sk1{obsl))))

An attempt is made to prove that —~strong{agent(sk2(skl(0bsl))), and this attempt

succeeds. As a result
MakeFettucini Al fredo(sk2{sk1(obs1))) D false

is added o the TMS. This causes a new proof for end to arise in the main graph,

which previously could not be generated, because there was no support for
~MakeFettucini Al fredo(sk2(sk1{obsl))).

Extract generates the proof graph in Figure 5.7.

5.5.4 Candidate Assimilation and Multiple Observations

Until now we have only discussed candidate assimilation in the case of a single
observation. In order to handle multiple observations, Kautz defines two logical
operations, mc-entailment and imc-entailment. (We introduced these at the proof

level in Section 2.1.5.)

At the algorithm level, Kautz provides two routines, match-graphs and group-
observations, to build up candidate plans for multiple observations. They do so
by combining explanation graphs, or e-graphs for singleton observations. E-graphs
were introduced in Section 3.3.3. In this section we describe how to interfaﬁe what

we have done with these routines for handling multiple observations.
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end

!

End(sk2(skl(obs1)))

!

Make Pasta Dish
(sk2(sk1{obsl))

Make Fettucini .
Marinara(sk2(sk1{obsl)))

CUA

Make Fettucini
Noodles(sk1{obsl))

CUA

Measure
Flour{obsl)

Figure 5.7: Proof Graph after a New Constraint is Added
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Match-Graphs and Group-Observations

Kautz’s e-graphs may include more than one observed event. E-graphs in gen-
eral encode a disjunction of possible End events. In order to be included in the

disjﬁnction, an End event must include all of the observed events as components.

The first routine, called match-graphs, accepts as input two different e-graphs.
Fach e-graph contains a set of observed actions. Maich-graphs tries to equate the
End events in the first with the End events in the second. The equalities are prop-
agated downwards through graphs, reducing disjunctions. Match-graphs produceg
as output an e-graph that contains the union of the given sets of observations, and
the End events that, taken singly, can include all of these observations, if there are
any. In this way the number of possibilities is reduced and the level of detail for
each possibility is increased. If no End event can contain all of the observations,

match-graphs fails.

There are several versions of the second algorithm, group-observations. Fach
applies a different strategy to find groupihgs of the observations. It uses match-
graphs to decide what groupings make sense. For instance, the mc-entailment
version Woula attempt to propose the minimal number of End events. Thus the
best situation is one where all of the observed events can be seen as components of
exactly one End event. In plan recognition this corresponds to proposing one plan
that includes all of the observations. Failing that, it is best to propose two End
events such that eé.ch observation is a component in at least one of these. Let n be
the smallest number of End events required to include all of the observations. The
theory of mc-entailment sanctions the (very weak) conclusion that the observations

are grouped into n sets in one of the many ways that this is possible.
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An mec-entailment version?® of group-observations would apply match-graphs to
build up each of these groupings. Consider the example of Figure 2.1. Suppose
there are three observations GetGun, GoT oW oods and GoToBa,nk. In this case
there is no e-graph containing all three, although there is an e-graph for each single
observation. Then this version of group-observations would call match-graphs to
attempt to match the e-graphs for GetGun and GoToW oods, so it could partition
the observations into the sets {GetGun, GoToW oods} and {GoToBank}. It would
also try to match the e-graphs for GoT'oWoods and GoToBank to build the parti-
tions {GetGun} and {GoToWoods, GoT'oBank}. Finally it would try to match the
e-graphs for GetGun and GoT'oBank, to build the partition for {GoToWoods} and
{GetGun, GoToBank}. For each of these calls to match-graphs that succeeded, the
corresponding e-graphs are proposed to explain the observations. In this case the
first call succeeds, as the GoHunting plan includes GetGun and GoToW oods. The
last call also succeeds since RobBank plan includes GetGun and GoToBank. The
second call fails since no single plan includes GoToBank and GoToWoods. The -
conclusion would be either (1) the e-graph for GetGun and GoToWoods and the
e-graph for GoToBank or (2) the e-graph for GetGun and GoToBank and the
e-graph for GoT oW oods.

Multiple Observations with Assimilation

We propose to handle multiple observations in cases where new information may

need to be assimilated. We want to make use of Kautz’s algorithm for multiple

‘In fact, Kautz does not provide an mc-entailment version of group-observations. This dis-
cusston was provided as a illustration of how group-observations would work in this general case.

Instead Kautz provides more psychologically plausible and less expensive versions based on ime-

entailment.
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+ — E(Obs1+
Obs2)
New |

Information

Y Y
1 Obs2)

Figure 5.8: Assimilation with multiple observations

observations. The algorithm Extract (Appendix C.3.1) provides us with negated
ancestor proof graphs. These are proofs of Jz.End(z), so there is a natural conver-

sion to the e-graphs of Kautz, used in his multiple observation algorithms.

The solution we sketch below is for the case where Obs; and Obs, have both
been processed, using our single observation algorithm. Now, new information
from the oracle arrives. When it is necessary to assimilate new information into
the e-gfaph for the combination of observations, we assimilate the new informa-
tion tO't.he e-graphs for all of the singleton observations separately. Then we use
group-observations to apply match-graphs to build up the e-graphs for the new

combinations.
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For example, let E(Obs,) and E{Obs,) represent the e-graphs for Qbs; and Obs,,
respectively. Then Figure 5.8 shows how new information would be assimilated into
the e-graph E(Obs, + Obsy) for Obs, and Obs, taken together. The grey arrows
represent assimilation steps. The +,= represent a call to match-graphs. The figure
shows that we assimilate into the singleton e-graphs first and then attempt to match

the new e-graphs.

Consider the three-observation example on page 123. Suppose new information
has not affected the e-graph for GetGun and GoToWoods, but it has affected the
e-graph for GoToBank. For example, the new information could be a constraint
that the bank must be open. We want the conclusion to reflect the new information,
so we make whatever calls to match-graphs are required to repair the conclusion.
One new call is needed for conclusion(2), to match the graphs for GetGun and
GoToBank. The e-graph combining GetGun and GoT oW oods (part of conclusion
(1)) is not affected. Therefore we have saved the work of calling match-graphs for
this case. (In Section 6.2.1 we speculate on whether the truth maintenance systeﬁl

should be extended to assimilate directly into the combinations of observations.)

Here is a general description of the illustration in the previous paragraph. Our
truth maintenance method does not allow us to assimilate new information directly
into the e-graphs for more than one observation. Even so, we can identify by inspec-
tion the combinations of End events that are not affected by the new information.
An e-graph explaining a combination of observations is not aflected by the new
information if the e-graphs for each of the singleton observations is not affected. A
e-graph for a singleton observation is affected only if either of two conditions are
met: (1) Have any closure axioms that were used in that e-graph been invalidated
By the new information? (2) Have any of the new axioms the result from the new

information resulted in additions to the search space for the e-graph? If both of
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these are answered no for all of the e-graphs of the singleton observations then the.
e-graph for the combination of observations is unaffected. Unaffected e-graphs of

combinations need not be recomputed, so the work that was done by match-graphs

to combine these observations is saved.

