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Abstract

An online algorithm is described which finds the facets of the convex
hull of a set of points in d-dimensional space. For point sets chosen at
random from some distribution, the algorithm is ©{nl + F) for fixed
d, where n is the number of points, I is the expected number of sides
of a polygon defined by the intersection of a 2-flat with the poiytope,

and F is the expected number of facets.
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1 Introduction

The convex hull problem is a central one in computational geometry, where
the generation of the convex hull is often a preprocessing step for some other

Process.

Definition 1 The convex hull conv(§) of a finite set S = {p1,...,0a} in

2 i3 the set of all convex combinations of the points of S, i.e.
conv(S) =
{oapr+ -+ anpe, | 1+ +ap =1, 6; 2 0}

The convex hull is a convex polytope, or bounded convex polyhedron,
that can be represented by its set of facets or highest dimensional faces,

In ®*, conv(5) is the closed segment [min(5), max(5)], which we rep-
resent by its set of facets {min(5), max(S5)}. The problem is {(n) and an
optimal solution is straightfoward.

In 2, conv(S) is the smallest convex polygon containing §, which we
represent by its set of facets or edges. The problem is transformable from
sorting, and therefore (}(nlogn). The Graham Scan [5] was the first op-
timal algorithm for R?, and a number of subsequent algorithms have been

developed with computational advantages for particular distributions.




In 3, conv(S) is the smallest 3-dimensional polytope containing S,
which we represent by its set of polygonal facets. The 2(nlogn) lower
bound is inherited from ®2 and achieved by Preparata and Hong’s Divide-
and-Congquer algorithm [6].

In %4, d > 4, the number of facets F of a convex hull can rise rapidly,
and can be as much as O(nl?/2]), but it has been shown that F is no more
than O(n) for a remarkably wide range of ‘average’ distributions (see {4] for
a summary). .

Chand and Kapur’s O(n x F) Giftwrapping algorithm [3] was the first
algorithm developed for higher dimensions. Kallay’s Beneath-Beyond al-
gorithm [7] is O(n x nl9/2]} in the worst case, on-line, and maintains the
complete facial graph. Seidel’s algorithm [8] operates in the dual space,
upda,ting. the dual facial graph with the addition of each new point, with
complexity @(nl4/2l) for even d and O(n x nl#/2]) for odd d. Seidel also
recognized the significance of the wide variability of the number of facets F
for different distributions, and later developed the O(n? + Flogn) Shelling
algorithm [9].

Stewart in [10] proposed an algorithm which appears from experimental
evidence to be O(n) for several symmetric distributions of points. (The over-

all complexity has not yet been proved.) In fact the algorithm is Q(nlogn)
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since the first step is a sort of the points; the time for this sort is very
small compared to the rest of the algorithm for the cases run. The algoz-
ithm in this paper is a variant that avoids the sor{, and which may he more
amenable to an average case analysis. It also seems to run faster for higher

dimensions.

2 Preliminaries

Consider a set S of n points in general position in £¢ for any d > 2 and

n>d+1.

Definition 2 An extreme point p € S is not the convez combination of any

other two points of §. The set of all extreme points is denoted ext(5).

Theorem 1 (Brondsted, theorem 7.2) P = conv(S) is the polytope of

the extreme points of S, i.e., P = conv(ext(S)).

Definition 3 A4 face F of a polytope P is a convez subset such that, for

any two distinct points y,z € P with ly,2[NF £ 0, then [y, 2] C F.

We call a face F a k-face when dim(F) = k. The proper faces of P are
of dimension 0 through 4 — 1, or points through facets, and all lie on the

boundary of P.
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Theorem 2 (Brondsted, theorem 7.3) Every proper k-face F of P is a

k-polytope, and ext(F) C ext(S).

Because S is in general position, every proper k-face is not only a k-
polytope, but a k-simplex. We therefore represent a k-face F by its £+ 1
extreme points ext(F) C §. We are primarily concerned with the (d —
1)-faces or facets, the (d — 2)-faces or subfacets, and the (d — 3)-faces or
subsubfacets.

A useful feature of the facial structure of convex polyt(;pes is described

by the following well-known theorem.

Theorem 3 Fach subfacet of a polytope is contained in exactly two neigh-

boring facets.

Each simplicial facet contains exactly d simplicial subfacets, and so has
exactly d neighbors. -
We represent a convex hull by its set of facets P. Each facet F € P is

defined by its d + 1 extreme points, and we also store;
1. Subff,...,Subf] : the d subfacets of F.

