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The problem is not what the answer is, the problem
is what the question is . . . '

A. Poincare

The most important link in scientific cognition is a
scientific problem; without posing a problem there
can be no creative activity or discovery.

G. Kirilenko and 1. Korshunova

Abstract, A working description of "intelligence" is proposed:
intelligence is characterized by avtonomously evolving purposeful
processing of meaningful signals (events), The purposefulness
should be interpreted in terms of orientation in the environment
(physical or abstract) from which the "signals" came, and the
evolving mnature of the process points to the dominant role of
learning mechanisms in acquiring the relevant knowledge. A new
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model for intelligent machines - pattern learning machines, which
can be viewed as far reaching symbolic generalizations of the
artificial neural nets - 1is briefly outlined. A longer and more

detailed exposition of the model is currently in press.




1. INTRODUCTICN

Artificial Intelligence (AI) is a large and growing field,
Graduate students study and perform doctoral research in AI at
many universities throughout the world, and scientists and
engineers at academic and other research centers contribute to
AT's  body cf  concepts  and techniques. Industrial
organizations are not only beginning to apply Al ideas to
manufacturing technology, but are using them in an increasing
number of new products. There are AI organizations and
societies, Al textbooks, AI journals and magazines, and AT
meetings. [1]

Today, 8 vyears after [l] was written, it would not be an
exaggeration to say that AI is one of the most popular areas in
computer science, Paradoxically, in gpite of this popularity,
there is no working definition of the subject area of AL. By a
working definition T mean a description that, first, can guide and
focus one in the research work, and second, can be used by all AL
regearch workers to evaluate the progress made by a certain time.
R.C. Schank states in [2, p.3] that AL is "[wl]ithout a coherent
methodology and clearly defined goals'". Some AI researchers "admit
that most current Al work fails to meet traditional criteria of
scientific theories, and decry the absence of ‘'competitive
argumentation' whereby the power of one simulation can be
rigorously compared with the power of another” [3, p.178, where
Gardner simply reports the opinion of a group of researchers at
Xerox PARC din Palo Alto]. Others note the following, what 1
consider to be inadmissible situation:

Some practical success was achieved with symbol manipulation
of mathematical -equationz and pattern recognition, with the
result that these fields became independent of the general
field of artificial intelligence. [4, p. vii] _
The subject matter of artifieial intelligence is not therefore
fixed, but changes with time, For example, about the end of
the 1960's, techniques for reading handwritten letters of the
alphabet or numerals were considered as belonging to the field
of artificial intelligence. However, when optical character
readers were developed, such techniques were no longer
considered as artificial intelligence. It appears that it is
the fate of artificial intelligence that when techniques in a
given field become established and put into practice, they
cease to be part of artificial intelligence. [4, p.1]

Now, more than 30 years after the first works on the subject,
we still don't even know how far, if at all, we have progressed
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towards the creation of an intelligent machine. Very often many
of us find it difficult even to evaluate the relevance of a
specific research work to the above enterprise. This situation
has lead some AT researchers to believe that a working desecription
of the subject area will mark a breakthrough in AI. I,
personally, believe that until a reasonably clear {nitiaf working
description of the subject area is found, no fundamental progress
in AI is possible, simply because sguch a progress requires
concerted long-term effort of many scientists.

It is the purpose cof this paper, first, to suggest an initial
inevitably incomplete but a sufficiently general working
description of AT, and, second, to propose a general mathematical
model for intelligent machines ~ pattern learning machines (PLM).
Remarkably, both the overall analytical structure of the model and
its implications support some relatively recent hypotheses and
observations, notably these of J. wvon Neumann, 0. Selfridge, M.
Minsky, 5. Watanabe, J. Piaget, H. Putnam, S. Kripke,
C. Levi-Strauss, E. Rosch and others,

2, A WORKING DEFINITION OF INTELLIGENCE

What is intelligence? We may agree that intelligence is {or
characterized by) an intelligent processing of information, In
this description one can immediately single out fwo interacting
efements: dntelligent agent (machine) and the information itself
(that "comes" from the environment).