We can now produce a plan recognition algorithm which accepts multiple ob-

servations and new plan information from the oracle. The complete algorithm is

given in Appendix C.3.3.

o




Chapter 6

Conclusion

6.1 Contributions

We claim contributions to three open problems in the literature.

6.1.1 Recognizing Novel Plans in Plan Recognition

Kautz remarks

Every day new kinds of events occur, yet they do not baffle us. An in-
telligent agent cannot rely only on a recognition system; 1t must contain

a learning component as well.[16] -

We proposed an architecture for dealing with novel kinds of events that aﬁpea.ls
to an external source of information about those events. The role of the external
source, or oracle, may in fact be provided by a third-party expert, an automated
leamning. system, or the agent himself, if the pla.ﬁ recognition setting allows a dialog

between the plan recognizer and the agent.

1127
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Our architecture is capable of candidate assimilation, which is defined as incor-
porating the new information with the candidates that are proposed to represent
the agent’s plan. The most straightforward way of ensuring that the candidates are
up-to-date with the new information is to eradicate the old candidatie plans and
recompute the new ones based on both the old and new information. Qur approach
is less drastic; we assimilate the new information with the candidates, and repair

them to conform to the new information.

Information from the oracle is assimilated into the candidate plans by way of
the plan ]ibraij. S0, as new information is provided by the oracle a permanent
record of it is kept in the library. Kautz’s theory of plan recognition depends
on a set of closure axioms that are based on assuming that the plan library is
complete, We have applied our assimilation methods to Kauntz’s theory. This new
information contradicts some of these completeness assumptions, so we must remove
the invalidated closure axiom and all of the effects it has had. Also, to allow plan

recognition to continue, some new closure axioms must be computed.

One problem that must be addressed when building large plan recognition sys-
tems is building and managing the large plan libraries that will be needed. This
architecture can help build a plan library incrementally from actual situations. If an
expert third-party is acting as the oracle, by using our architecture we can transfer
information from the expert to the plan library and drive transfer by a number of
actual situations. As the situations arise, the expert tells our system what is needed
to recognize the situation, our system récognizes it and collects the information in

the library for future similar situations.
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6.1.2 Redundancy in Automated Theorem Proving

Problem #6 in “Automated Reasoning : 33 Basic Research Problems”{34] states

What strategy can be employed to deter a reasoning program from
deducing a clause already retained, or from deducing a clause that is a

proper instance of a clause already retained?

Although our procedures have not computed clauses as such, the question still
stands. We have provided a solution to the first problem, avoiding deducing a result
already retained, in the setting of linear resolution. The rédundancy we avoid atises
in the MESON proof format when proving a literal by arguing by cases. MESON
considers in turn each case with the exclusion of the others. Thus for n cases there

are n deductions of this type that can be computed.

We showed that it is necessary to build only one of these deductions; the others
are redundant, We introduced the foothold format that adds a condition to the
MESON format. The new condition e]imiﬁa.tes all but one of these cases.

When a proof requires several different instances of reasoning by cases, the
number of possible proofs grows with the product of the number of cases in each
instance. This leads to a.n exponential growth in the number of proofs. Again, the
foothold format eliminates all but one of the cases in each instance, so only one

proof is admiited.

We reduced redundancy by disa]lowing part of the search space. Because the
search space is smaller it can be searched in less time. For some examples the
speedup is exponential in the size of the problem. Our experirﬁental results are
enc.ouraging since they suggest that more complex examples beneﬁt more from our

restriction.
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Our procedure is based on a condition that adds a negligible cost at runtime
to a proof procedure that uses the MESON proof format. The clauses are pre-
processed and literals in their contrapositive forms are given labels ﬁ'orﬁ the set
{—1,0,+1}. The time to preprocess is on the same order as the time to compute

the contrapositives,

Finally, the foothold condition is simple to compute. A procedure that performs
ancestor search to compute proofs in the MESON format can take advantage of the

reduced redundancy of the foothold format with a minimal change to the procedure.

6.1.3 Non-Horn Clauses and Truth Maintenance

de Kleer’s basic ATMS has become a widely used tool in artificial intelligence
problem solvers, where Horn clauses are sufficient to state the problem. de Kleer’s
extended ATMS provides the truth maintenance capabilities to problem solvers thai
need to use non-Horn clauses. The technique it employs is based on hyperresolution.
de Kleer claims that in some circumstances the hyperzesolution procedures are too
expensive to employ|[7], and they are difficult to integrate[8]. In addition they apply
only when the clauses are in a restricted form; extra encoding is required to put
them in this form, and the encoding adds assﬁmptions, which adds work to the

truth maintenance processing.

To address these problems we provide a truth maintenance system that inte-
grates well with the basic ATMS algorithms, that does not requife special encoding,
that allows the problem solver to specify for which literals complete explanations
are needed and for .which they are not. Most importantly, it can take advantage of
the foothold refinement, described in the previous section, to reduce much of the

redundant work.
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6.2 TFuture Work

6.2.1 Work in Plan Recognition
Direct Assimilation and Multiple Observations

We have shown how to implement c-entailment from one observation with a truth
maintenance system, and how this is used for novel plan recognition from a single
observation, as well as multiple observations. However, it may be possible to do
what is represented in Figure 6.1, to propose candidate plans based on a combina—l
tion of observations, and then assimilate the new information directly into those

candidate plans.

A difficult issue arises. Suppose we have a number of observations {Obsy,...,0bs,}
and we want to assimilaie new information into an e-graph for all of these obser-
vations. Suppose the new information results in an inconsistency — i.e. there is
no candidate plan which contains all of Obs;,...,0bs,. Then we will have to
re-group the observations, according to the particular strategy that GroupObser-
vations encodes. If the TMS is used to do this regrouping, then it will need to
encode this specific strategy. It is not clear that this should be the responsibility of

-the TMS. It is contrary to the original intention of truth maintenance systems to

o

encode application-specific strategies within them. In addition, this solution would

probably increase the complexity of the TMS.

Interfacing with the Oracle

In Section 1.6 we outlined a few of the issues that arise when responsibilities are

assigned to the plan recognizer and the oracle for the tasks of deciding what new
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+ — | E(Obs1H
Obs2)
New
Information
\j
E“(Obs1
Obs2)

Figure 6.1: Direct Assimilation with multiple observations



CHAPTER 6. CONCLUSION 133-

information is needed and whether it is correct. Another issue is deciding when
the new information is needed. One scenario has the plan recognizer accepting new
information only when it is unable to recognize a plan. This may be too restrictive
since it is possible that new information could be available that would improve
the plan recognizer’s conclusion. So it is important for the plan recognizer to be
open to new information. It would be useful to investigate an oracle that takes the
initiative and provides new information. This oracle is able to interrupt at any time
with new information. As a result the plan recognizer could be prevented from ever
computing a plan, so restrictions on the dialog between the oracle and the plan

recognizer would be needed.

Domain Knowledge in the TMS

Although we used the TMS only to store axioms from the plan library, in principle
one could employ the TMS to reason about the domain as well. This would apply
if the plan recognizer’s knowledge about the agent’s world is increasing, and should

be assimilated into the recognized plan.

Some preliminary investigation has been done into assimilating new temporal
knowledge into a temporal network [32]. In that work it is hypothesized that a con-
straint can be removed from a temporal network such that the remaining network
can be repaired, and that this operation can be done faster than recalculating the

network.