2. Neigf,...,Neig] : pointers to neighbors, ordered such that Fn Neig/ =

Subf?.




3. Half” : the equation of the halfspace bounded by the hyperplane con-

taining 7, and oriented so that § C Half”.

3 The Algorithm

Starting with an initial simplex P, we add the points of § to P one at a
time in random order, maintaining P as the convex hull of the points so far
considered.

First, we describe a procedure by which 7 may be upd;,ted with a new
point p known to be external to P. Second, we describe a method by which

we can determine if a new point p is indeed internal or external to 7.

3.1 Updating the Convex Hull

P represents a convex hull by the data structure given above, and p is a
point external to P.
Imagine that P is opaque and that our eye is positioned at p. The update

P «= P U p requires five steps:

1. Identify the set of vistble facets V, where

V={F|FeP, pgHaf}




2. The boundary of V is a set of subfacets called the horizon H, where
each subfacet of H is shared by one facet of V' and one facet of P\ V,

Create a cap C of new facets:
C={F|F=ful{p} feH}

3. Links must be set between C and the facets of P \ V on the horizon.
4. Links must be set between the facets of C themselves.
5. V must be deleted from P.

We start the update under the assumption that a first visible facet JF is
known, and give a method to find this facet in the following section. The

first three steps of the update can then be performed as one process:

1. Identify the visible set ¥V by a depth-first search of the neighboring

facets of F.

2. During this search, when the neighboring facet G of a visible facet F
is found to be nonvisible, then subfacet f = F N G is in the horizon

H, so immediately create a new cap facet 7 = f U {p}.

3. At the same time, interlink neighboring facets 7 and G across f.
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At the conclusion of this depth-first search, we have identified V, created
C, and linked C to P.

The interlinking of the cap facets with each other (step 4) is the major
step, since there are (d — 1)/2 as many links to be set between facets of C

as there are between C and P,
Lemma 1 Every facet 7 € C has d — 1 of its neighbors in C.

Proof: Only one subfacet of 7 does not contain p, i.e., subfacet f = 7\ {p},
and f is shared with a facet of P. The remaining d — 1 subfacets of 7 do
contain p, and only facets of C contain p, so d — 1 neighbors of 7 must be

inC. O

We set these links between cap facets by a walk around a circuit through
neighboring facets, every facet in the circuit containing a particular subsub-

facet.

Theorem 4 There is a circuit through neighboring facets of P, all facets

_containing the same subsubfacet.

Proof: Take any facet F and subsubfacet ¢ ¢ F. If we consider F as

a (d — 1)-polytope, then ¢ is a subfacet of F and by theorem 3 must be
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Figure 1: A circuit around subsubfacet ¢

contained in exactly two distinct facets f and ¢ of F. Bui, in P, ¢ is
contained in exactly two subfacets f and g of F. Therefore exactly two

neighbors of F contain ¢, O

Figure 1 shows two examples of such a path, one around the subsubfacet
or point ¢ of a 3-polytope, and one around a subsubfacet or edge ¢ of a
4-polytope.

Supp(;se T is a cap facet, and link Neing is not yet set. Then there is a
cap facet U that share-s Subf;r with 7, and &/ must be found in order to set
Neig?'.

We find ¥ by a walk around a circuit containing the subsubfacet ¢ =

SubfT \ {p}, as follows (refer to figure 2 for an example in %2, where Subf] =

¢ U{p}):
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Figure 2: Interlinking Cap Facets in 3

1. 7 = fu{p}, where f is in the horizon H. Let the visible and non-

visible facets sharing f in P be F and G respectively. We know that

p & ¢, therefore ¢ C f, ¢ C F, and ¢ C G. Therefore, F and G are
on a circuit around ¢, and since this circuit crosses the horizon at f it

must cross the horizon again.

2. Walk around ¢ through V, from F away from G. Stop when the first
non-visible facet “Z is encountered. Let the previous (visible) facet on
the walk be Y. Let y be the subfacet shared by J and Z. Then y is -

in H, and there is a cap facet & = y U {p} linked to Z across .

