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Abstract

Déta structures to support the rapid display of both regularly spaced and irregularly
spaced digita.l.terra,in have been designed and implemented. Very large numbers of
data points are handled rapidly by dynamicﬂly varying the resolution of the displﬁy.
Gaze-directed viewing i1s used by forcing the highest resolution to be maintained
where the view line intersects the data. The resolution is decreased gradually along
the image as the distance from the intersection point increases. The high resolution
part of the image can be moved in response to a change in the gaze direction. Using a
Silicon Graphics IRIS 4D/85GT, an update speed of 10 Hz was achieved for regularly
spaced data of size 800 by 650. For an irregularly spaced data set with 119845 points,

an update speed of 5 Hz was achieved using 7 different resolution levels.
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Chapter 1

Introduction

Today’s highly efficient data sensing and recording devices generate large numbers of
very large spatial data sets. Understanding these data sets has become very impor-
tant. The most natural and efficient way to help human céinprehension of large data
sets is by visualization [Robertson & O’Callaghan, 1987]. For this reason, many dii-
ferent techniques from computer graphics, image proceésing, computer aided design,
signal processing, and user interface design are being used for large data set com-
prehension. All of these techniques need proper spatial data structures to efficiently
represent the data. |

In recent years computer graphics and spatial data structures applied in this
area have been highly developed and are becoming more and more successful [Riley,
1990]. Many methods and algorithms have been implemented to generate images as
realistically as possible. These effects include perspective views, specular reflection,
cast shadows, and ray fracing. From these images people can immediately get a strong
idea about the object or surface displayed. If a large amount of data is involved, these
images usually take a long time to be generated and the size of the data sets are limited
by the displa.y buffer size. To solve these problems, we can display only a part of the
data set so that the display speed can be greatly increased. If animation effects are

generated, the subset wanted can be displayed immediately. In this way we can see



any part of the large image as soon as we want. This can ease the size limitation by
dynamically changing the scene displayed [Smith & Paradis, 1989]. If the data set is
a surface of a terrain, this effect can simulate a camera path and produce dynamic
views of the terrain for enhancing the visualization.

"This thesis was designed to apply computer graphics techniques and spatial data
structures to solve problems in comprehending large data sets representing areas of
the ocean floor. It is associated with the research work of the ongoing Ocean mapping
project at UNB.

The main task for this thesis is to explore techniques and data structures for real-
time display of Digital Terrain Models. The techniques include animation, viewpoint
variation (variable distance and variable direction), a gaze-directed rendering model,
a smoothness-directed rendering model, pseudocoloring, and a shading model. These
techniques are applicable to any type of data which can be accessed as a univariate
map.

In this chapter, the relevant literature concerning the problems of displaying and
manipulating spatial data is discussed. Surface rendering models are reviewed along

with concepts related to techniques of animation.

1.1 Di_gital Terrain Models

For the purpose of this thesis a Digital Terrain Model (DTM) is defined to be a
computer data structure which represents the height of a surface over some finite 2D
space. Applications of these models arise in digital mapping, resource management,
environmental engineering, civil engineering and military operations [Fowler & Little,
1979]. |

A common form of DTM is the regular grid. For regularly gridded data a coor-

dinate system (e.g. latitude and longitude or universal transverse mercator (UTM)



grid} is chosen, and the terrain is sampled at a uniform rate in both of the coordi-
nates. The result is a series of samples at regular intervals, which is easily represented
in a computer by a two dimensional array.

Irregularly spaced data sets are also often used. In some cases, this form bétter
represents the original recorded data. Irregularly spaced data is more difficult to
present and display than regularly gridded data. Usually some preprocessing is needed
to construct a surface from an irregularly spaced data set.

In this thesis, the data is generated from discrete sounding data, or NED (nor-
thing, Easting, Depth) da;ta., which describes the depth of the ocean floor at specific
geographical points defined by northing and easting (x and y) coordinates.

1.2 Polygon Mesh

A polygon mesh is a collection of edges, vertices and polygons connected such that
each edge is shared by at most two polygons. It can ea.sily and naturally be used to
represent a flat surface. It can also be used, although less easily, to represent curved
surfaces; however the representation is only approximate. The accuracy depends
on the size of the polygon used for the surface rendering. Using more polygons to

represent the surface results in a more accurate portrayal of its actual shape [Foley

et al, 1990]. -

1.3 Animation and the Flying Model

To animate is to make a feature appear lively. Although pé0ple often think of an-
imation as syronymous with motion, it covers all changes that have a visual effect.
It thus includes the time-varying position (motion dynamics), shape, color, trans-
parency, structure, and texture of an object (update dynamics), and changes in light-

Ing, camera position, orientation, and focus, and even changes of rendering technique



[Foley et al, 1990].

The purpose of animation in this thesis is to provide a dynamic view of a realistic
terrain surface to enhance visua,lization.for better depiction of surface characteristics.
The change of view is performed according to a so-called flying model. Every frame of
the animation has a new view with a slightly different viewpoint or view direction to
the previous frame . The effect of the animation gives the impression of “flying” over
the terrain surface. One method of flying is to give the user a six degree of freedom

“bat” which allows full specification of the user’s view point direction and velocity

[Ware & Osborne, 1990].

1.4 Gaze-Directed Rendering

Since the display of a DTM is for human visualization, taking the property of human
vision into account 1s very natural and reasonable. The visual system is spatially
inhomogeneous in that only a small area near the center of the retina is sensitive to
fine spatial detail [Zeevi et al, 1990]. The highest acuity area near the fovea centralis
occupies about 4 degrees of visual arc, and falls off gradually toward the periphery of
the visual field as shown in Figure 1.1. Directing one’s gaze at an object consists of
rotating either the eye within its socket or the entire head until the object’s retinal
projection falls on the fovea [Levoy & Whitaker, 1990].

By taking advantage of this variation in retinal acuity, the rendering costs can be
reduced {Zeevi et al, 1990]. A high resolution inset image can be generated according
to the gaze direction of the eyes. The resolution is decreased gfadually along the
image to roughly match the acuity of human eyes. If the high resolution area of an
image is Big enough and is moved quickly enough in response to the change of the gaze
direction, the illusion of a full-field high resolution image is obtained. On the other
hand if the surface is close enough to one’s eyes it can be seen clearly but this clear

area 1s relatively small. If one is far from the surface they can see a large area but not
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Figure 1.1: The percentages of acuity at different distanceé‘from the fovea [Hochberg,
1978].

at a high resolution. Some details are small details, less than the eye’s threshold, and
cannot be detected as the distance increases [Hochberg, 1978]. To take advantage of
this, a more efficient approach is that the resolution chosen should correspond to the

distance from the eyes to the surface.

1.5 Perspective Projections

Projections can be divided into two basic classes: perspective and parallel. The
distinction 1s 1n the relation of the center of the projection to the projection plane. If
the distance from one to the other is finite then the projectioh is perspective. If the
distance is infinite the projection is parallel. Figure 1.2 illustrates these two cases.

The visual effect of a perspective projections are similar to that of photographic
systems and of the human visual system.

Perspective projection is a fundamental part of computer graphics. This technique
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Figure 1.2: (a) Line AB and its perspective projection A'B’. {b) Line AB and parallel
projection A'B’. Projectors AA" and BB’ are parallel [Foley et al, 1990).

provides a solution to the mismaich between 3D objects and 2D displays, which
transform 3D objects onto a 2D projection plane. |

When a 3D object is transformed onto a 2D projection plane, the problem of
visible-surface determination, or hidden-surface removal must be considered.

Given a set of 3D objects and a viewing specification, we wish to determine which
surfaces of the objects are visible, so that we can display them. In visible-surface
determination, surfaces are assumed fo be.opa.que that may obscure other surfaces

farther away from the viewer.

Many a.l‘.gorithms have been implemented to solve the problem of visible-surface
determination [Folly et al, 1990]. Among these the Z-buffer algorithm is one of the
most popular due to its simplicity and speed. Details of this algorithm can be found

in Foley et al, 1990,




Chapter 2

The Gaze-Directed Approach with

Regularly Spaced Data

In this chapter the gaze-directed approach is discussed. It takes advantage of the

limitation of the field of view as people gaze at some place.

2.1 Definitions and Notation

In this approach, most of the important data is considered to be gathered around the
point at whiQh the user is gazing, as introduced in section 1.4. The user’s eye is called
the viewpoinﬁ, and the point the user is gazing at is called the view center. The line
from the viev}point to the view center is called the view line (see Figure 2.1).

The value of the highest resolution (at the view center) is decided by the distance
from the viewpoint to the view center. If d, is defined as the distance from the
viewpoint to the view center, and R,,,. is defined as the higheét resolution, then we

* have:
Rmaz = fv(dt.r) (2.1)

As d, increases, the surface is moved away from the eyes, the surface becomes



Pv {Viewpoint)

View line

surface

RPe{View center)

Figure 2.1: The relation between the viewpoint, view line, view center and surface.

fuzzier, and the highest resolution decreases. This function is a monotonically de-
creasing function.

The resolution on the surface decreases gradually ffdm being highest around the -
view center to lowest at the farthest side aé the distance to the view center increases.
If R is defined as the resolution of a point on the surface, and d, is the distance from-
the view center to this point, then the function f, is the relation between R, d., and

Rmax; 1.e.

R= fc(dm fv(dv)) . : (2'2)

As d, (the distance from a point p to the view center) increases, the resolution of
the point p decreases; that is, B decreases. On the other hand, if R,,,, increases, the
regolution at every point on the entire surface increases. When d. = 0, the point P
is at the view center and R = R,.qz.