Abductive Plan Recognition and Truth Maintenance

Truth Maintenance systems have been applied to pla.ﬁ recognition systems in the

abductive style by Charniak and Goldman{4]. The purpose filled by the truth
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maintenance system in that work was to furnish the plan recognition system with
a reasoning system that supported mmlitiple contexts, so that the disjunction of
possible plans could be represented. A possible avenue for future work is to use
truth maintenance to do assimilation within an abductive plan recognition system.
Algorithms in this case would be different from those presented in this thesis. For
éxa.mple, our searcher is tied to Kautz’s style of plan recognition; a different searcher

would be needed for the abductive case,

Assimilation and Constructive Plan Recognition

It would be useful to explore the use of our assimilation procedure in the work of
Litman and Goodman[18]. The CHECS system, mentioned in Sectionl.2 may be
described as a novel plan recognition system where the user is the oracle. CHECS
incorporates a “constructive” plan recognition component. In constructive plan
~ recognition, if the actions are not recognized, the system still allows the user to
continue. The. system enters a phase of constructing and logging the new plan
library information ﬁom the user’s input. During this phase, plan recognition is
not done, so the CHECS system cannot apply its domain knowledge to the situation
at hand. This means it does not provide the assistance to the user that it normally
provides. If CHECS were to apply a direct assimilation method (such as the one
we provide in this thesis) to bring this new information to bear on the candidate
plan so far, CHECS could continue to provide feedback and assistance to the user

in the constructive phase.
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Repair versus Recalculation

One issue to explore in greater detail is the effectiveness of the repair method of -

assimilation compared with the recalculation method. Exploring this issue warrants
experimental results. Some of the factors that should be considered are: the size of
the candidate plans, the amount of change in the candidate plans, and the number

of times assimilation occurs.

For small candidates that are inexpensive to compute, it may be that the over-
heads of the various parts of our solution, building the a.nd Jor .gra,phs, building the
backedge graphs, extracting the proof graph, etc., will be more expensive than just
recalculating the small plan from scratch. But for additions to a large plan library,
used under conditions where the candidates are large or contain many disjuncts,
the candidates are expensive to compute. In this case candidate repair should be
worthwhile. If the new information has had no effect on the candidate, a condition
we can detect using our assimilation method (i.e. when C~ and C* are empty
after AssimSearch) then no recalculation is required. We expect that detecting this
condition, which is quite simple in ounr system, will not be as expensive as recom-

puting the. candidate. If the new.f information affects a relatively small portion of
the candidate, then we hypothesize that replacing the small portion will be faster

than recomputing the entire candidate.

6.2.2 Work in Automated Reasoning
Redundancy in other proof formats

We have removed redundancy in the MESON proof format. Can the same idea be

used to remove redundancy in other proof formats? If reasoning by cases arises in

)
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any form in these other formats, it may be possible to provide a method that breaks
up the symmetry of considering the cases in different orders. Linear resolution with
framed literals[3], a proof format closely related to the MESON format, would be

a good format to investigate next.

Absolutely Irredundant Proof Procedures

For some examples of theorem proving problems, we have removed all of the redun-
dancy, in the following sense: Given a set P of clauses and a literal g, suppose we
have constructed a foothold proof of g. Let ¢} be the subset of P that contains all
and only the clauses used in this proof. Then having removed all of the redundancy

‘'means there is exactly one foothold proof of ¢ from Q.

For other problems, sucli as the example on page 78 there are still an exponen-
tial number of foothold proofs of g from Q. .An ideal solution to the redundancy
problem would be a proof format that guarantees there is exactly one. It should
also depend on a condition that can be checked quickly, and can be applied to
partial proofs so that redundancy can be detected and avoided before the complete

proof is generated.




-App endix A

Algorithms and Proofs for
Chapter 3

A.1 Library Algorithms
A.1.1 Library Closure Algorithms

procedure CloseLibrary(Hy, Hgg, H,, Hp, Ha)
EXA :={}

CUA :={}
DJA :=A{}
Com = {}

% Construct Com _ :
Com = {(E1, E2): JE3.E1 abstracts*"E3 A E3 abstracts*E3}
% Construct DJA
for each F c Hg:do

#f there is an axiom (Vz.E(z) D Egec(z)) € Ha then
Spec(z) := {Eypec(z) : there is an axiom
(V. Egpee(2) D E(z)) € H,}
if Spec(z) + {} then

137
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Construct a disjunction D(z) of all of the elements of Spec(zx)
EXA:=EXAU{¥Vz.E(z) D D(z)}
end if
end if
end for each
% Construct DJA
for each F1 € Hi do
for each F2 € Hg do
if (E1,E2) ¢ Com then
DJA :=DJAU {Ve.~El(z) V -E2(z)
end if
end for all
end for all
% Construct CUA
for each F € Hg do
Comg = {E,:(E, E;) € Com} -
Uses(z) := {(Jy.Euse(y) A f(y) = #) 1 Eyep € Compg and there is.an
axiom (Vz.Ey.(2) D Eguep(z)) in Hp}
if Uses(z) # {} then ' .
Construct a disjunction D(z) of all of the elements of Uses(x)
CUA:=CUAU {¥V2.E(z)V End(z) vV D(z)}
end if
end procedure

A.1.2 Library Assimilation Algorithms

The event hierarchy H is a tuple (Hg, Hgp, Ha, Hp, Hz). Com is a binary relation

between events (members of Hg).
Library Assimilate

procedure LibraryAssimilate(Info)

% New information from the Oracle is to be assimilated into cl(H).
% The new information, Info, is either a new constraint, a new

% step in a decomposition or a new abstraction.

!
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% LibraryAssimilate calculates C~ and Ct such that
% d(HY)y=d(HY\C~UCH.
% Initialization
set Hi,Hf, CUA~,CUAY, DJA~,DJAY  EXA-,EX A" to {}
case Info of: _
Constraint: call NewConstraint(Info)
_ Step: call NewStep(Info)
Abstraction: call NewAbstraction(Info)
end case
set Hy to Hy4 U Hj
set Hp to Hp U H;g
set 7 to CUATUDJA"UEXA™
set C* to Hf UHSUCUAY UDJATUEXA®

end procedure

NewEvent

procedure NewEvent(E)

% A new event is disjoint from every other event.
for each E_,; € Hg do
DJAY .= DJAT U {‘v’;c.—'EO;d(w) D "IE(:B)}
% It is a basic event type, and it is compatible only with itself.
Hg:=HgU{E} _
Hgp := Hgg U {E}
Com = Com U {(E, E)}
end procedure

NewConstraint

procedure NewConstraint( Vz.E(z) D &) =
% A new constraint is added to the decompositions, but it does not )
% affect the structure of the hierarchy unless the event is new.