environment

Figure 1,

Above all, it should be stressed that the intelligent nature
of the phrecess can in general be determined by observing responses
of the agent to a 4equence of Anputs and not necessarily to a
single Anpuf, since the intelligent agent may mnot respond
"intelligently" to a single input, especially if this agent
evolved in an environment wvery different £from that of the
observing agent, Thus, the intelligence should be viewed {(and
examined) as a purposeful piocess. This purposefulness can be
established sooner or later depending on whether the difference in
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the "architectures" and "training" (maturation) environments of
the two communicating agents are smaller or larger. In this
respect the well known Turing test is not quite satisfactory,
since it tacitly assumes that the intelligent agent {computer)
evolved in essentially the same environment as we did.

It appears that the verb "evolve" used above is, in fact, the
key word in the description of an intelligent process, It is
doubtful if any process that has not evolved in some enviromment
over any period of time can be called intelligent, since whatever
"intelligence" it possesses must have been "produced" by some
other intelligent agent - its designer. Besides, as we shall
discuss next, without a direct bond between the events in the
envitoenment and their representation inside the agent (semantic
bond) - the bond that can be established only during the agent's
learning periods - these events cannot be meaningfully
(intelligently) interpreted by the agent. At the same time, from
a purely pragmatic point of view, the acquisition of knowledge in
a "rich" environment must be an ongoing processé the knowledge
must .be constantly updated and compacted, because of the
restrictions on the memory size and the processing speed.

In this connection one should also note that a '"true"
offspring of an intelligent agent may be considered to possess the
intelligence but only as a potentiality, which can be realized
during a maturation pericd. All neurophysiological evidence
collected so far clearly indicates that even the neurcnal
"architectures” simply cannct and are not completely specified
genetically, but are '"finalized" during various "critical"
maturation periocds [5, pp. 186-196]. Moreover, it is well known
that all natural (biological) dintelligent agents themselves
evolved over very long evolutiomary periods.

A vivid iliustration of what I for the moment will call =a
pseudo-intelligence, i.e., intelligence that has not evolved over
any period of time, -one can find in the "'Chinese room" example
proposed by modern philosopher J. Searle (see, for example, [6,
Cch.2], or [3, p. 172]). 1In this hypothetical example, which has
acquired some notoriety in the AT circles and which was inspired
by the Turing test, an agent that knows absclutely no Chinese is
locked in a room which has all the books that provide complete
instructions (in the language of the agent) as to how to assemble
correct answers in Chinese to any question in Chinese received
from the outside. To the outside interrogating agent who knows
Chinese, the answers that are received electronically from the
"Chinese room" are indistinguishable from those that would have
been given by an agent that knows Chinese. "What dis the
difference between the Chinese [room] case and the English case?

You understand the questions in English because they are
expressed in symbols whose meanings are known to you. Similarly,
when you give the answers in English vyou are producing symbols




which are meaningful to you. But in the case of the Chinese
[room], you have none of that. In the case of the Chinese [room],
you simply manipulate formal symbols according to [instructions]
. « . and you attach no meaning to any of the elements." [6, pp.
33-34]

From the analysis of this example Searle draws conclusions
that 'there is no way that the system can get from the syntax to
the semantics" [6, p.34] and that "the project of trying to create
minds sclely by designing programs is doomed from the start" [6,
p.397.