As mentioned before, the data set considered for this chapter is regularly gridded

data. [t can be represented as a two dimensional array as follows:



[ D1y Dy - Dy - Dip |
Dy Dy v Doy - Dan
D=1 : ce. b SRR (2.3)
Djy Dj» -+ Dji - Dja
i Dm,l Dm’.z Dm,é Dm,n |

Here m 1s the veriical size, n is the horizontal size, and ¢ and 7 are indexes which
specify the position of a point in the data set. The data can be any real number
defined over this grid structure to represent some form of structure. Here the value of
D;; represents the depth of the ocean floor. If a three dimensional virtual environment
is defined with x, y, and 2, then ¢ corresponds to z, 7 to y, and D;; to z. It is assumed
neighboring data points have a distance of one unit between them.

1In this thesis, the surface is constructed by a triangular polygon mesh. An area of
the mesh with high resolution means that this area is constructed with small polygons.
If the polygens are small enough {that is, the resolution is very high), the constructed

surface will be identical to the original data.

2.2 Viewpoint and View Direction Specification

In the natural world when a person observes an object or a surface they may look
at it from different angles and view positions in order to get the best description of
the object. In this chapter 1t 1s assumed that there 1s a person who 1s observing the
surface and whd can move in the three dimensional environment freely to any place. |
The image which would be seen is displayed on the screen.

To do this, the person’s position and v_iew direction have to be specified. The
position is the viewpoint, which is easily specified. It is any point in 3D space. In
order to define the view direction, another point in 3D space is defined. It is called

the reference point. The view direction then can be defined as a line starting from



the viewpoint and going through the reference point. The line is called the view line.

{t is shown in Figure 2.2,

Py

pr (Reference point)

View line

surface

Pe
Figure 2.2: The viewpoint and the reference point define the view line.

By specifying different viewpoints and reference points, the assumed person can
be located at any position and can look in any direction in 3D space.
Another concept is the field of view. When a person looks at some scene they can

only see the portion which is in their field of view.

2.3 View Center Calculation

The data set used in this thesis represents depth of the ocean floor below sea level.
If the view line intersects the surface represented by this data set, this intersection

poini is the view center as defined in section 2.1. Since the surface of the ocean floor

is normally irregular, there is no direct way to obtain the view center. To find the
view center, points on the view line are compared with points on the surface.

The viewpoint is defined as P, = (x,, Yy, 2.}, and the reference point as P. =

16
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H

(-, Yry 2»). These two points determine the view line in 3D space. The line is de

scribed by the equation

T — Iy — ¥ — Yo — g — Zy or PZU(P:-_PU)-, ue{o,oo) (24)

Tp == Ty Yr — Yy Lp T Zy

Here (x,y,z) is any point on the view line. If a point (z,,¥,, z;) can be found on the
surface, z, and z, are compared. If z, = z:], the viewpoint is on the surface and
the point (2, Yo, 2zp) is the view center. If z, > 2, the viewpoint is below (above)
the surface. Otherwise the viewpoint is above (below) the surface. Here we consider
the case of z, < zy (2, > 2, is similar). Take a point from the view line which is a
distance Ad away from the viewpoint (Ad is a small constant}. Define this point as
(21,91, 21). If a point (21,y1,%,) can be found on the surface, the points (z1,11,21)
and {z1, 4, zi) are compared. H 2 > zi, the point from the view line is now on or
below the surface. This means that between the two points, there is a point which
intersects the surface. Since these two points are very close (depending on how large
Ad is}, the point (1,1, 2,) can be considered to be the intersection point. If z; < 2,
the point from the view line is still above the surface. A point from the view line
is found which has a distance 2 x Ad é,way from the Viewpoinf, and compared with
the corresponding point from the surface. By repeatedly doing the comparison, the
intersection point can eventually be obtained (if there is one). If for a point (z,¥:, #)
from the view line, z; or y; is outside this surface boundary, the point (mi,yi,z;)
cannot be found from the surface. In this case, the view line does not intersect the
surface at this point.

For the viewpoint (Zu, Y, 2y), if z, or ¥y, is out of the boundary of the surface, a
point (&, 3, 25) cannot be found from the surface. The above ﬁrocedure of finding the
intersection point cannot be applied directly. In this case, a point (xk, Yk, 2¢) from the
view line has to be found. This point is within the boundary of the surface, but the
point (®g—1,Yk—1, 2k—1) 1s not. Starting with point (zx, ¥, 2k}, the above procedure of

finding the intersection point can be applied.

11



One way to reduce comparison times is to shorten the length.of the segment to be
checked for the intersection point. By considering the maximum and minimum of z
values Zmgy and Zpy;, 1n the data set, the segment cém be shortened. The intersection
point can only be on the part of the view line which 1s between the two planes
2 = Zmpar and 2 = Zpipn. That P, and Py, correspond to the intersection of the

view line with these two planes, respectively (see Figure 2.3).

z

A Pv

Lr
Pmax Z = Zmax
\ surface
Pmin Z = Zmin

N

Figure 2.3: Restricting the search for the view center by considering only the z data
values in range.

X

>

Only the'segment Proz Prmin needs to be checked during the comparison. From the
figure 1t can be seen that if the view line goes in the opposite direction, the intersection
points Pp,; and P, cannot be found. In this case the intersection point between
the view line and the surface cannot be found either.

Another way to shorten the segment to be searched is to consider the surface
boundary. Projecting the surface and the view line to the x-y plane, we can get a
segment from the projected view line which is overlapped by the surface. It is obvious

that the intersection point between the view line and the surface can only be on this

12



segment (if there is one). This segment is defined as P, P, as illustrated in Figure.

2.4,

‘Y

Pv
Pr

Pin Surface

‘:ut . >

Figure 2.4: The intersection point can only be on the segment F;, P, falling inside
the data boundary.

T'he intersection point between the view line and the surface; that is, the view
center, can only fall on the line segment which 1s the common part of the two segments
PowPrin and P, P,,;. If there is no common part, the intersection point befween
the view 1in\e and the surface does not exist.

If the view center cannot be obtained by finding the intersection point as described
above, the surface is represented by the plane z = Zeqn, where Zyean is the mean
z value of the data set. The intersection point between the view line and this plane
can be easily obtained (if there is one). This intersection point is defined as the V.iew
center. If.the view center still cannot be found in this way, it is_assumed that the
surface is out of the field of view and the surface construction is not necessary.

Finding the existing intersection point is not guaranteed. If Ad is too big, some

intersections could be missed as shown in Figure 2.5. In the figure, p, is above the

13




surface. After increasing by Ad, the point p; is checked. Since p; is still above the’
surface, the algorithm assumes there is no intersection point between these two points.

The intersection of the view line with the surface between these two points is missed.

X
|

Figure 2.5: The case of missing an intersection point.

The entire algorithm for finding the view center is given in Figure 2.6.

2.4 The Linear Approach

As mentioned before, a triangular mesh is used to represent the surface. The trian-
gular mesh must have variable resolutionr with the highest resolution around the view
center.

In this approach, the entire surface is subdivided into grid cells. Suppose the
number of grid cells is nol x noc (nol, the number of lines of grid cells; noc, the
number of columns of grid cells). A triangular mesh is created for every cell. The

triangular mesh inside a cell has a unique resolution. The resolution could be different

14



/* The algorithm to calculate the view center. */

center{Pv, Pr) /* Pv: viewpoint, Pr: reference point, Pc: view center. */
c .
/* Get a segment inside which the intersection point falls.. */
Seg = segment(Pv,Pr,endl,end2); /x Seg is wanted segment and has
endi,end? as 2 ends. */

/* s is a point on the segment which is part of the view line.
The search is from endi. s will be updated later on till end2. */

s = endl;

if{s is above the surface) Above = TRUE;

else Above = FALSE;

while(P¢ == NULL and s <= end2){

s = s + STEP; /+ STEP is a small constant. */
if(point s is above the surface and Abeve == FALSE)
Pc = 5;
else if(point g is below the surface and Above == TRUE)
Pc = s; '
}
¥
/* Calculate the shortened segment for finding the view center. */
segment(Pv,Pr,endl, end2)
{ .

/* Zmax and Zmin are the max and min z value in the data set. */

Pmax = The intersection between the view line and plane z=Zmax.

Pmin = The intersection between the view line and plane z=Zmin.

/* Project the view line and the surface into the x-y plane. Pin and
Pout are two intersections between projected view line and the
boundary of the projected surface as in Figure 2.5. */

Pin = the first intersection between the view line and the surface.

Pout = the second intersection between the view line and the surface.

/* The view line does not intersect the surface. */

/* supose Pin < Pout and Pmin < Pout */

if(Pmax and Pmin are NULL and Pin and Pout are not NULL){

endl = Pin;
end2 = Pout;

¥

else if(Pin and Pout are NULL) endl = end2 = NULL;

else{ : :

endl = max(Pin, Pmin);
end2 = min{Pout,Pmax);
¥
}

Figure 2.6: The algorithm for finding the view center.
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among different grid cells. If the resolution for every cell is applied properly, a triangle
mesh for the entire surface with variable resolution is obtained. |

Here we discuss the way to construct a triangular mesh within a grid and how to
vary the resolution. The simplest way to create the triangular mesh within a grid is to
connect two opposite corners of the grid and get two triangles as shown in Figure 2.7
(a). This triangular mesh has the lowest resolution. If a higher resolution is required
for the grid cell, the cell is divided into four same-sized subcells; that is, 4!. Dividing

the subcells into two triangles, this cell is divided into eight triangles as shown in

Figure 2.7 (b).

(a) (o)

/1

{c) (d)

Figure 2.7: A triangle mesh in a grid, with different resolutions for (a), (b}, (¢), and
(d).