H} = Hj U{V=.E(z) D r}

if E ¢ Hg then call NewEvent(FE)

end procedure

NewStep
procedure NewStep( Vz.E(z) D E,tep(R(x)) )
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% A new step is added to the decompositions.
(1) Hp = B} U {¥o.E(2) > Fuen(R(2)) }
% A new step needs to be added to the uses for every compatible event.
(2) for each E,, compatible with E., do
% add E(y) A R(y) = z to the uses for E,, _
if there is a CU A axiom with E.,,(z) on the left-hand-side then
Let the Uses{(x) be the set of disjuncts on the right-hand side of this
axiom
Let NewUses(z) = Uses(z) U {Jy.(E(y) A R(y) = =)}
Construct a new axiom with E.(z) on the left hand side and all
the members of NewUses(z) as disjuncts on the right-hand-side
CUA™ := CUA™U {the old axiom}
CUAY" := CUATU {the new axiom}
end if
(3) if E,., ¢ Hg then call NewEvent(FE,.,)
if E ¢ Hg then call NewEvent(E)
end procedure

NewAbstraction

procedure NewAbstraction( Va.F,p..(2) D Eabs(a:))
% A new abstraction is added to the set of abstractions.
(1) Hf := H} U{V2.Eqpe(z) D Eups(z)}
% A E,p.. is added to the list of specialization for Eg,
(2) if thereis an EX A axiom with Eu,(z) on the left-hand-side then
Let the axiom be Vz.Egps{z) D Ei(z) V...V E.(2)
EXA = EXA U{Ve.Buz) D E1(z) V...V E.(2)}
EXAY :=EXAY U {Va.E () D Ei(a) V...V Ey(2) V Egpec{z)}
else
% there was no EX 4 axiom for Fg,, so one is added =
EXAt := EXAY U{V2.Ep.(z) D Eopec(a)}
end if :
(3) A:={E € Hg : FE abstracts* Eg,}
% The events in A transitively abstract E,s,.
" B:={E € Hg : (E,Ee.) € Com}
% The events in B are compatible with F,,..
for each F, ¢ A do
for each Fz ¢ B do
% E, is has become compatible with Ep
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if (Ea,Eg) ¢ Com then
% They were not compatible, so they were disjoint
DJA™ := DJA~ U {¥Vz.~E4(X) D - Ez(z)}
Com = Com U {(EA,EB),(EB,EA)}
end if
end for each
end for each
(4) if there is an axiom in CUA with E4(z) on the left-hand-side
and there is an axiom in CUA with Eg(z) on the left-hand-side then
Let Auses(2) be the set of disjuncts that appear on the right-hand-side of
the CU A axiom for Ea(z)
Let Byses(®) be the set of disjuncts that appear on the right-hand-side of
the CU A axiom for Eg(z)
ABuses(az) — uses( ) U Buses(w)
Construct a new disjunction D(z) from the all of the elements of AB,,,(x)
for each £, € A do
CUA™ := CUA™U {the old CUA axiom for .EA(:E)}
CUAT .= CUAY U {Vz.Ex(z) D D(=)}
end for each
for each Eg € B do
CUA™ = CUA"U {the old CUA axiom for Ep(z)}
CUA*T .= CUAY U {Ve.Es(z) D D(z)}
end for each
end if
(5) if E,,.. ¢ Hg then call NewEvent(E,,..)
if B, ¢ Hg then call NewEvent(Ey,)

end procedure

A.2 Candidate Algorithms

A.2.1 Searching Algoi‘ifhm

Search

procedure Search (E,(Obs)V ...V E,(Obs))
- % Input : an observed event, Obs in a disjunction that describes
% all of the possible types that this event might be.
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% Output : Vistted, a set of literal that have been reached in the search
% and Aazioms, a set of ground clauses that identify the space searched
% in which a proof for the End event may exist,
% Initialize
Visited := {}
Azioms := {E1(Obs) V...V E,(0bs)}
for each 7 =1,...n do
Search1({E;(Obs), yes)
end for each
end procedure

Searchl: Search from one event type

procedure Searchl( E(M), ConsiderSpec)
% Input : an event M and its type F from which searching is to proceed
% and ConsiderSpec, a yes/no value used to eliminate “is-a” plateaus
% Searchl adds to Visited and Azioms
if E(M) ¢ Visited then
for each Constraint x on E(M) do
Try to prove -« (with a general purpose or special purpose theorem
prover) '
if the proof succeeds then
Azioms 1= Azxioms U {E(M) D false}
Exit from Searchl
end if
end for each
Visited := Visited U {E(M)}
if E # End then
% Consider the Uses of E(M)
if there is an axiom (Ve.E(z) D End(z)VUses(z)) € CUA then
Let NewAssn be a new assumption and associate it with this
CUA axiomn. .
Let NewSk be a new Skolem function and associate it with this
axiom.
Uses{x) is a formula of the form Jy.(Ei(y) A fly) = 2) V.
(Ea(y) A fuly) = =)
Construct a new formula, Usesl, whichis Ei(NewSk(z))V.
E.(NewSk(z))
Azxioms := Azioms U {NewAssn A E(M) D Usesl(M)}

N
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for each disjunct E;(NewSk(M)) € Usesl(M) do
Search1(E;(NewSk({obs)), yes)

end for each

end if

% Consider the Direct Abstractions of E(M) .

for each axiom of the form (Vz.E(z)U Eu.(z)) € Hg do
Azioms := Azioms U {E(M) D Eq,(M)}
Search1(E,(M), no)

end for each

% Consider the Specializations of E(M)

if ConsiderSpec = yes then

if there is an axiom (Vz.E(z) D Ev(z) V...V Eu(2)) ¢ EXA

then
Let NewAssn be a new assumption and associate it with
this FX A4 axiom
Aztoms 1= Azioms U {NewAssn NE(M) D Ey(M)V ...V
E (M)} -
for each :=1,...n do
Search1(E;(M), yes)
end for each
end if
end if
end if
end if
end procedure

A.2,2 Candidate Assimilation Algorithni

procedure AssimSearch(EXA~,CUA™,EXAY CUA* H}, HE)
% Assimilate EXA~ and CU A~
for each axiom C in EXA-UCUA™ do
for each assumption A associated with C do
Azioms = Azioms U {~A}
end for each
end for each

% Assimilate EXA*
for each axiom (Vz.E(z) D Ei(z) V...V E,(2)) in EX AT do
for each member E(M) of Visited do '

Coyb
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for each:=1,...,n do
Searchl(E;(M),yes)
end for each
end for each
end for each

% Assimilate CU AT

for each axiom Vz.E(z) O End(z) V Uses(z) in CUA* do
Let OldSk be the old Skolem function associated with the old version of
this CU A axiom

end for each

% Assimilate H+ .
for each axiom (V:c Eypee(2) D Eabs(:c)) in H} do
for each member E,,..(M) of Visited do
Searchl{ E.p,( M), no)
end for each
end for each

% Assimilate the constraints in Hj}
for each axiom Vz.E(z) D s in Hf; do -
Try to prove &
if the proof fails then
for each member E(M) of Visited do
Azioms = Azioms U {E(M) D false}
end for each
end if
end for each
end procedure

A.3 Proofs

A.3.1 Completeness with Ground Clauses

The following results appear in [3]
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Theorem 1 [appears as Theorem 4.1, p.48] Let § be a set of clauses that represents
a (Skolem) standard form of a formula F. Then F' is inconsistent if an only if S is

inconsistent.
The symbol 33 is the literal that is assigned false in all interpretations.