Although 1 disagree with the Searle’'s conclusions, when
interpreted broadly, it is hard to disagree with the fellowing
point, which, unfortunately, has not been articulated well:
machines whose responses to the external events are completely
preprogrammed (i.e., when no fundamental learning, or internal
restructuring, occurs) cannot be called intelligent, because,
begides the inflexibility, they have no J{ntefligent way of
interpreting the external events., In fact, it is easy to see that
the realization of the above hypothetical example is impossible,
simply because the number cof potential questions 1s practically
infinite, so that no complete collection of books for the Chinese
room example can exist, Since our brain is also of finite
capacity, we can draw the crucial conclusion that an intelligent
interpretation of the external events must involve, as was
mentioned above, an ongoing context-dependent reduction of a
potentially infinite number of external events to a finite number
of internal "symbols" representing the events. This, as well as
other evidence, strongly suggest that, contrary tc what is often
assumed in AI (see, for example, [1, pp.2-3]), the "transduction”,
or "symbol" formation, processes must form a major part of what is
usually called ‘"ecentral" or '"symbol" manipulating cognitive
processes.

As a result of the development over the last 10 years of the
new model for intelligent machines [7]}, which is wvery briefly
outlined in the second half of this paper, It became reasonably
clear to me that the most egconomicaf route towards the
context~dependent intelligent interpretation, including dynamic
representation, of the external events 1is a taxonomic one, i.e.,
via dynamic, or reconfigurable, pattern learning mechanisms that
contrary to the present architectures, evolve in an Jtreversible

manner. Lt appears to be the only route that by-passes the wall

between the syntax and the semantics, the wall that prompted
Searle to conclude that AI is not possible. The agent then would
possess the dynamic capacity to assoclate with a group of external
events an dinternal '"symbol", i.e., to generate the mapping by
means of which the semantics 1s induced. Moreover, it turns out
that the learning processes are absolutely necessary in order to

make the more conventional propositional mechanisms of AL




computationally feasible in reascnably complex environments.

It goes without saying that I am not alone in chocsing the
"taxonomic" route as the basis. In fact, this assumption was
instrumental in the formation of a large and successful "sister"
area, Pattern Recognition, which includes Artificial Neural Nets
and which formed at about the same time as AT did., As I have
mentioned elsewhere, I believe that the artificial separation of
the two areas is responsible to a considerable degree for the
current principal difficulties of the two areas. What is also of
importance is that some of the leading mneuroscientists point to
the taxonomic basis as well: '"The essential requirement for
learning, logic, and other mental functions that are the usual
subjects of AI research is the prior ability to categorize objects
and events based on sensory signals reaching the brain'. (8,
p-155]

It is not difficult to see that all non-taxonomic, i.e.,
propositional, models for a context-~dependent interpretation of the
external events cannot evolve autonomously, but, again, must be
preprogrammed and therefore are not sufficiently flexible,
particularly for "rich", or natural, environments.

To summarize, we come to the proposed characterization of an
intelligent process as daufonemously evolving purposedul processing
of meaningful signals {events). The purposefulness should be
interpreted in terms of orientation in the chosen environment
(physical or abstract) from which the "signals'" come. The most
basic understanding of the orientation is in terms of
categorization. The evolving nature of the processes points to the
dominant role of learning mechanisms in acquiring the relevent
knowledge. It appears that such processes, contrary to the present
computing processes, musl evolve in an fireversible manner, i.e.,
the structure of the machine must also evolve.

The progress in the area can then be judged by the complexity
of the enviromment in which the system can function and the degree
to which the process can autonomously evolve. Autonomous matura-
tion of the system does not, of course, exclude the presence of a
teacher, The assessment of the progress, then, in addition to the
above, has to take into consideration the achieved degree of the
system's dindependence from the teacher. In case o¢of biological
agents, the role of the "teacher" plays the environment itself in
the form of food, preditors, adverse chemical reactions, etc.

3. TRANSFORMATION SYSTEMS

In some sense the transformation systems, which are introduced
in [7], have emerged as a result of the search for the model that




integrates into a ccherent whole presently separate areas of AI and
Pattern Recognition  (PR). Unfortunately, some leading AT
researchers, who have had decisive influence on shaping the agenda
in AT, have insisted that the numerical (vector) representations
and the techniques dominating PR are fundamentally different from
the symbolic" representations and techniques employed in AI.
Within PR, already in the late 60s, it became clear that the nature
of the chosen object representation should not have a drastic
effect on the PR model, but since mno unified framework has been
found, a new large subarea, syntactic, or structural, PR, emerged.
In fact, the model proposed in [7] is also an outcome of the work
directed towards the unification of the two principal models for
PR, vector space and syntactic. In view of the space limitations,
I shall only outline the basic theoretical features of the model,
A more detailed exposition together with an example, without which,
unfortunately, the model is not easily accessible, can be found in
paper [7] and its sequel.