If even higher resolution is required, every subcell is further divided into four
subcells in the same manner. The total number of subcells is 16; that is, 4%. In the
same way every subgrid is divided into two triangles. The total number of triangles
within the grid is 2 x 42, The same subdivision technique can be applied to get a

higher resolution within the grid cell. The number of subgrids can be 4°, 4}, 4%, 43
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4%, ... The number of triangles, therefore, can be 2 x 4%, 2 x 41, 2 x 4%, 2 x 4%, 2 x 4%,
-+ Figure 2.7 (¢) and (d} show grids with higher resolutions.

In section 2.1, it is mentioned that z and y in 3D space correspond to the subscripfs
¢ and 7 of the data array D. 2 and y can only be integers. The edge length of the
subcell should be integer too, and the smallest length of an edge, therefore, is 1. To
avold non-integers during the subdivision, the edge length of a grid should be 2¥ so
that the subdivisions along z and y are always integers until the edge length of the
subcell becomes 1. As the edge length of a grid cell is 2%, the maximum number of
subcells is 2% x 2*; that is, 22*. When this many subcells are generated, the edge
length of the subcell is 1.

On the other hand, when the cell size is 2, the grid can only be subdivided & + 1
times until the edge length of the subcell becomes 1. From these & + 1 subdivisions,
we can get & + 1 different resolutions. The lowest resolution is called level 0, the
second lowest is level 1, - - -, the highest resolution is called leve] k.

One problem is that when two neighboring grids have different resolutions, cracks

will be generated as shown in Figure 2.8 {a) [Tamminen, 1985].

(a) | (b)

Figure 2.8: (a) Cracks are generated between neighbors with different resolutions.
(b) A modified triangle mesh to avoid cracks.

To solve this problem a modification is made during the triangular mesh construc-
tion within a grid cell [Herzen, 1987]. We define that between two neighbors, the grid

cell with higher resolution is modified to adapt to the lower resolution grid. The
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neighboring grid cell is changed as shown in Figure 2.8 (b). From Figure 2.8 (b) it
can be seen that no cracks exist between two neighbors. The transition between two
grid cells is done smoothly. Here we only consider that the difference between two
cells is at most one level; that is, if one cell has 4! subcells inside it, the neighboring
cell has 4°, or 47!, or 4! subcells. The above figure illustrates the transition along
the left side of a cell. The right, top, and bottom sides can be considered in the same
way.

In some cases more than one side of the cell has to do the transition at the same
time. When two sides require transition, the two sides can be considered in a similar
way. A triangular mesh with two sides in transition is shown in Figure 2.9 {a}). From
Figure 2.9 {b) it can be seen that no cracks exist. The transition for higher resolution

grid cells is similar.

{a)

{b)
Figure 2.9: A triangular mesh with two neighbors having different resolutions.

It remains to determine the resolution for every grid cell. Firstly, the highest

resolution around the view center is decided by the distance between the viewpoint
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and the view center as discussed in section 2.1. This distance will decide which level
of resolution is applied to the grid cell in which the view center is located. The

resolution for every other grid cell is decided by the distance between this cell and

the view center. If the distance 1s bigger than a value d;, the resolution declines one

level from the highest resolution. If bigger than d; (d; > dy), the resolution declines

two levels, and so on until the lowest resolution is reached.

In the real case, 5 resolution levels were used. Level 0 has the lowest resolution
with 4° subcell in a grid cell; level 1 has 4! subcells; and so on. The resolution for
a grid cell on the surface can be determined by a function. Here, R,.,, is defined
as the resolution level for the grid cell in which the view center is located; d, as the
distance between the view point and the view center; d. as the distance between the
view center and a grid cell on the surface; R as the resolution for a grid cell on the

surface. The following is a simple example of the resolution function.

if d, < 200

if 200 < d, < 400

i 400 < d, < 700 (2.5)
if 700 < d, < 1200

Rmax=<

= = D L W

otherwise

R if d. < 16

Ryor—1 if16 < d. €32 _ _
R={ R...—2 if32<d. <64 (2.6)
Ruper —3 1f 64 < d, <128

Rpez —4 otherwise

v

If R <0, K defined as 0.
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Here, the value of the R,., and R is the resolution level, the unit for d, and d, is
meter.

During the triangle mesh construction, the resolution of the neighbofing grid cells
must be considered. If a lower resolution neighboring grid cell, or cells is found, the
transition has to be applied. |

Figure 2.10 is t.he resolution function for one case of the linear approach, and
Figure 2.11 show§ the complete algorithm for generating a triangular mesh using the

linear approach.

2.5 The Non-Linear Approach

The main objective in this approach 1s to construct a triangular mesh which has
variable resolution due to two factors. The variation in resolution should respond to
(1) change of the view center and (2) the distance between the viewpoint and the
view center. It should also be very simple and easy to i.mplement in order to generate
high speed animation. |

Considering all of the above requirements the pattern in Figure 2.12 was designed.
Figure 2.12 is a top view of the triangle mesh which is in 3D space. From the figure
it can be seen that the smallest triangles are around the view cenier, where the
maximum resolution occurs. As the distance from the view center increases, the size
of the triangles becomes bigger; that is, the resolution decreases.

In this triangle mesh every vertex of the triangles is a point from the regularly
gridded data set. This triangle mesh is constructed by starting from the view center.
The first step is to pick four points to form a square ¢y centered on the view center as
shown in Figure 2.13 (a). From this, a triangle mesh is formed with the view center
as shown in Figure 2.13 (b). The distance Agp reflects the resolution within that area
since it decides the size of the triangles. The second square ¢; is formed in the same

way. But Aq; is bigger than Age. The reason for this increment is that the area
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Figure 2.10: (a) The relation between R..., and d,. (b} The relation between R and
Bz
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/* The algorithm for censtyucting a triangle mesh using the linear
approach. */

#define I 16 = /# the size of a grid cells */

mesh(Pc,noc,nol)
/* Input includes Pc (the view center), noc (=n/I), and
nol (=m/I) {m, n are defined in equation 2.3). */
{

for(i=0; i<=noc; i++){ /% Scan the columns of grid cells.*/
for{j=0; j<=nol; j++){ /+ Scan the lines of grid cells.*/
/* The distance below means the smallest distance among
the distances from Pc to four corners of the grid cell. #/
dist = distance from Pc to grid i,j;

dist1l = distance from Pc to grid i,j-1;
dist2 = distance from Pc¢ te grid i,j+1;
dist3 = distance from Pc to grid i-1,j;
dist4 = distance from Pc to grid i+l,j;

/* resolutions for grid i,j, and four neighbors using
equation (2.5) - */

R = resolution{dist);

Rt = resclution{distl);

R2 = resolution{dist2);

R3 = resolution(dist3);

R4 = resolution(dist4);

/* if *diff*' is not 0, the transition is needed for grid

i,j in the side the correspoding neighbor is located. */
diffi1 = R1 - R; '
diff2 = R2 - R;
diff3 = R3 - R;
diff4 = R4 - R;
/% Create triangular mesh within grid i,j. */
submesh(i, j, R, diff1l, diff2, diff3, 4iff4);
Y +tor*/

}/*for*/

Figure 2.11: (a) The algorithm for generating a triangular mesh
using the linear approach.
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/* The algorithm for constructing a triangle mesh for a grid cell. x/
submesh(i,j, R, diffl, diff2, diff3, diff4)

{

/* Grid i,j has four corners (x0,y0),{x0,y0+I),(x0+I,y0+I),and
(x0+I,y0). Here I is the size of the grid. Subdivid grid i, j
intc R*R sub-cells. */

sI = I/(R+1);

/* Get subcells into an array. */

for{i=0; i<R; i++){ /* Column */

for(j=0; j<=R; j++){ /* Line %/
subcell[il[jI1[C] = x0 + sI*j;
subcell[i]1[§I1[1] = y0 + sI*i; } }

/* Divide every subcell into two triangles as in Figure 2.7(a) except
the most outside subcells aleng the four sides which may need
transition. : */

for(i=1; i<R-1; i++} /% Column */

for{j=1; j<R—-1; j++) /* Line */
g_2_tri(subcelllil[j]); /* Generate 2 triangles. */
for(i=0; i<R; i++) /% The subcells along the left-most side. %/
if(diffl = 1) g_2_tri(subcell[i][0]); /* No transition. %/
else{ /* Transition needed. 3 tri for 2 neighboring subcells
as in Figure 2.8 (b). */
left_transition{subcell[i]l[0],subcell[i+11[01);
i = i+1; }
for(i=0; i<L; i++) /# The subcells along the right-mest side. */
if(diff2 '= 1) g 2 tri(subcellliifL-1]); /* No transition. */
else{ /+* Transitioh needed. 3 tri for 2 neighboring subcells
as in Figure 2.8 (b), */
right_transition(subcell[i] [L-1], subcell[i+1][L-11);
i = i+1; }
© for(j=0; j<L; j++) /* The subcells along the top-most side. */
if(dif£3 '= 1) g_2_tri(subcell{0lfjl); /# No transition. #*/
else{ /* Transition needed. 3 tri for 2 neighboring subcells
ag in Figure 2.8 (b). */
top_transition(subcell[0] [j], subcell[0] [j+1]);
jo= j+1; %}
for(j=0; j<L; j++) /* The subcells along the bottom-most side, */
if(diff4 !'= 1) g 2_tri(subcelllL~11[jl1); /* No tramsition. */
else{ /* Transition needed. 3 tri for 2 neighboring subcells
as in Figure 2.8 (b). */
bottom_transition(sudbcell[L-1]1[j],subcell [L-1][j+1]);
j= gt}
}

Figure 2.11: (b) The algorithm for constructing a triangular mesh
for one grid cell.
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Figure 2.12: A triangle mesh for the non-linear approach.
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between ¢; and ¢g 1s further from the view center.