Theorem 2 [appears as Theorem 7.2, p. 144] If C is an ordered clause in an
unsatisfiable set S of ordered clauses and if S - {C} is satisfiable, then there is an

OL-refutation from § with top ordered clause C.

since an ordered clause is merely a clause upon which an arbitrary ordering of
the literals has been imposed, and since an OL-refutation is a specific type of linear

deduction of O, we have the following corollary.

Corollary 2.1 If § is an unsatisfiable set of clauses, and S - {C} is satisfiable then

then there is a linear deduction from Cto D given 3.

Theorem 3 Let c¢l(H) be the closure of the abstraction/ deco.mposition hierarchy
H. Let I’ be a ground observation such that <[(H)UT |= Jz End(z). Suppose that
A H)o. W T End(z). |

Then for each Skolemized form cl(H ), of cl(H) there exists a disjunction  of
literals of the form End(z), and a linear deduction from I to  given cl(H ).

Proof
d(H)UT |= 3z End(z)
< c(H)UT U{=(3z End(z))} is unsatisfiable.
<= cl(H)u VT U {Vz ~End(z)} is unsatisfiable
by Theorem 1 where cl(H ), is a Skolemized form of cl{ H)
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Since we assume that cl(H),, U{Vz —End(z)} is satisfiable, there exists a linear
deduction from T’ to D given cl(H)4 U {Vz ~End(z)} by Corollary 2.1. Given this
deduction, adjust it so that no resolution against Vz.—End(z) is perfoimed, but
instead the End literals are left unresolved. Then the result is a linear deduction
from I’ to some disjunction of Fnd literals given cl( H ),z. Let £ be this disjunction
of End literals. &

Theorem 4 Let cl(H),; be the Skolemized closure of the abstraction / decompo-
sition hierarchy H. Let I be an ground literal that represents an observation and
let §2 be a disjunction of End events. If there is a linear deduction of  from I

given cl(H ), then every clause in the deduction is ground.

Proof The first formula of the deduction, I', is the observation which is ground.
Let ¢y =T. To show that C,,...,C, are ground, proceed by induction. Suppose
Cr is .ground for all £ = 0,...,7 — 1. Then ()}, the resolvent of ;_; with B; is
clearly ground if B; = C; for j < ¢. By inspection each axiom in § is a disjunction
of literals that have exactly one variable, and that variable is shared by all literals
~ in the clause. Therefore by i:esolving one of these literals against a ground literal,

all of the other literals also become ground. So C; is ground. 1
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Proofs and Algorithms for
Chapter 4

B.1 Proofs

Theorem 5 Let P be a consistent set of propositional clauses, and g a literal.

P k= g if and only if there exists a negative ancestor proof graph of g using clauses

Cin P.

Proof (= by induction on the number of clauses in P)
We claim if A is a sequence of nodes representing a path of tree edges, B is the set
of all literals whose complements appear in the nodes of A, PUB =g, PUBis
consistent, and G is a node conta,ini.ng g then there is an NAT proof graph of G with
respect to the ancestor path A, If this claim is true theﬁ by setting A to the empty

sequence we have a negative ancestor proof graph of ¢, and the result is obtained.

If P = {} then PU B |= g means g € B, so there is a node in A containing 7,

which means there is an NAL proof, using (case a) of Definition 4.3.2. Let P have

147
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k + 1 clauses. If ¢ € B then there is an NAL proof, also by (case a). Otherwise we
construct P’, a subset of P such that P'UBU{g} is inconsistent, and for all proper
subsets P of P/, P U B U {g} is consistent. (P’ caﬁ he obtained by exhaustively
considering all possible subsets of P.) Assume P’ does not contain a clause ¢ which
mentions g. Then since P/ U B is consistent and g & B, P'U B U {g} is consistent,
which is false. Thus there is a clause C' € P and without loss of generality assume
C=g \/ g1V ...V g,. Since P'\ {C} is a proper subset of P, P\ {C}UBU{g}is
counsistent. If there is a g; in ' such that P'\ {C} U BU {g} U {g;} is consistent,
then P’'U B U{g} is consistent, which is false. Thus P\ {C}UBU{g} = 7; for all
j- Then by induction, setting P in the claim to P’\{O’},. setting B to BU{g}, and
setting g to g, if we construct nodes G; containing g; then there is an NAl proof
graph of each G; with ancestor path (A,&). These graphs can be combined by
constructing tree edges from G to each G; to form an NA1 proof of G with respect

to the ancestor path A.

{<= by induction on the height of the tree (V,T))
We claim that if there is an NA1 proof gr&ph of some node 7 with respect to the
ancestor path A, then PU B |= g, where B is the set of literals whose complements
appear in A é,nd g is the literal in G. If the claim is true then by setting A to the
empty path, B becomes {}and P |=g.

Let the tree (V,T) in the NA1 graph have height 0. Then either there is a back
edge from G to a node in 4 s0 g € B, or there is a contrapositive rule g with no
.:l:ight band side so g' € P. In either case P U B |= g. Suppose the tree has height
k + 1. If there is a back edge from G to a node in A then again P U B E g. Oth-
erwise there is a céntra,positive rule g <~ g1 ...gn,and for all : = 1,...,n thereis a
node (; containing g; and an NA1 proof graph of @; with respect to ancestor path

{A,G). These smaller graphs contain trees with height at most &, so by induction
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g
G——o

¢ |J!N1
N,

‘Figure B.1: From ¢ with a backedge (N.,,, N;) to ¢’ with a back edge (N{, Ny

PUBU{g} [ g Since Pl=g « g1...¢, it follows that P U B U {g} k= g. Thus
P U B U {g} is inconsistent so PU B = ga

The following lemma is used in the proof of Theorem 7.

Lemma 6 Let § be a negative ancestor proof graph using clauses from P that
contains a path of tree edges represented by the sequence of nodes Ny,..., N, and
a back edge (N,, Ny). For i = 1,...,n, let N; contain the literal h;. Then there
exists a negative ancestor proof graph G’ using clauses from P, that contains a path

of tree edges N},..., N, where N/ contains %;, and a back edge (N],N.).

Proof Let Gy be the NAl proof graph of Ny, the node containing ;. We shall

construct G' by replacing G; in G with G, an Nal proof graph of N, the node con-

taining k... (See Figure B.1.) Note that k; = %, since there is a back edge { Ny, Ny ).
Let A be the ancestor path from the root of G to Ny. We construct ! by induc-
tively constructing an NA1 proof graph of N/ with ancestor path (4, N.,..., N}),
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G g,

Figure B.2: Constrﬁcting G, from G,

such that there is no back edge leading to any one of N/_,,..., N/. (See Figure
B.2.) '

The NAL proof graph of N] contains the ancestor path (4, N!,..., N}), and by
(case a) a back edge (N{, N!), since N! contains ; and N’ contains hy. There is
no back edge to N since N; has no descendants. To construct the NAL proof graph
of Ni,, with ancestor path (A4, N),..., N.,), note that there is a clause in P from

which the contrapositive rule

hi — hz‘+1031£ o oo Bing
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can be constructed, without loss of generality. Therefore the contrapositive rule
?1»-174-1 — Eﬁau - e Aimi

can also be constructed. So we apply (case b) and construct for each j =1,...,m
a node L; containing a, a tree edge (N[, ;) and an NA1 proof graph of L; with
ancestor path (4, N/,..., N{_,). We have already constrﬁcted by induction an NA1
| proof graph of N/ with ancestor path (4, N),..., N/ ).