3. Now, ¢ C Y and ¢ C Z, so ¢ C g, and therefore ¢ C U. As well,
» € U, so the subfacet ¢U {p} isin . But ¢ = Subf{\{p}, or in other

words, Subf?' = ¢ U {p}. Therefore Subf}r cU.
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We repeat this procedure to set all empty links between the cap facets,

and then delete V from P (step 5) thereby completing the update P < PuUp.

4 'The 2-Flat Walk

We now deal with two details postponed earlier. First, since the points of §
are added to P in random order, it is possible that p is interior to 7 and no
update is actually required. Second, if p is exterior to P, then we require a
first visible facet F to begin the update. |
The straightforward approach is costly: scan the facets of P until one is
found which is visible, or until all facets have been found to be non-visible,
The following 2-flat method provides a more efficient solution. Again we

make use of our data structure to walk a circuit through neighboring facets:

1. Choose any facet F € P. Let g1 be the centroid of 7 and 4 be the
centroid of the whole set S. The three points p, g1, and g, define a

2-flat ) intersecting F.

2. The intersection of a 2-flat and a (d—1)-flat is a 1-flat or line. Therefore
the intersection of @ with F is a line segment, and the endpoints of this
line segment lie in two subfacets of F. Therefore exactly two neigh-

bors of F are also intersected by @, and @ defines a circuit through

11
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neighboring facets of P.
3. Follow the circuit until:

(a) a facet is encountered that is visible from p; or

{b) we return to our starting facet F.

In case 3a, p is exterior to P, and we begin the update. In case 3b, p is
interior to P.

The first author is presently engaged in an analysis of the complexity of
this walk, with a more detailed analysis forthcoming in }}is d.octoral thesis.

At present, experimental resuits support the conjecture that the average
number of steps [ taken by the 2-flat walk becomes fewer relative to the
number of facets F' as the dimension increases. For example, tables 1 and
2 give the total number of steps 7" and average number of steps | taken by
the 2-lat walk during the construction of the convex hulls of sets of points

distributed uniformly on the surface of a sphere.

12
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d F T| 1

3 196 | 1145 | 12

4 585 | 971 | 18

5| 1888 [ 1239 | 13

6| 6884 (1290 | 14

7| 23568 | 1367 | 15

8| 87433 ; 1470 | 16

Table 1: | 5| = 100

d F T 1

3 396 [ 3391 | 17

41 1238 | 3082 | 16

51 4546 | 3280 | 17

6 | 18407 | 3631 | 19

7| 72660 | 4075 1 21

Table 2: | §| = 200

The average length of path ! seems to grow slowly with respect to n and
F. See table 3 where data for five dimensions is given with the point sets

distributed uniformly on the surface of a sphere. Incidently, the calculation

13
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of the data for this table took about six minutes on an IBM-3090 for two

sets of data that were then averaged.

n F T 1

100 | 1918 | 1166 | 12

200 | 4533 | 3312 | 17

300 | 7359 | 6154 |21

400 | 10067 | 9113 | 23

500 | 12928 | 12131 | 25

600 | 15776 | 16195 | 27

700 | 18673 | 20004 ; 29

Table 3: § in R°

5 Complexity

Excluding the 2-flat ﬁa.lk, we present the following analysis of complexity
when S is distributed uniformly on the surface of a d-sphere. For this dis-
tribution, § = ext(S).

The number of facet /facet-vertex pairs equals nd, where A is the average
number of facets containing a vertex, or dF = nA. The complexity of the

update step P <« P U p was shown to be d° x |C] in [10]. The overall

14
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complexity of the algorithm is therefore
O(nd*| C1)

But for this distribution of §, |C'| = ®(A), so the overall complexity of the
algorithm is |

O(nd>4) = O(d*F)
Taking account of I, the average length of the 2-flat walk, we rewrite the

complexity as

O(nl + d4F)

If Fis O(n) and |ext(S)] = O(n) most of the knéwn algorithms are
Q(nz) with the exception of Seidel’s dual space algorithm [8] and Stewart’s
algorithm [10]. This is an important case, because after preprocessing to
remove il}terior points and leaving 1 exterior vertices, the expected number
of faces is often @(n) Dwyer [4] has pointed out that the expected number
- of vertices and facets are proportional to each other in all studied random
distributions. In this case, our algorithm is nearly linear in n, except for
the factor [, which is surprisingly small according to our data. In fact, ! is
almost constant for fixed n as d increases, while F increases exponentially.
This indicates that the 2-flat algorithm is expected to be good especially

when 7 is bounded by some as yet to be determined function of d.
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