9o

&.pc

(a) (b) \
Figure 2.13: (a) The first square. (b) A triangle mesh for the first square.

If we keep generating the squares inside the surface, a sequence of squares, qo, ¢1,
g2, * %5 Gi-1, Gis Gi+1, * * *» Can be obtained. If Ag; is given, a square ¢; can easily
be obtained by extending the previous square ¢;-; by Ag; on every side as shown in
Figure 2.14. Later on we will discuss a function which generates the Ag;.

Fl_‘om the figure it can be seen that every square forms a strip with the previous
square. Every strip can be subdivided into eight areas. The division technique is
shown in Figure 2.15. The boundary of every subdivided area forms a four-line
polygon as shown in Figure 2.16. Geometfically the eight polygons are identical. For

a polygon genérated by ¢;, two parallel edges are called e;—; and ¢;. The distance
| between theﬁe two édges is Ag;..

A triangle mesh can be created for every one of these eight polygon. Two rules
are followed during the triangle mesh construction. The first one is to divide the edge
e; 50 that every subdivision is smaller than Ag; and all subdivisions are equally sized.

The number of the subdivisions should be:

n; = {leil/Agi (2.7)

Here, |e;| is the length of e;. n; is the smallest integer which is bigger than le;|/Agi.

The second rule is that the edge e; can only be divided once. Since this edge is shared
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Figure 2.14: A sequence of squares are generated.

by another polygon which is from a strip generated by ¢;41, this subdivision will be
used for triangle mesh construction in that polygon too. This rule is to prevent cracks
during the triangle mesh construction for the entire surface.

Take g1 as an example. A strip is formed by ¢; and ¢o. This strip forms eight
polygons. E;'ery one of them has €, eg, and Ag, attached as shown in Figure 2.17
(a). Here leo] = Ago, |es]| = Ago + Agi. According to the rules, the number of

subdivisions for the edge e; should be:
n = [lell/Aq] = [(Ago + Aq1)/Aq] =2 (2.8)

A triangular mésh for the polygon can be constructed in the way shown in Figure
2.17 (b). Constructing the meshes for all the polygons in the same way, a triangle
mesh for the strip formed by squares q;}. and ¢; is created. Together with the triangle
mesh in Figure 2.13 (b}, the result is shown in Figure 2.17 (c).

This method can be apply to every strip, which eventually leads to a triangle mesh
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Figure 2.15: The subdivisions for every strip.

AQi

Figure 2.16: A four-line polygon from the strip subdivision.
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(a)
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Figure 2.17: The triangle mesh for a strip formed by ¢; and go.

for the entire surface.
For the square ¢; and ¢;_;, we have Ag;, ¢;, and e;.; associated as in Figure 2.16.

The length of e; is:
le:] = |61'—1.| + Ag (2.9)
The number of subdivisions is:
ni = [le:]/Ag] (2.10)
Substituting (2.9) into (2.10), we get:
n; = .|'(|€£—1| + Ag)/Bqi] = [leimal/Ag] + 1 | (2.11)
Suppose e;..; has n;_y subdivisions. We have:

iy = [leim|/Agia] - (212

28



Since Agq; > Ag;_1, we have:

[leica|/Agi] < [leia]/Agiaa] : (2.13)

Equation (2.13) can be denoted as:
flev-11/Ag] + 1 < [leimtl/Agios] +1 (2.14)
Substituting (2.11) and (2.12} into (2.14), we get:
n; <ngo1 + 1 (2.15)

Equation (2.15) indicates that the number of subdivisions of ; is at most one more
than that of e;_;. Here we make another rule during the subdivision. If the number of
current subdivisions (n;) is smaller than that of the previous subdivision (), then
force the current subdivisions to be the same as the number of previous subdivisions;
that is, change n; to be n;_1. In this way it is guaranteed that the number of current

subdivisions n; is equal to or one more than the number of previous subdivisions r;_;.

“If the current subdivision is equal to the previous one, the triangular mesh for the

polygon is constructed in the way shown in Figure 2.18 (a). If it is one more, the
triangle mesh is constructed in the way shown in Figure 2.18 (b).
As all the vertices of the triangular mesh are points in the data set, the purpose

of the subdivision is to find the proper points to construct the triangular mesh. If a

‘square ¢; has some parts outside the boundary of the surface as shown in Figure 2.19

(a), the outside parts do not need to be subdivided since no points from the data
correspond to the subdivisions for that part. This outside part is eliminated. The
square becomes a rectangle ¢; as in Figure 2.19 (b). As discussed before, the strip
area between ¢;-, and g, should be subdivided. The four-line polygons are obtained
from this subdivision. In this case we may not get eight polygons. Here, six polygons
are obtained as shown in Figure 2.19 (c).

The technique of creating a triangle mesh within a polygon discussed before can

be used to create a triangle mesh within every one of the six polygons, although the
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(a)

(b}

Figure 2.18: A triangle mesh for a polygon. (a) The para.llel. .edges are equally divided.
(b) The parallel edges are not equally divided.

sha,pes. of the polygons may not be exactly the same as before. These polygons are
still four-line polygons.

Until now we are only concerned about the situation in which the view center is
inside the surface. If the view center is far away from the surface and the surface is out
of the field of view, no part of the surface is displayed and the surface construction,
therefore, is not necessary. If the view center is out of the surface, but not far away
from the surface, some part or even all of the surface should be displayed. In this
case, the surface is constructed similar to the way discussed before.

A sequence of squares ¢, g1, g2, * - *, ¢: 18 generated. All the squares are centered
at the view center, as illustrated in Figure 2.20. Every sque;,re forms a strii) with
the previous square. Dividing the étrip into eight areas as before, eighf polygons
are obtained. An area from a strip may not be overlapped or may be overlapped
partly by the surface as shown in Figure 2.21. If it is overlapped, the boundary of the

overlapped part forms a polygon. This polygon can be implemented in the same way
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Figure 2.19: (a) Some part of the square is outside the surface boundary. (b) The
outside part of the square is eliminated. (c) The subdivision for the entire surface.
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as before. The edge of the polygon is subdivided and a triangle mesh is created within -
it. If an overlapped part is a triangle, it can be considered as a four-line polygon with

one line zero sized.
g

surface

Figure 2.20: A sequence of polygons generated when the view center is outside the
data boundary.

The resultant triangular mesh for the regularly gridded Louisbourg data set is

shown in Figures 2.22 and 2.23.

2.6 The Resolution Function

One of the main advantages of this approach is the easy-to-define resolution function. .
The resolution function allow us to calculate the step value Ag,. From the above
discussion we know the step value Ag; depends on two things; (1} the distance from

the view point to the view center d,, and (2) the distance from the view center to
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Figure 2.21: Partly overlapped strips
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Figure 2.22: One frame of the final non-linear triangular mesh for the regularly spaced
34

Louisbourg data set.




Figure 2.23: One frame of the final result with shading for the regularly spacer

set. The red arrow points to the view center
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g;, that is, d.. By knowing the highest resolution, we can decide the resolution of
other squares according to d.. The first part of the resolution function is to decide

the highest resolution R, according to d,. This could be a linear, a non-linear or

a step function. The second part of the resolution function 1s to compute the Ag;

according to the highest resolution R, and the distance d..

An example of the resolution function used here is:

[ 14+d,/30 ifd, <400

I+4d,/25 if 400 < d, < 800

Rpaz =3 I-+d,/20 if 800 <d, <1200 (2.16)
I+d,/15 if 1200 < d, < 1600

| T+4d,/10 if d, > 1600

Here, I is the R,.., value defined for d, = 0. For the Louisbourg data, I was
chosen as 1. The units are the same as used in the data set. Now, each Ag; can be

computed as:

Ag; = Agioy + Inc (2.17)

AQO == Rma:c
=123,

Here Inc is a constant increase; in this example it is chosen as 1.
Comparing the above two approaches, the non-linear approach has several ad-
vantages. For the non-linear approach, the resolution can be increased or decreased

continuously; no special transition algorithms are needed for avoiding cracks.
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Chapter 3

The Smoothness Directed

Approach

In Chapter 2 the triangle mesh which represents the surface is constructed only by
considering the z and y grid coordinates, When an area has small triangles m 2D
space, this area is considered to have high resolution. The surface, however, is in 3D
space. If a triangle in 2D space 1s small, 1t does not necessarily mean that the triangle
is small in 3D space. If a large height difference exists among the three vertices, the
triangle could be very big. In this sense, using the methods of Chapter 2 an area
which should have high resolution is not gnaranteed to have high resolution. A large
z difference could make the resolution in this area decrease. To solve this problem, the
smoothness directed approach is considered. It is based on the gaze-directed approach.
If a big z difference exists between two vertices of an edge which is generated by the
gaze-directed approach, this edge is subdivided into two subdivisions. The triangle
which possesses this Iedge is subdivided to smaller triangles so that for every smaller
triangle the z difference between two vertices of an edge in 3D space is acceptable.
If only one of the three edges has a large z difference, this edge i1s subdivided into
two equally sized edges and the triangle is divided into two as shown in Figure 3.1

(a). In this figure AABC 1s the original triangle. Points A and B have a large 2
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difference. AADC and ADBC are the subdivided triangles. Point D is in the middle
of points A4 and B.

If two of the three edges need to be subdivided, each of two edges 1s subdivided
into two at the middle of every edge, and the triangle is subdivided into three triangles
as shown in Figure 3.1 (b). In the figure AABC is the original triangle and the edges
AB and AC need to be subdivided.