To construct the NAT proof graph of L;, note that part of G, is an NAL proof
graph of L; with ancestor path (A4, Ni,...,N;). (See Figure B.2a.) Make a copy
of that graph, replacing the ancestor path (4,Ny,..., N;) with the ancestor path
(A,N,,...,N{,;). Any back edge (S, N,) for 1 < s < 7 .in the proof graph for
L; must also be removed since its destination has been removed. To construct
a new proof graph for S note that by induction we have already constructed a
proof graph for N,, a node which also contains h,. This graph has an ancestor
path (4,N),...,N, ), but no back edges to any of N._,,...,N!. Make a copy
of this graph, and in the copy give the name $ to N,. Since there were no back
edges to N!_,,..., N/, Wé can replace the ancestor path in the new graph with
(A, N5, .., Ny, Ly, .., 5). (See Figure B.2b.) This completes the construction of
the proof gﬁ:aph' for L;. To complete the induction we point out that there are no

back edges to N, ;.0

Theorem 7 Let P be a consistent set of propositional clauses, and g a literal. Let
Fp be a foothold rule set of P. P |= g if and only if there exists a foothold proof
graph of g from Fp.

Proof (<) Since the foothold proof graph is a negative ancestor proof graph,
the result follows by Theorem 5.
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(=) Let G be a negative ancestor proof graph of ¢ from P, provided by The-
orem 5. According to Definition 4.5 label G with respect to Fp. If there are no
negative back edges then this is a foothold proof graph, and we are dome. Other-
wise select a lowest node N that is the destination of some negative back edge. We
shall construct a labelled NAl proof graph of N that has no negative back edgeé
leading to N or to any descendant of V. By selecting a new lowest node that is the
destination of some negative back edge and repéating the construction of a.n NAl
proof graph of it with no negative back edges we can eliminate all negative back

edges. This completes the construction.

- To construct the NAl proof graph of N as claimed, let N; = N and select a
back edge (N,, Ni) with label & < 0. We know k = 57 ,I; where I; is assigned by
the foothold rule - |

h; — hgﬁ ag’;) . a(,;:g

Apply Lemma 6 to (N,, Ni) to replace that back edge with (N, N.) with label
k' = B2 1! where I/ is assigned by the foothold rule

Ron — B aff) ..l

If h; and k41 are both positive or both negative literals then in the ordering chosen

in Fp either h; comes before h;y, in which case I; = +1 and I = —1, or h; comes
after hiy;, in which case I; = —1 and I = +1. If one of h; and h; 4 is positive
and the other is negative then I; = I = 0. In either case [; = ~I{ so k = —&'.

Thus &' > 0. We have replaced a negative back edge with a positive one. We claim
that we have not negated any positive backedge so that the number of positive
backedges has strictly increased. By continuing to select a negative back edge and
apply Lemma 6, we strictly incréase the number of positive back edges. Since there

is a finite maximum number of back edges we can eliminate all negative back edges
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Figure B.3: The effect Lemma 6 on other back edges

in a finite number of steps.

It remains to show our claim that an api)lica.tion of Lemma 6 to a negative back
edge does not negate any positive back edge to Ny. Let (3, V1) be a positive back
- edge, and let\.the path of tree edges from N to M, be Ny,...,N;, My,..., M,,, as
in Figure B.3a. Let X = Yol let Xy = 7,05, let Xar be the sum of the
labels of M, to M,,, let k& be the label of M;. After the application of Lemma 6 to =
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(N1, N,) we have the graph shown in B.3b, where ¥’ is the new label for M.

Given X+hypm+Xnw < 0

it follows X+hyu+Xny € -1

S0 X < Ly —Xy-1
Given X4+Ek+Xy > 0

it follows : X > —k—Xu
Transitively Iy —Xwv—1 > —k—Xy
SO X=Xy > L+ 1-—%
Suppose Xpu—Xn+k < 0

Then X —Xn < ml—k’_
Transitively ~1=% > ln+1 - k
80 -k~ > 2

Since k, k' and ;1 are restricted to values in —1,0, +1 it follows that & = 1,%k' = —1
and ;;; = —1. Therefore in the clause in question the ordering chosen to build the
foothold rules put the literal in N; before the ]jterai in Ny, since Zg_;l = —1. It put
the literal in N;y; before the literal in M, since k' = —1. And it p.ut the literal in
M; before the literal in IV; since & = 1. But this is absurd so the supposition that
Xpr— Xy + K < 0is falsed

B.2 Computing Foothold Proofs in Prolog

% Propositional Foothold Proof Procedure

- op(259, fx, (=)).

"
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prove(Q) :- ﬂl_prove(labeﬂedjitera,l(G, 3 [ D-

fth_prove(labelled literal(G, .}, Anc) :-
negate(QG, Neg.G),
member( labelled.hteral(Neg.G -}, Anc),
I, fail. % Cut is allowed when literals are prop051t10ns
fh prove(la.belled_hteral((} Label), Anc) :-
ancestor_search(Q, Label, Total, Anc),
1, %Cut is allowed when literals are propositions
Total > 0.
fh_prove(labelled literal(G, Label), Anc) :-
foothold_contrapositive_rule(G, Body),
negate(G, Neg_G),
fh_prove_all(Body, [labeiled literal(Neg G, Label) | Anc]).

th prove all([ ], _).

fh prove all([ G1 | G ], Anc) :-
fh.prove(G1, Anc),
th_prove_all{G, Anc).

ancestor_search{Goal, S0, S0, [labelled literal(Goal, Label) | Anc])
ancestor_search(Goal, 50, 52, [labelled literal(G, Label) | Anc]) =
51 1is S0 4 Label,
a.ncestor_sea.rch(Goal, S1, 52, Anc).

negate(X, -X) - \4+ X = -,
negate(—X, X):



Appendix C

Algorithms from Chapter 5

C.1 de Kleer’s ATMS Algorithms

These algorithms perform the operations described in Section 5.1.5. The algorithms

R T e

algorithms are based on the supposition that at the outset all of the labels are
up-to-date With the information available before this new clause, and so they only
compute the\ effect of the new clause. For example, Weave, instead of using the
existing labei for a (the literal with new support) uses only 1;he additions L to a¢’s
label. |

Let a «— by A ... A b, be a new Horn clause to bf—_: added to Ithe ATMS.

algorithm AddAssumption (a)
1 if there is no or-node for a then
create a new or-node containing @ and the label {}
end if
call Update({{a}},q)
end AddAssumption

156

Propagate, Update, Weave and NewNogood were proposed by de Kleer [8]. These.
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algorithm AddClanse (a < b A...AB,)
/* The additions shown in Figure 5.1 are made to the and/or graph. */
for each I € {a,bs,...,0,} do

if there is no or-node for [ then

create a new or-node containing ! and the empty label {}

end if :
end for each
Let m be a new and-node. Make 7 a child of the or-node containing «. Make
7’s children be the or-nodes containing b;.

call Propagate( a «— by A ... A by, 6, {{}})
end algorithm AddClause

algorithm Propagate (@ « b A...Ab,,b,T)

/% Compute L, the incremental update for the label of a.x/

L = Weave(b, I,[by,...,b.]) _

/* If there is an update, perform it. (This will, in turn, generate more propa- -
gation to the parents of a.) */

if I # {} then call Update(L,a)

end algorithm Propagate

algorithm Update (L, qa) ~
/* Detect Nogoods
if ¢ =1 then

for each Fc L do

call NewNogood(F)

end for each
else :

/* Engsure the update is minimal. */

Delete every member of I which is a superset of some member of 4’s label.