A transformation system (TS) is a pair (0,8), where 0 is a set
of structured objects (strings, labelled trees, labelled graphs,
etc.) and § is a finite set of (reversible) substitution
operations. Each substitution operation (rule) S, g S specifies
allowable local (i.e., related to a part of the o%ject) rules for
object transformation, which are generalizations of the familiar
substring substitution operations to more general structured
cbjects, The substitution rule says, in effect, that if a certain
structural element is found in the structured object, then it can
be {(reversibly) replaced by another structural element, thus
transforming the original object into another one.

At any given moment a TS has a fixed set of the substitutiom
operations, which can be considered as the basic machine operations
defining the machine configuration. The machine (PLM) has the
capacity during the learning process to expand, if necessary, its
set of operations by iIntroducing some new operations that are
formed according to some fixed set of composition rules from the
existing machine operations. The composition rules may include,
for example, formation of a mnew substitution operation that
represents parallel application of the existing operations, i.e.,
the new operation works as a specified parallel group of the
existing operations. One can show that the c¢lass of PLM with
parallel composition rules are more powerful than those with only
sequential composition rules. 1In case of strings, for example, if
deletion-insertion of 'a' and 'b' are in the set of operations, the
sequential composition rxules allow addition of operation
deletion-insertion of 'ab' or 'ha',

Tt is useful to assume that the set of initial substitution
operations is complete, i.e., every object o.gC can be transformed
into any other object 0280 by means of the operations from the set
{(without forming any new operations),




So far we are still in the classical computational setting,
which is a generalization of a Thue system [9, p.287]. The next
definitions, particularly the second one, introduces into the
classical discnefe setting a confinuous metric geometry (or rather
a family of such geometries), which play the decisive role in the
learning process.

The intrinsic distance function in the TS (0,8), A: 0x0 *> R+,
is defined as the minimum number of the substitution operations
necessary te transform one object into another, Representing
cbjects as vertices of a graph and the operations as edges of the
graph, one can view ﬂ(ol,oz) as the length of the shortest path
between objects o, and o,. It is dimportant to mnote, that the
addition of operations can only reduce the distances.

The intrinsic distance function gives rise to the very central
concept of the parametric family of distance functions

{Am}meﬂ’ 9C5R+, where the definition of ﬁw is obtained from that
of A by assigning weighting
. m .
w='(wl,w2,...,wm), wo>0, T w =1, to the set S-=
i=1

{S,} e of substitutions in the transformation system T =
i 1%i%m -

(0,8). In other words, the shortest path is replaced by the
shortest weighted path.

The choice of a specific weighting scheme @, and therefore of
the corresponding distance function ﬂm {(or metric geometry),
occurs during the learning process.

4, LEARNING IN TRANSFORMATION SYSTEMS

For simplicity we shall consider only non-sequential
learning. Modifications for the sequential learning readily
follow from the latter,

During learning, the pattern learning machine (PLM) is
presented with a findite set of positive and negative examples of a
class 0, of objects, 0cO0. As was mentioned above, during
learning in the simplest case the PLM tries to find an optimal
weighting scheme w#ef that would allow an (optimal) recognition of
the learning class 0,. Once a satisfactory W%, and therefore A *s
is found, the future recognition of objects from 0. may proceed
along the lines outlined in monograph [10} (see alsoc [11]), which
is concerned with the mathematical model for efficient algorithms
for object recognition in the metric medel. In egsence, all such
recognition algorithms, which are not considered here, try to
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assign a new pattern to the closest class using a minimum number
of the distance computations (between the mnew pattern and the
training, or learning, patterns).