- If ali three edges in a triangle need to be subdivided, every edge is subdivided
into two at the middle of the edge and the triangle is subdivided into four triangles

as shown in Figure 3.1 (¢). In the figure AABC is the original triangle.

B Cc B c B Cc

{a) (b) (c)

Figure 3.1: {a) One edge is subdivided. (b) Two edges are subdivided. (c) Three
edges are subdivided.

All newly obtained triangles in Figure 3.1 have to be checked. If any triangle needs
to be further subdivided, the same method can be used. This check is recursively
performed until all the subdivided triangles are acceptable.

Since every edge is shared by two triangles, if the edge is not acceptable for one
triangle, it is not acceptable for the other one either. The same subdivision is required

for both triangles so that cracks can be avoided.
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- After trying various methods to handle the subdivision, this approach was aban-’
doned. It was discovered that the complexity of building the triangular mesh would
lead to too large a time cost for effective near real-time animated display. The prin-
ciple difficulty was finding the neighboring triangles so that the mean normal vectors

could be calculated for a smoothly shaded lighting model.
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Chapter 4

The Gaze-Directed Approach with

Irregularly Spaced Data

In the real world viewing irregularly spaced data is mor.e important since this is
the way the data is normally collected. Ocean ba.thymgtric data collected by swath
sounding systems is irregularly spaced. From this data, regularly spaced data can
be produced by gridding or binning techniques. It is more accurate to construct a
surface from the original irregularly spaced data. It is, however, more difficult [Chen
& Guevara, 1987]. In this chapter, the gaze-directed approach with irregularly spaced
data will be discussed. The gaﬁe-directed approach with regularly spaced data has
already been presented in Chapter 2.

4.1 Overplot Removal and Subsets

In this approach, several subsets are generated from the origihal data set and every
subset has a different number of points in it for the entire surface. Each subset has
.a, different resolution. If the displayed surface is constructed from the data from
different subsets, that is, each one of them for only a part of the surface, then a

variable resolution for the surface is obtained. The first problem is to get proper
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subsets from the original data set.
Points in the original data set may overlap or be very close to each other. Overplot

removal is applied to correct this situation [Mason, 1990]. The basic idea is as follows:

For a picked point p, if there exists another point p’ which is closer to
p than a constant €, then point p’ will be removed and point p is put into
the subset.

In order to find the points like p’ one way is to search all the points in the overall
- data set. If there are n points in the data set, searching will require a running time
of O(n?), which is very time consuming. A better strategy is to divide the data set
into grid cells aligned with the z and y coordinate axes. Every point is distributed
into a cell if it is inside this cell (see Figure 4.1). The z value of the point is ignored.
If the size of the grid cell is bigger than €, only the points in the grid cell to which
the picked point p belongs and eight neighboring grid cells need to be checked. This
is because all points outside of these grid cells have distances from p bigger than e.
A picked point and a removed point are flagged, but in different ways. When a point
is removed it will never be picked. On the other hand, if a point has been picked it
will never be removed. This procedure generates a subset, called Fy. The value of ¢
depends on the smallest distance allowed between points.

The same grid cell technique can be used for generating the other subsets. All
points in Py are distributed into grid cells. For a point in P, the distances to points in
the same grid cell and eight neighboring grid cells are calculated to find the smallest
distance. If no other points are found in these grid cells, all the neighboring grid cells
of the neighboring eight grid cells will be checked. This will have sixteen gird cells
involved. This can be recursively performed until a smallest (iistance is found. This
srﬁa.llest distance is denoted as d. Multiply d with a ratio r {r > 1), and let &' = d xr.
Using d’ as a radius and the picked point as the center, a circle is drawn. Besides
the center point, at least one other point is inside the circle, that is, the point with

which the smallest distance is found. If the point or points inside the circle have never
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Figure 4.1: Illustration of the grid cell te(;hnique.

been picked before, they will be removed. For every point a different d and d’ will be
obtained, but the value of r is constant. By doing this for all points another subset
is generated, called P,. The value of r depends on how many points are expected to
be removed. If r is big, more points will be removed. In the same way, other subsets
Py, Py, Py, Ps, Py, and Py are generated and P, C Ps C Ps C ... C Fy. The algorithm
is described in Figure 4.2. |

The advantage of this method is that it can keep the general pattern of the dis-
tribution of the data set. When a point is in a high density area and it is picked, the
smallest distance between this point and other points will be small, that is, the d is
small, and d&' (= d x r) is small as well. This indicates that the area “belonging” to
this point is small in the high density area and more points will be picked to form the
subset. In this way the percenta.ge.of removed points from a high density area and
from a low density area is kept as similar as possible. This can be seen in Figures 4.3

and 4.4. Details of the number of points in each data set are given in Chapter 5.
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/* Algorithm to generate a point subset.

subset{p,index)
int p[TOTALI[3]; /*The points.
int index{LIKE] [COLUMN];/#The grid array as in Figure 4.1. Total no. of
cells = LINE*COLUMY. */
{
int flagl{TOTAL]; /*Flag every peint in the point array. The value
could be DELETED, PICKED, or UNTGUCEED. */

/#* Scan every point in every grid cell. Here i is the index of line and
j is the index of column. */
for(i=0;i<LINE;i=i+1){
: for(j=0; j<COLUMN; j=j+1){
- /* The data set has been sorted such that p[k] is a point
within a grid indicated by i and j. The k is from index[i]{j]
to index[i]{j+1] - 1. */
for(k=index[i] [j];k<index[1] [j+1];k=k+1}{
if(flag[k] not equal PICKED and flag[kl not equal DELETED){
flag[k] = PICKED; .
/* Find the nearest point to the picked point by checking
the cells near the grid cell indicated by i and j. */
closest_p = closest{plkl,i,j);

min_distance = distance between closest_p and p[k];
radius = min_distance*RATIO;

/* Check all the grid cells which are totally or partly
overlapped by the circle which has picked point as the
center and ‘radius’ as radius. If a point is within
the circle and the related flag value is ‘UNTOQUCHED’,
delete this point. */

delete(radins,i,j,k);

I/ it/
}/*for k #/
}/*for i/
Y/ *for i%/

Figure 4.2: Pseudocode for generating a point subset.
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One problem arose in this process. A subset would lose data coverage on the
right side of the boundary. The reason for this “shrinkage” can be seen in Figure

4.5. From the diagram it can be seen that all the data in the right-most grid cell is

Figure 4.5: The cause of a subset coverage shrinkage.

removed, and data coverage is reduced. If this is not prevénted, the subset Pr may
lose a significant amount of coverage. To solve this problem, the order of picking.
points can be changed. Instead of going from left to right in a row, the right-most
cell and the left-most cell are considered first. In this way the coverage loss can be

prevented.

4.2 Triangle Networks

In the previous section, eight irregularly spaced data sets Fo, Py, ..., Py were obtained.
As for the regularly spaced data, friangle networks are used to construct the surface.
Since irregularly spaced data sets are used, the network is triangulated irregulaar.
network (TIN) (McKenna, 1987). From irregularly spaced data sets, there are several
ways of generating a triangular mesh. Elfick {1979] mentions four different methods.
The most common pattern of triangles used for DTM formation is the Delaunay
triangulation. This section describes the Delaunay friangulation, and explains the

algorithms used to create one from an irregularly spaced set of data points.
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4.2.1 Definition of a Delaunay Triangulation

The Delaunay triangulation can be defined as:

“ ... that instead of showing the regions surrounding points it is also
possible to connect the neighboring points, or Thiessen neighbors, to pro-
duce the dual of Thiessen polygons, the Delaunay triangulation.” [McCul-
lagh and Ross, 1980].

Thiessen polygons can be defined as:

“Given a set of points P; in a plane, its characteristics are such that
each point P; is surrounded by a convex polygon. All points within this

polygon are closer to F; than any other points in the set F;.” [Mortenson,
1985).

This 1s shown 1n Figure 4.6.

Figure 4.6: A set of points in the plane with their corresponding Delaunay triangu-
lation [Preparata & Shamos, 1985].

The Delaunay triangulation has a number of the desired properties for use as a

base for automatic terrain construction. They are:

1. The triangles form a minimal area triangulation. This means that the average

size of the trangles which fit all the data points 1s smaller than any other
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triangulation. As the area of triangles decreases, the resolution of the terrain

definition increases.

2. The triangulation is unique. No matter where the process of triangulation

begins, an identical pattern of triangles results.

3. A Delaunay triangulation consists of well conditioned triangles; most triangles

are as close to equilateral as possible [Mason, 1990].

4.2.2 The Algorithm for Generating Delauney Triangula-
tion

Although the above definition suggests that the Delaunay triangulation is derived |
from Thiessen polygons, the Delaunay triangulation can be produced directly from
an irregularly spaced data set. The algorithm is based on the following theory. The
third point of a triangle is defined by the circumscribing circle passing through the
base line and the third point. The right most/left most neighbor of a base line is
found when the right/left part of the circumscribing circle contains no other points
[Bjorkee,1988]. Figure 4.7 illustrates this. .

The first base line can be formed by picking any point P; and finding the nearest
point F;. Line Pj- P, is the first base line. Since the triangulation is unique, it does
‘not matter which point is picked as P;. For a base line A-B {not the first base line),
to find the third point for a triangle, points in the data set are tested. If for a point
there is no other point in the right/left part of the circumscribing circle, the point
being tested is the third vertex of a triangle. This third point is called D (see Figure
4.7). Now there are three lines; that is, Hne A-B, A-D and B-D. All _of them can be
used as a base line. Actually, all edges of triangles will be used in turn. Edges become
base lines if they are not shared by two triangles and are not along the boundary.

Repeating in this way the entire triangulation can be formed.
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Figure 4.7: Search for the third point of a triangle [Bjorkee, 1988].