/* Ensure the new label for a is minimal, */
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Delete every member of a’s label which is a superset of some member of

L.
/* Update a’s label. */
Add L to a’s label.
/% Propagate the incremental change to a’s ancestors. */
for each and-parent 7 of a do
/* See Figure 5.1 */
Let cons be the or-parent of .
Let dy,...,d, be the or-children of 7. {a occurs among the dz)
call Propagate(cons — dy A ... Adp,a,l)
end for each
end if
end algorithm Update

function Weave (5,1, [b1,...,b,])
/* There are two modes: either b occurs among the ¥;, in which case I rep-
resents the changes to b’s label, and weave should compute the effect of this
change on the conjunction of the labels of the b;, or b = ¢, in which case we
simply want the conjunction of the labels of the b;. Weave returns a disjunctive
normal formula. */ _
if [by,...,b,] is the empty sequence then
return 1 :
else if & = b then
return weave(d, 1, by ..., b,})
else :
Let I’ be the set of all environments formed by computing the union of
an environment of 7 and an environment of ,’s label.
Remove from I’ all environments which are subsumed by (are supersets
of) some nogood or some other environment in I,
return weave(b,I’,[bs,...,0,])
end if

end function Weave

algorithm NewNogood (E)
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Add E to the set of nogoods
Remove any superset of F from every node label.
end algorithm NewNogood

C.2 Our TMS Algorithms

Let b, V ...V b, be a new clause to be added to the TMS. Main refers to the main

and/or graph.

algorithm AddClause (&; V...V b,)
for each [ € {b,...,b,,b1,...5,} do
if there is no or-node for { in main then _
create a new or-node in main containing { and the empty label {}

end if
/* Add each contrapositive rule */
for each :=1,...,n do

/* Add the contrapositive form to the main graph */
Let m be a new and-node in main. Make 7 a child of the or-node in main
containing b;. Make 7’s children be the or-nodes in main containing Ej for
J#
foothold labels to the b; according to Definition 4.4.
call Propagate(d; « by A ... Abi g Abiy Ao Aby,d, {{}}, main)

end for each

end algorithm AddClause

algorithm AddAssemption (a)
if there is no or-node in main for ¢ then
create a new or-node in main containing ! and the label {}
end if :
call Update({{a}},q, main)
end AddAssumption
call Propagate( @ «— by A ... A b,, ¢, {{}}, main)
end algorithm AddAssumption
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algorithm Propagate (a « b A... A b,,b, I, Graph)
/* Compute L, the incremental update for the label of a.*/
L := Weave(b, I, [b1,...,b,), Graph) .
/* If there is an update, perform it. (This will, in turn, generate more propa-
gation to the parents of a.) */
if ‘L £ {} then . :
call Update(L,a, Graph)
if Graph = main then :
call Update(L,a, BackedgeGraph) for all BackedgeGraphs where a
occurs.
end if
if Graph = BackedgeGraph(@) then
call Update(Z,a, Main)
end if '
end if
end algorithm Propagate

algorithm Update (L, a, Graph)
/* Detect Nogoods
if a =1 then
for each E ¢ I do
-call NewNogood(E)
end for each
else
/* Ensure the update is minimal. */
Delete every member of L which is a superset of some member of a’s label
in Graph. '
/* Ensure the new label for ¢ is minimal. */
Delete every member of ¢’s label in Graph which is a superset of some
member of L.
/* Update a’s label, */
Add L to a’s label in Graph.
/% Propagate the incremental change to a’s ancestors. */
for each and-parent 7 of a in Graph do
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/* See Figure 5.1 */
Let cons be the or-parent of « in Graph.
Let dy,...,d, be the or-children of # in Graph. {a occurs among the
d;)
call Propagate(cons « di A ... A dn,a,L,Graph)
end for each
end if
end algorithm Update

function Weave (b,1,[by,...,b,], Graph)
/* There are two modes: either & occurs among the b;, in which case I rep-
resents the changes to b’s label, and Weave should compute the effect of this
change on the conjunction of the labels of the b;, or b = ¢, in which case we
simply want the conjunction of the labels of the b;. Weave returns a disjunctive
normal formula. */
if [b1,...,b,] is the empty sequence then
return I
else if b, = b then
return Weave(¢, 1, [bs,...,b0,])
else _
Let I’ be the set of all environments formed by computing the union of
an environment -of J and an environment of 4,’s label in Graph.
Remove from I’ a]l environments which are subsumed by (are supersets
of) some nogood or some other environment in I'.
return Weave(a,I’,[bs,...,b,], Graph)
end if
end function Weave

algorithm NewNogood (E)
Add F to the set of nogoods
Remove any supersei of F from every node label.

end algorithm NewNogood

b
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C.2.1 Backedge Algorithms
Finding Backedge Paths

The routines to find backedge paths are presented in Prolog to facilitate the pre-

sentation of the non-determinism in the routine.

\* FindPaths(Lit) is a failure driven loop that finds backedge paths to add to
the TMS.*\

find_paths(Lit) :- find_paths1(Lit, -, [ ], [ ], fail.

find_paths(Lit).

\* Find_pathsl is given Lit, a literal, Ancestors, a list of the ancestors of Lit
in the path considered so far, and SoFar, a list of the contrapositive rules on
the path so far. Find pathsl calls AddPath whenever a path is found to Lit
from the complement of Lit. FHLabel is Lit’s foothold label. Ancestors also
contains the foothold labels of the ancestors. *\ :

find_pathsI(Lit, FHLabel, Ancestors, SoFar) :-

ancestor_search(Lit, Ancestors, SoFar, [ |, Path, FHLabel, Total),
!
\* If ancestor search succeeds once, it need not succeed again, even if the
foothold condition is not met. %\
Total > 0, )
add_path(Path).
\* Eliminate non-minimal paths. *\
find paths1(Lit, FHLabel, Ancestors, SoFar) :-

member(lit fh(Lit, _), Ancestors),

|
3

fail.

find_paths1(Lit, FHLabel, Ancestors, SoFar) :-
contrapositive rule( Lit «— RHS),
member(L, RHS),
% look up the foothold label for L in this contrap031t1ve
foothold label(L, Lit «— RHS, FHLabel),
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find_paths1{L, [lit fh(L, FHLabel) | Ancestors], [Lit « RHS | SoFar]).

\* Ancestor search searches for Lit among Ancestors, and at the same time
keeps a running total of the foothold labels. Path accumulates the contrapos-
itives found on the path to the ancestor. *\
ancestor_search(Lit, [lit fh(L1, FHLabel) | Ancestor], SoFar, Path, Path, Total,
Total) :-

negate(Lit, L1).
ancestor_search(Lit, [lit fh(L.1, FHLabel) | Ancestor], [CP | CPs], Pathln,
PathOut, Totalln, TotalOut) :-

TotalTemp is Total + FHLabel,

ancestor_search(Lit, Ancestor, CPs, [CP | PathIn], PathOut, TotalTemp,

TotalOut). .