More specifically, during the learning process all events
occur around the following function g: R" > R (m is the number
of operations in 3) *

£, (w)
g(w) = ——
1+ fz(w)

where fl(w) is the smallest ﬂw—distance from the positive learning
{training) objects {(in class 01) to the negative ones, and fz(m)
is the average ﬂw—distance between the positive learning objects.

One can show that f1 and f, are concave and piece@ise linear.

2

Figure 2

It is easy to see that the subset 9 of the simplex

g=fu = (wl,w

m . +
jul .
5o sW )l ;lwl =1, w>0 Vil
i= -
corresponding to maximum(s) of the above function over § represent
the best choice for the above optimal weighting scheme W% for the
current configuration of the PLM (S={si}i<i<m)' Both the maximum

value of g as well as the relative complexity of the class Ol

w.r.t. 3,

e=minb(w) ,
wehl

aé‘




Wheregkw)=—;g w log w o, play the key role in the decision about
the adequac’;?1 of the current set of operatiocns, 8§, i.e., the
current configuration of the PLM. If necessary, the set § is
modified and the optimization step 1s repeated.

The computed optimal weighting scheme not only allows one to
introduce for the first time a non-probabilistic concept of the
relative class {(object) complexity, desirability of which was
mentioned by Kolmogorov in [12], but it also provides a bridge
between the perception (recognition) mechanisms and the more
conventional, propositional, mechanisms in the PLM: the largest
weights w in the optimal weighting scheme point to the
contextually '"important"™ features (operations} din the object
representation. This bridge (between perception and propositional
mechanisms) is established by assigning operations from § to the
variables of the predicate language, or of the frames, used in the
propositional object (class) descriptions. In other words,
given a specific class ¥ of predicate formulas (wif),e.g.,
conjunctive descriptions, the set F of optimal propositional
descriptions from F is obtained by Ilimiting the set of
variable used in formulas from F to those corresponding to the
largest weights w' in g*, Since the cardinality of F depends
exponentially on the number of the chosen variable, the importance
of the above learning stage for the computational feasibility of
the propositional stage becomes obvious. The propesitional
descriptions themselves are "read off"” from those obtained by
substituting the corresponding operations for free varisbles in
the wif's applied to the positive objects.

The goals of the learning process may wvary. If the cbject
(class) recognition is the only objective of a specific learning
process, then the process may be terminated when the value of g{w)
is greater than 1 and (preferably) a large number of w's are
zeros (the relative complexity ¢ is small). In this case a small
number of the nonzeroc weights ensures efficiency of the
A ~distance computation, while the corresponding wvalue of g(w)
eflsures a reasonable class perception. In case of the siring
representation, the known dynamic programming Wagner-Fisher
algorithm for computing the Levenshtein, or edit, distance between
two strings of lengths n each is of order 0(n”) on a sequential
machine {13} and of order O{(n) on a parallel machine with =n
processors. 1t goes without saying, that having chosen a concrete
environment, the use of the corresponding special purpose chip for
the distance computations in the PLM is quite prudent.

As the set § of operations, the configuration of the PLM, is
modified dynamically, the corresponding set F of optimal
description is also modified dynamically. Thus, if the objective
of the learning is a special type of the propositional object
description, the stopping criteria are different than those
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mentioned above, when the objective is purely '"perceptual”, i.e.,
object (class) recognition.

Thus, the PLMs for the first time offer models of truly
reconfigurable learning machines, whose configuration may change
during learning processes. It is important to note that the
change in the configuration of a PLM usually results in changes in
the petrception of the classes {objects) in the environment, since

the former change results in the change of the family {&w}weﬁ of

distance functions from which the optimum distance &w*’

responsible for the calss {(object) perception, is selected. The
learning, then, represents a truly irreversible process,

The following thesis appears to be true. If (0,5) is a
complete transformation system with a sufficiently general family
of the composition rules, then the PIM can learn any cfass 0. of
objects and can produce any corresponding propositional ciass
description. In the future it is important to prove the latter
for some restricted definitions of the class of objects.