‘The search for the third point is a critical step for the efficiency of the algorithm.
For the same reason as generating the subset of P, P, , the data set is divided
mto grid cells. Every grid cell contains zero or more points. Every time the search
only needs to cover the grid cells which are overlapped -or partly overlapped by the
circumscribing circle. In this way the search time can be significantly reduced. The
data structure for the grid cell technique is shown in Figure 4.1.

In the algorithm, the data structure for a triangle, ¢, includes {1} three vertices,
(2) three pointers to three neighboring triangles, and (3) a unit normal vector of the
triangle for screen display purposes.

When a third point is needed fof a base line to form a triangle, a circle with the
base line as diameter is drawn. If the right/left part of the circle contains only one
point, it is the third point. If the right/left part of the circle contains no point the
radius of the circumécribing circle should be increased, and thé center of the circle is
in the same side in which the third point is located, as shown in Figure 4.8 (a).

The center is always on line A-B, which is perpendicular to the base line. The
radius is increased until one or more points are included, or the radius becomes larger

than the maximum radius allowed. The radius is increased by the same increment
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base line

(a)  (v)

Figure 4.8: (a) The searched point is on the same side as the center of a circle. (b}
The searched point is on the opposite side from the center of a circle.

(called STEP) every time. The value of STEP is decided according to the density
of the data set. If the radius becomes bigger than the maximum radius, this base
line is a boundary of the surface. If one point is found, this point is the third peint..
Otherwise more than one point is found.

If more than one point is found, the radius has to be decreased. The decrement
size 1s half of the value of STEP. This decrement could lead to the third point or,
could be too large such that no point is included, or too small such that more than .
one point is still found. If the decrement is too large, the radius is increased by half
of the previous decrement. If the decrement is too small, the radius has to be further
decreased b);' half of the previous decrement. The radius is repeatedly adjusted in
this way until the third point is found. The value of every adjustment is always a
half of the value of the previous adjustment.

When the base line acts as diameter and more than one point is found in the
right /left part of the circle on the opposite side from line A-B (see Figure 4.8 (b)),
the radius must be increased. From now on, the center is always on the line A-B as
shown in Figure 4.8 (b). The radius is increased until one or no point is included.
The size of the increment 1s a gain denoted as STEP. If one point is found, this point

is the third peint. Otherwise no point is found and the previous increment was too
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big. A radius decrement is necessary. The size of the decrement is half of STEP. The
decrement could lead to the third point, or could be too big such that more than one
point is found, or too small such that no point is included. The radius is increased or
decreased following the mothed outlined in the paragraph above until the third point
is found.

The algorithms described above are shown in Figures 4.9 (a), {b), and (c).

One special case is when two or more points are on the circumscribing circle
besides those of the base line as shown in Figure 4.10 {a) [Lee & Schachter, 1980].
In this case, any one of these points can be considered as the third point. In the
algorithm it is handled as shown in Figure 4.10 (b). The points on the circumscribing
circle are sorted in counterclockwise order. The end points of the base line are at the
head. In Figure 4.10 {a) the order is as A,B,C,D,E. The base line picks the next point
as the third point, that is, C. Update the base line as A—C, and pick the next point
D as the third point. This is repeated until all points in the list are used. Figure
4.10(b) shows the final result. This prevents possible errors as shown in Figure 4.10
(c).

The pattern in Figure 4.10 (c) is caused by picking point C as the third point and
ignoring other points. Later on, points C and D could form a line C-D. As the line
C-D is used as a base line, the point A could be picked as the third point. This is not
a Delauney I.triangﬁlation and will result in “cracks” if these triangles are displayed

as the surface.

4.2.3 Results of Delauney Triangulation

A total of eight triangulation networks Ty, Ty, T3, ..., Tr are produced from point
'sets Py, Py, Py, ..., Pr, respectively. Figure 4.11 illustrates the result of the triangu-
lation for point set Py. The original point set is the Louisbourg da._ta set observed in
Louisboufg Harbour in 1989, The size of the surface is 600 x 510m in northing and
easting, respectively. The depths are between 33cm and 1620cm. Since the depth
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/* Algorithm to construct Delauney triangulation. */

struct T_LIST{ /* A triangle in the incomplete triangle list. */
int index; /* The index of this triangle. */
int p(3]; /* Three points of a triangle */
int neighbor[3]; /* Three neighoring triangle indices. */
float norm_vector; /+* Unit normal vector of the triangle. */
int done; /% If all above values are found, done. */
struct T_LIST *next_t; /* point to next triangle (next node of a list) =*/

}

struct L_LIST{ /* A base line in the base line list. */
int pl2]; . /* The two points of a bage line. */
struct T_LIST #ptr;/* A triangle to which the base line belongs. */
int side; /* The side the third point is on. */
struct L_LIST *next_l; /*point to next base line ((next node of a list) #*/

}

main() {

}

extern struct T_LIST #* head T, * tail_T;
/*Point to the head and tail of the incomplete trianglie list. */

extern struct L_LIST * head_L, * taili_L;
/# Point to the head and tail of the base line list. =*/

extern int index=0; /* Indicate the index of a triangle. */
- gtruct L_LIST *tmp_L; /+ temp pointer of base line list */
/* Allocate space for triangle list and for base line list. */

head_L = malloc(sizeof(struct L_LIST));

“head_ L -> next_L = tail L = malloc(sizeof(struct L_LIST));

tail_T = malloc{sizeof(struct T_LIST));

/* Find the first base line near the center of the surface. p0 and pl are
the two points of the first base line. */

first_base_line{&p0,&pl);

/* Put the first base line into the line list twice. One is for a triangle

on its right side, other for the left side. */
head L -> pf0] = po; head L -> pli] = p1;
head L —> ptr = -1; /* The pointer is empty. */

head_L —-> side = RIGHT; /* Indicate on which side third point should be.*/
tail_L -> p[0] = po; tail L -> p[1] = p1;

tail L -> ptr = -1; /% The pointer is empty. */
tail L -> side = LEFT; /* Indicate on which side third peint should be.*/

triangle(); /% construct a triangle in right side of the first base ling#%/
head T = tail _T; /* first triangle is created, and is pointed by tail_T */
triangle(); /* construct a triangle in left side of the first base line +/
/* The first two triangles are neighbors */

kead T -> neighbor[0] = tail_T -> index;

tail_T ~> neighbor[0] = head_T -> index;

while(head T != tail_T) triangle(); /# main loop */

Figure 4.9: (a) Pseudocode for for creating a Delauﬁay triangle from a point set.
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/% Find the third point for a base line in the head of the base line list and put
the newly formed triangle inte the incomplets triangle list. */
triangle() '
{ .
extern struct T_LIST * head_T, * tail_T; -
extern struct L_LIST * head L, * tail_L;
extern int index;
struct T_LIST *tmp_T;
struct L_LIST *tmp_L;
extern int p3; /* Store the third vertex of a triangle. */
int status;

/* The base line used is pointed to by head_L. */

status = 1;
third_point(status); /#* Find the third peint and put in p3. */

/% The base line and the third point form a triangle. It is put into the
triangle list. ' */

/#* allocate memory for new triangle in the triangle list %/

tail_T -> next_T = malloc{sizeof{struct LIST_T)};

tail_T = tail T -> next_T; /% tail_T points to this new node */

tail.T -> index = index; /* The indsx of the new triangle. =/

s ) tail _T -> p[0] = head_L -> p{0]; /# first point of the new triangle */

_ tail T -> p[1] = head L -> p{1]; /¥ first point of the new triangle */

: tail T -> pf2] = p3; /* first point of the new triangle */
: tail_T -> norm_vector = vector(tail_T); /* the unit normal vector */

/* This new triangle and the triangle to which the base line belongs are
neighbors. */
tail_T -> neighbor[0] = (head_L -> ptr) -> index;
if((head_L -> ptr) -> neighbor[1] == EMPTY)
(head_L -> ptr) -> neighbor[1] = index;
else{ /* (head L -> ptx) -> neighbor(2] == EMPTY */
) /* This triangle is completed. */
(head_L -> ptr) -> neighbor[2] = index;
(head_L -> ptr) -> done = DONE;

tail_L -> next.L = malloc(sizeof(struct LIST_L));

tail_L = tail_L -> next_L; /* tail_T points to this new node */

: tail_ L -> pl0o] = head L -> p[0]; /* The first vertex of the base line. =*/
; tail L -> p[1] = p3; /*The second vertex of the base line. #*/
; tail_L -> ptr = tail_T; /* To the triangle to which this line belongs. #*/

3
; /* The two new edges of the triangle are two new base lines. Put them
: inte base line list. */
: /* The first base line of two. ' */

Figure 4.9 (b) Pseudocode for forming the triangle list and the base-line list.