Adding Backedge Paths

algorithm AddPath(Path)
\* AddPath adds the contrapositive rules in Path to the appropriate ba.ckedge '
graph, and calls Propagate to initiate Truth Maintenance *\
\* Path is a sequence of contrapositive rules. *\
Let R be the first rule in Path.
R has the form Lit — Condy A ... A Cond,
Graph = BackedgeGraph(ITit)
for each rule R in Paths do
R has the form L « Cond; A ... A Cond,
/* Add the contrapositive form to the backedge graph */
Let m be a2 new and-node in Graph
if there is an no or-node in Graph containing I then create such an
or-node and give it the same label as the or-node in main containing I
Make 7 a child of the or-node in Graph containing L.
for each Cond; in R do
if there is an no or-node in Graph containing Cond; then create
such an or-node and give it the same label as the or-node in main
containing Cond;.
Make the or-node containing Cond; a child of 7 in Graph

-
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end for each
call Propagate(L « Condy A ... A Cond,,d,{{}}, Graph)
end for each
% Make sure that the label for Let is {{}}
call Update({{}}, Lit, Graph)
end algorithm

C.3 Plan Recognition Algorithms

C.3.1 Extracting Candidate Plans

Note that this algorithm extracts a graph which does not precisely match the defi-
nition of a negated ancestor proof graph, Definition 4.3. If converting to a negated
ancestor proof graph would require teplicating the same literal into two or more

nodes then the algorithm avoids this extra step.

function ExtractGraph ( Literal )

\# ExtractGraph builds a proof graph from the nodes in TMS. For each Or

node it selects one And node and attempts to extract the proof graph for each

Or son. There must be support either in the main graph or in one of the

negated ancestor paths. it returns its result in three sets, Nodes, TreeEdges

and Backedges. These three sets are buili wp by ExtractGraphl.*\

Let N be the node in the main graph containing Literal

if N has a non-empty label then —
call ExtractGraphl(N, main)

return (Nodes, TreeEdges U Backedges)

end function '

procedure ExtractGraphl ( N, Graph )
Let L be the literal in ¥V
% Find the and/node that _supports the literal
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if L is an assumption then
% We do not need to see the assumptions
return
else if there is an and/node N in Graph such that each or-son of N has a
non-empty label then
Nodes := Nodes U{ N}
for each or-son S of N do
call ExtractGraphl(S, Graph)
TreeEdges := TreeEdges U(N, .5)
end for each '
else if Graph = main then
% There is no support for the L in the main graph.
% Try the backedge graph for the complement of L
call ExtractGraphl(N, backedge-graph(L))
else if Greph = BackedgeGraph(L) then
\* This is the backedge graph for the L, so there is already a node in
Nodes containing I which is an ancestor of L. *\ .
Nodes := Nodes U{N}
Let Anc be the node containing I,
Backedges := Backedges U{(XV, Ane)}
else
% This is the backedge graph for a different literal, so try the main graph
call ExtractGraphl(L, main) |
end if
end procedure

C.3.2 Plan Recognition with Assimilation (Single Obser-

Tk

vation)

procedure PlanRecognition-with- Assimilation-SingleObs
0

Let H be the initial hierarchy

Let E1{Obs) V...V E,(Obs) be the single observation

call CloseLibrary(H)

call Search(E;(Obs) V ...V E,(Obs))

Initialize the truth maintenance system TMS
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% The Reasoner
for each A ¢ Azioms do
AddClause(A)
end for each
for each assumption Asn associated with an axiom in CU AT or an axiom in

EXAY do
AddAssumption(A)
end for each
call FindPaths(end)
% FindPaths calls AddPath for each path found
call ExtractGraph{end) to get the proof graph

loop
Accept Newlnfo from the Oracle
call LibraryAssimilate{NewInfo) .
call AssimSearch(EXA~,CUA-,EXAY,CUA* Hf, H})

% The Reasoner
for each A € NewAxioms do
AddClause(A)
end for each
for each assumption Asn associated with an axiom in CU At or an
axiom in FEX AT do
AddAssumption{Asn)
end for each
for each assumption Asn associated with an axiom in CUA™ or an
axiom in FX A~ deo
AddClause{4sn D false)
end for each =
call FindPaths(end)
% FindPaths call AddPath for each path found
call ExtractGraph(end) to get the new proof graph
go to loop :
end proecedure PlanRecognition-with- Assimilation-SingleObs
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C.3.3 Plan Recognition with Assimilation (Multiple Ob-

servations)

This algorithm shows how to do plan recognition with multiple observations while

accepting new plan information from the oracle.

The algorithm uses and maintains two sets: Hypoths and SingletonStates. Hy-
poths is a set of sets of e-graphs that is maintained by GroupObservations, Each set
of e-graphs it contains is a complete explanation of all of the observations that shows
how they are related. SingletonStates is a set of 4-tuples (ObsTypes, SearchState,
TMS-State, and E-graph) that is maintained by our algorithms. There is a 4-tuple
for each observation, and the disjunction of types that describes the observation is
ObsTypeé. SearchState is the state of the Search algorithm that includes the set of
Axioms that have been generated and the set of literals visited. TMS-State is the
and/or graph, backedge graph and labels. E-Graph is the exiracted explanation

graph that contains the disjunction of candidate plans for this observation.

procedure PlanRecognition

%
Let H be the initial hierarchy
Hypoths := {}

SingletonStates 1= {}
call CloseLibrary(H)
loop
Input Newlnfo
if NewlInfo is a disjunctive observation E1{Obs) V...V E,;(Obs) then
call Search(E,(0bs) vV ...V E,{(Obs))

% The Reasoner

Initialize a new truth maintenance system TMS in TMS-state
Add each ground clause to the TMS with AddClause

Add each new assumption to the TMS with AddAssumption
call FindPaths(end)

J
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% FindPaths calls AddPath for each path found
call ExtractGraph(end) to extract the proof graph from this TMS
Convert the ProofGraph to an E-graph
Create a new member of SingletonStates, which is ( Eq(Obs) V ...V
E,(0bs), (Visited,Axioms), TMS-state, E-graph)
call GroupObservations(E-graph) to get the new Hypoths
else if Newlnfo is an addition {o the hierarchy then
call LibraryAssimilate(NewlInfo) '
for each (Obs, SearchState, TMS-state, E-graph) € SingletonStates
do
call AssimSearch to get the additional ground clauses required, and
the assumptions that have been violated

% The Reasoner

Add each ground clause to the TMS with AddClause

Add each new assumption to the TMS with AddAssumption

call FindPaths(end)

% FindPaths calls AddPath for each path found

call ExtractGraph(end) to get the proof graph from this TMS

Convert the proof graph to an e-graph and store it in E-graph
end for each :

Hypoths := {} ' o
for each (Obs, SearchState, TMS-state, E-graph) ¢ SingletonStates
“do

call GroupObservations(E-graph)
end for each
end if
go to loop
end procedure PlanRecognition

T
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