Finally, it is also important to note that the above model
allows the PLM to store in memory not the entire object
representations but only those context-dependent "important”
features that were detected during the learning processes. Thus,
the amount of information that is to be stored is not proportional
to the '"size" of the object representation, but only to the
complexity of the contexts d1n which the objects have been
perceived. This feature of the PLM deserves to be called
intelligent memory.

5. CONCLUSION

In this section I will very briefly mention some relatively
recent hypotheses and experimental observations that support the
proposed model. First, I must mention the brilliant predictions
by J. von Neumann, who suggested in [14] that the standard
{logical) theory of automata by itself is inadequate for modeling
intelligence, since the formal logic "is one of the technically
most refractory parts of mathematics' and, therefore, a successful
model would have to make more "eontact with the continuous concept
of the real or of the complex number', in order to improve
considerably the efficiency of the automata.

All of this will lead to theories which are much less rigidly
of an all-or-none nature than past and present formal logic.
They will be of a much less combinatorial, and much more
analytical, character. In fact, there are numerous
indications to make us believe that this new system of formal
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logic will move closer to another discipline which has been
little linked in the past with 1logic. This dis
thermodynamics, . . . and is that part of theoretical physics
which comes nearest in some of its aspects to manipulating
and measuring information. 1Its techniques are indeed much
more analytical than combinatorial, which again illustrates
the point that T have been trying to make above. [14, p.
101]

Second, it is important to mention the pioneering work of
Selfridge in PR [15, §II.F], which, incidentally, inspired some
early well known work in AI [15, SII.F]. Selfridge proposed to
apply some sequences of transformations to the images, but was not
sure how the machine can generate the necessary sequences of
transformations.

Third, I want to mention the work of S. Watanabe [16, §54.1,
4.2], who insists (with his Theorem of the Ugly Duckling)} on the
crucial role of the weighting scheme in producing the
context-dependent similarity (distance) measure. '

Fourth, it dis Interesting to remember the following passage
from a well known paper by Minsky:

We certainly need (and wuse) something like syllogistic
deducationj but I expect mechanisms for doing such things to
emerge in any case from processes for ‘''matching"” and
"instantiation'" required for other functions. Traditional
formal logic is a technical tool for discussing either
everytihing that can be deduced from some data or whether a
centain consequence can be ¢ deduced; it cannot discuss at
all what oughft to be deduced under ordinary circumstances.
Like the abstract theory of Syntax, formal Logic without a
powerful procedural semantics cannot deal with meaningful
gsituations. [17, -p. 262]

Fifth, the proposed model for the first time clarifies the
nature of the "assimilation”, "accommodation", and "equilibration
processes introduced by one of the leading cognitive scientists of
the century J. Piaget {18, Ch.l]). The concept of a reversible
operation, often mentioned but not defined analytically, also lies
at the foundation of the Piaget's theory of cognitive development
[19, Ch.4}.

Sixth, the model remarkably well explains the results of
observations by a number of leading psychologists,
anthropologists, and philosophers, including E. Rosch, C.
Levi-~Strauss, 8. Kripke, H. Putman, about the fundamental role of
the categorization processes [3, p. 238 and Ch. 12j.

Finally, it 1is important to stress, that formally the new
model does not contradict existing models, but rather extends and
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encompasses them. In addition, it explains and predicts many more
features than wvarious known models and therefore can easily be
tested. Above all, it suggests that the unbounded power of the
intellect resides mainly in its dynamic operational structure that
can evolve d1n an economical manner through the constant
interactions with the environment, rather than in the Iimited
propositional mechanisms that are fundamentally separated (cut
off) from the environment and serve only as languages for
communicating our perceptual experiences.
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