/* If the point other than the two points in the base line is in the

right side, then LEFT is assigned to this base line, otherwise, RIGHT*/
if{head_L -> p[1] is in right side of tail L) tail_L -> side =. LEFT;
else tail _L -> side = RIGHT;

/* The second base line of two. */
tail_L -> next_L = malloc(sizeof({struct LIST_L));

tail_L = tail_L -> next_L; /* ta2il.T points to this new node */

tail_L -> pf{0l = head_L -> pli1l;

tail_E -> pl1] = p3;

tail L -> ptr = tail _T;

if(head_L -> pl[1] is in right side of tail_L) tail L -> side = LEFT; -
else tail . -> side = RIGHT;

/* remove the base line just used from the base lins list */
tmp_L = head_L;

head_L = head L -> next L;

free(tmp_L);

/* If any triangles on the head of the triangle list are done, write into
data file. ) x/
while(head_T -> done == DONE){
write head_T -> p, head_T -> neighbor,
head_T -> norm_vector into data file;
/* remove this triangle from the triangle list */
tmp_T = head_T;
head_T = head_T -> next.T;
free{tmp.T);
if(head T == $ail_T) exit();
}

index++; /* one more triangle has been created */

¥

Figure 4.9 (b) (continued) Pseudocode for forming the triangle list and
the base-line list.
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/% Algorithm to find the third point for a base line. If the third point cannot

be found, the base line is the boundary. . */
third_peint{int status)
{
extern double center[2]; /*The center of circumscribing circle.*/
extern double radius, pre_radius; /+*The radius of the circle. */
extern double adjust_size; /*The size used to adjust the radius. */

extern struct L_LIST *head_L;
extern int  p3; /% the third point #*/
int num_of_p; /* the third peint, and the number of points found */

if(status == 1){
/* The base line acts as the diameter of the circumcircle. */
radius = (The length of the base line) / 2.0;
center = find_center(status,head_L,radius);
/* Find all points on the correct side of the base line
and within the circle. If only one point ig found, put it
in the external valuable p3. */
num_of_p = points_in_circle(head_L,center,radius);
if(num_of_p == 1) /* found third peint, terminate recursive. */
else if(num_of_p == 0} sthird_point(status = 2};
élse third_point(status = 4)}; /* More than one point is found. #*/

1
else if(status == 2){ /% Radius increases a step. See Figure 4.8 (a). */

adjust_size = STEP,
radius = radius + adjust_size;
center = find_center{(status, head lL,radins};
num_of_p = peints_in_circle(head_L,center,radius);
if(num_of_p == 1) /* found third point, terminate recursive. */
else if(num_of_p == 0) third_point(status = 2); '
else third_point{status = 3);

}

else if(status == 3){

/* The last increment of the radius is too big, or, the last
decrement is not big snough. Need decrement. The decrement is
the half size of the last adjustment (Figure 4.8(a)). */

adjust_size = adjust_size/2.0;

radius = radius ~ adjust_size;

center = find.center(status,head_L,radius};

num_of_p = peints_in_circle(head_L,center,radius);

if(num_of_p == 1) /# found third peint, terminate recursive. */
else if(num_of_p == 0) third_peint{status = 33);
else third_point{status = 3);

3}
else if(status == 33){
/* The last decrement of the radius is too big, or, the last
increment is not big enough. Need increment. The increment is
half the size of the last adjustment (Figure 4.8(a)). */

Figure 4.9 (c) Pseudocode for for finding the third point of a Delaunay triangle.




adjust_size = adjust_size/2.0;

radius = radius + adjust_size;

center = find_center(status,head_L,radius):
num_of_p = points_in_circle(head_L,center,radius);

if(num_of _p == 1) /# found third point, terminate recursive. %/
else if(num_of_p == 0) third_point{status = 33};
else third_point{status = 3);

¥
else if(status == 4){
/* & radius increment is needed. The center is on the opposite
side. See Figure 4.8 (b). ®/
adjust_size = STEP;
radius = radius + adjust_size;
center = find_center(status,head_L,radius);
num_of_p = points_in_circle(head_L,center,radius);

if(num_of_p == 1} /* found third point, terminate recursive. */
else if(num_of_p == Q) third_point{status = 5);
else third_point(status = 4);

}
else if(status == 5){ _

/* The last increment of the radius is too big, or, the last
decrement is not big enough. Need decrement. The decrement is
the half size of the last adjustment. See Figure 4.8 (b). */

adjust_size = adjust_size/2.0;

radius = radius - adjust_size; )

center = find_center(status,head_l,radius);

num_of_p = peints_in_circle(head_L,center,radius);

if(num. of_ p == 1) /* found third point, terminate recursive.  */
else if{num_of_p == Q) third_peint{status = 5);
else . third_point{status = 55);

T
else if(status == 55){
/* The last decrement of the radius iz too big, or, the last
increment is not big enough. Need increment. The increment is
" half the size of the last adjustment. See Figure 4.8 (b). */
adjust_size = adjust_size/2.0;
radius = radius + adjust_size;
center = find_center(status,head_L,radius);
num_of_p = points_in_circle(head_L,center,radius);

if(num_of_p == 1) /* found third point, terminate recursive. */
else if(num_of_p == Q) third_peint{status = 5);
else third_point(status = B5);

Figure 4.9 {c) (continued) Pseudocode for for finding the third point of
a Delaunay triangle.
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(a) (b) (c)

Figure 4.10: A special case in the Delaunay triangulation creation.

difference between points is small compared with the northing and easting, the depth
is exaggerated by a factor of 16. This factor was chosen after experimenting with the

look of several other factors.

4.3 Surface Construction

The main purpose of this research is to construct a surface with variable resolution
controlled by gaze direction as discussed in section 2.1. In this chapter the concepts of
the view point, reference point, view line, and view center are the same as introduced
in section 2.2. The triangle set 77 is used to calculate the view center as it has the

least number of triangles in it, which makes the calculation faster.

4.3.1 View Center Calculation

If the view line intersects a triangle in 3D space, this intersection point is the view
center. When the line and the triangle are projected to a 2D plane they overlap. The
reverse theory is not true; that is, if the projected view line and a triangle overlap
in 2D space it does not necessarily mean they intersect in 3D space. By getting all
triangles overlapped by the view line in x-y space, the most likely intersected triangles

are obtained. These triangles are put into a list T,,. Projecting T, and the view
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line to the x-z plane and getting overlapped triangles, the number of triangles can be
further reduced. These triangles form a list T;,. The same method is used with the
y-z plane. The third list is 7y,. Here, Ty, € T, € Tyy. From the triangles in T}, the
intersected triangle and further the intersection point can be found.

Now the problem is how to genérate T,y from all the triangles in the data set 7.
If the view line intersects two edges or overlaps one edge of a {riangle, this triangle is

considered as overlapped by the view line, as shown in Figure 4.12.

view point view point

reference point reference point

(a) (b)

Figure 4.12: The view line intersecting triangles in the x-y plane.

In Figure 4.12, there are three triangles numbered 1, 2, and 3. All three of these
triangles are overlapped by the view line. For finding all overlapped triangles, one
way is to check all triangles against the view line. This will take too much time. A
better way is first to find a triangle which is overlapped by the view line. By checking
the neighboring triangles of this triangle, for example, the triangles sharing the edge
A and B in Figure 4.12 (a), or the triangles sharing the edges of A,B,D, and E in
Figure 4.12 (b), more overlapped trié.ngle can be found. By recursively performing
the above process, all-overlapped triangles can be found.

One way to find the first triangle is to check the triangles in the data set one by

one. The worst case is when all data in the data set must be checked. To avoid this
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time consuming process, a better way is to divide the surface into grid cells. Every
grid cell could overlap zero, one, or more triangies. Only one overlapped triangle is
assigned to a grid cell if more than one triangle overlaps the grid cell. This one is
picked randomly.

Projecting the view line into x-y space (z=0), it will at least intersect one grid cell
(if an intersection point can be found). If this grid cell has one triangle associated
with it, this triangle is checked. If this triangle intersects the view line in 2D space, it
is the first triangle. If it does not, its three neighbors (¢, s, t3) are checked. If none
of these three triangles can be considered as the first triangle, the neighbors of 4,
t2, and ?3 are checked. Repeatedly doing this for all triangles overlapped by the grid
cell, eventually the first triangle can be found. The grid cells are sized small enough
so that only a few triangles are overlapped, so the first triangle can be easily found.
Experiments show that most times the repeat is not neceééa.ry. If the grid cell does
not have a triangle attached, another grid ceil is found which overlap the projected
view line. If none of the overlapped grid cells have associated triangles it means that
there is no intersection point between the view line and surface.

After projecting the view line and triangles in T}, to the x-z plane and checking
every triangle, the data set 7)., can be geﬁerated. .

In the same way, projecting the view line and triangles in 7}, to the y—ﬁ plane and
checking eve&‘y triangle, the data set T}, can be produced.

By using.3D geometry the intersection point of a triangle and the view line can
be easily calculated [Mortenson, 1985]. When an intersection point is obtained, the
procedure is terminated and other possible intersection poinfs are ignored. This point
is the view center.

On the other hand, if there 18 no intersection point between the view line and the
surface, the surface will be extended infinitely as a plane of z = Zeen. The Zpean
is the mean 2 value of all points in point set P;. The intersection point between the

view line and the plane is considered as the view center which is outside of the surface
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boundary.
If the view cenfer cannot be found even by extending the surface, the view center

is defined as far away from the surface so that the surface cannot be found within the

view field.

4.3.2 The Surface Division Function

To construct a surface with variable resolution the different triangle sets Ty, 11, ..., T7

are used at the same time. Every set is used to construct part of the area of the entire

surface. It is possible that some triangle sets will not contribute to the final surface.

The principle is that the area close to the view center has high resolution; that is, the

set with high resolution will be employed to construct the area. The resolution also

depends on the distance between the view point and the view center. If the distance

is small, the resolution is relatively high for the entire surface. For an area on the
surface, the resolution depends on the distance between the view point and the view

center and the distance between the view center and the area. As either one of these

distances decreases, the resolution increases.

If the view center is inside the boundary of the surface, the surface is divided as
shown in Figure 4.13.

Here, f; is the distance between neighboring boundaries. The firsi square (the
most inside one) is the area for data set 7. The area between the first square and
the second one is for data set 77, and so on. Normally the distance between inside
squares and outside ones is the same on all four sides. If one or more edges reaches
the surface boundary,; the distances between the four sides are no longer the same.
Once the distance between the viewpoint and the view center is decided, the division
function is known, and the areas for subsets (as shown in Figure 4.13) is determined.
If the view center is inside and near the boundary of the surface, it is possible that
the area boundary for 77 cannot reach the surface boundary in some side or sides. In

this case the boundary for % is extended to the surface boundary for this side.
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Figure 4.13: The surface division for different data sets with the view center inside
the surface boundary.
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If the view center is outside of the boundary, the surface is divided as shown in"

Figure 4.14.

FBr= o Byt Byl

surface

Figure 4.14: The surface division for different data sets. The view center is outside
of the surface.

As the distance, denoted as d,, between the view point and the view center de-
creases, the values of 8y, B4, ..., and 7 increase. If d, is small enough, the triangle sets
with the lowest resolution may not be used as the high resolution areas have reached

the boundary. On the other hand, as d, gets larger, the high resolution triangle sets
may not be used because of its high resolution, and g; (i=0,1, ..., 6) may be zero. If 8;
is zero, Fp to B;_; are zero too as the corresponding triangle sets Tp to T;. have even
higher resolutions and require smaller d, values. Figure 4.15 shows a configuration

where the data sets Ty, 71, and T3 are not used due to thcir high resolutions, and 77
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is not used as the Ty triangle set has reached the boundary of the surface. To decide
whether §; should be zero or not, a constant p; is associated with §;. If the distance

d, (between view point and view center) is bigger than p;, then 3; is zero.

- ﬁﬁ—hﬂ—- BS — it 54 ---d-BsM

boundary

Figure 4.15: The surface division for different data sets. The high density data sets
are not required because of the large distance from the viewpoint to the view center.

If 3; is too small, very narrow strips will be produced and these strips may not be
wide enough to hold any triangle from its corresponding T;. This should be prevented.
To achieve this, each f; is defined so that if 3; is not zero it will be equal to or bigger
than a certain value 6,

If 3; is defined as a linear function of d,, the function can be formed as

0 if dv > P .
B = (4.1}
8; + (p: — dy,) otherwise
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The first part of the function indicates that if the distance d, between the view-
point and the view center is too big (d, > p;), the data set T; has too high a resolution
to construct the surface, and 8; = 0. From the second part of the function, it can
be seen that the f5; jumps from 0 to é; as d, changes from d, > p; to d, = p;. This
is to avold narrow strips. When d, decreases, (p; - d,) increases and so does §;.
This function satisfies all the previous requirements. If the linear relation between
B; and d, needs to be adjusted, then {p;-d,) can be multiplied by a ratio a;, that is,

(pi — dy) % a;. The function becomes:

Bi = (4.2)

0 if d, > py
& + (pi — d,) x o otherwise

This function is the one used in the algorithms developed here. The constants «;,
é; and p; are determined by experimenting with real data sets.

The functions used in this approach are

0 if d, > 2000
Bo = _ (4.3)
1000 + (2000 — d,} x 0.5 otherwise
0 if d, > 4000
b= {4.4)
2000 + (4000 — d,) x 0.5 otherwise
0 if d, > 6000
B = ' (4.5)
3500 + (6000 — d,) x 0.5 otherwise
0 if d, > 10000
Ba = (4.6)
4000 + (10000 — d,} x 0.4 otherwise
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if d, > 16000
(4.7)
5000 + (16000 — d,) x 0.25 otherwise
- if d, > 24000
(4.8)
6000 + (24000 — d,) x 0.25 otherwise
_ if d, > 32000
(4.9)
7000 + (32000 — d,) x 0.25 otherwise
0 | if d, > 42000
. ; (4.10)
8000 + (42000 — d,) x 0.25 otherwise

The unit for these equations is cm {the same as the unit used in the data set). A

graph of these functions is shown in Figure 4.16.

ABim

185

150
120

90
80
65

40
20

20 40 60 100 160 240 320 420
o0 Pt P2 3 Pa Ps Ps Pz

Figure 4.16: The surface division functions for data sets 0 to 7.
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4.3.3 Area Construction

As the entire surface has been divided into several areas, the problem becomes how
to use different data sets to construct their corresponding areas.

As provided by the data structure, if one triangle is found inside the area, or at
least one vertex of a triangle is inside the area, the whole area can be constructed by
recursively checking the neighboring triangles of the inside triangle. Here, an inside
triangle means that it has all three vertices inside the area. If a triangle has been
found inside the area it is flagged to prevent it from being repeatedly picked during
the recurrence and only the neighboring triangles which have not been flagged are
picked. If two of three vertices are inside the area this triangle crosses the boundary
 of the area. The edge between two inside vertices is put into a list. As the area is
constructed, two lists are created. One is for the edges along the inside boundary of
the area and another is for the outside. The next section will discuss how to make use
of this list and another to connect two separately constructed, disconnected areas.

For finding a first triangle to constlruct an area, the grid cell technique is used.
The entire surface is divided into small grid cells. For data set T} every grid cell could
be overlapped by zero, one, or several triangles as shown in Figure 4.17. If a grid is
overlapped by one or more triangles, one iriangle is assigned to the grid cell. When
an area is defined, we can easily find a grid cell which is totally inside the area. If a
triangle has Been assigned to the grid cell, this triangle is the first triangle.

When all areas are constructed one after another, the areas are disconnected as

can be seen in Figure 4.18,

4.3.4 Transition Between Levels

As mentioned in the previous section, edge lists are generated along the boundaries
of the areas. For 2 boundary which separates the area for T} and the area for T;_,

two edge lists are along it. One list is from 1} and another is from 7;_;. To connect
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Figure 4.17: A grid cell is overlapped by one triangle or several triangles.

these two areas, a triangle mesh is drawn between these two lists. A boundary can be
divided into four parts; that 1s, left, right, top, and botiom as can be seen in Figure
4.19. The edge lists are also divided into the same four parts. For every list four
sub-lists are generated. Then, the sub-lists are sorted so that the connected edges are
neighbors. Take the top sub-list as an example {the others are the same). From two
lists, two sub-lists are obtained for the top. To draw a triangle mesh between these
two sub-lists the first step is to connect two first points in two sub-lists as the points
a and a4’ in Figure 4.20. The line ¢ — ¢’ is called the base line. Next points b and ¥
are compéred. The one on the left will be selected to form a triangle with the base
line @ — a’. Here &' is picked. Now the base line becomes a — &. The two next points
are b and c’: Since & is on the left side of ¢/, another triangle ¢« — & — b is formed.
The base line i updated as & — &' and the next points are ¢ and ¢!. By repeating this
procedure until all points in the fwo sublists are used, a triangle mesh is produced.
The same method is applied on the left, right, and bottom. The two areas are
connected and the transition is done for this boundary. This algorithm is summarized
in Figure 4.21. Applying the transition procedure for all area boundaries results in
a completed surface as can be seen in Figure 4.22. Figure 4.22 showg clearly the

variable resolution for irregularly spaced data. The resultant triangular mesh is shown

in Figure 4.23.
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/* The algorithm for transition between gaps. : 75
transit(Li, L2)
/* L1 and L2 are edge lists. The transition is from edge lists L1 to L2. #/

{

if(An edge e from L1 is along north side.) e -> Lin;

/* Put e inte sublist Lin. */
else if(An edge e from L1 is along south side.) e -> Lis;

else if(An edge e from L1 is along east side.) e -> Lie;

else if(An'edge e from L1 is along west side.) e -> Liw;

if(An edge e from L2 is aleng north side.) e —> L2n;

/* Put e into sublist L2n. */
else if(An edge e from L2 is along south side.) e -> L2s;

else if(An edge e from L2 is along east side.} e -> L2e;

else if(An edge e from L2 is along west side.) e -> L2w;

/% Sort all the sublists so that for northen and southen sides the
‘edges are from left to right and for eastern and western they are
from top to bottom. Put the results back. ®/

sort(Lin, Lis, Lle, Liw, L2n, L2s, L2e, L2w);

/* Transition function tramsits from the first sublist to the seceond
sublist. ' . */

transitioni(Lin, L2n);

transition1(Lls, L2s);

transition2(Lie, L2e);

transition2(Liw, L2w);

}

Figure 4.21: (a) The main function for transition.
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/* The algorithm to transit from sublists La to Lb. This is for the northern

and southern sides. The eastern and western sides are similar. */
transitioni{La, Lb)
{ .
/% Take the first vertice of both sublists as the ends of the base
line. It will be updated later on. _ */
Base_line[0] = Laf0l;
Base_line[1] = Lb[o];
/* Take the second vertice of both sublists as the next points.
They will be updated later on. ' */
a=zb=1;
while(La or Lb is not empty yet){ /% Empty: has reached the end. */
if((Lalal on left of Lb[b]) or (Lb is empty)){
Base_line[0], Base_line[il, Lalal form a triangle;
Base_line[0] = Lalal;
a=a+1;
}
else if((Lb[b] on left of Lafal) or (La is empty)){
Base_line[0], Base_line[1], Lb[b] form a triangle;
Base_line[1] = Lb[b];
hb=D»bh+ 1;
)
}
}

Figure 4.21: (b} The algorithm for triangle transition along the north
and south sides.
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Figure 4.22: Complete variable resolution display with transitions defined (from Fig-
ure 4.18, about 3700 triangles).
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Figure 4.23: One frame of the final result with shading for the irregularly spaced data
set. The red arrow points Lo the view center.



Chapter 5

Implementation

In this chapter an examination of aspects of the implementation of the software is
made. Before examining the software itself, the hardware and the software environ-

ments are introduced.

5.1 The Hardware and Software. Environments

The workstations used for this work included a Silicon Graphics IRIS 4D/85GT and
a SUN Workstation SUN 4/150 (for preprdcessing). The operating system is UNIX
and the Silicon Graphics Function Library was used extensively. The C langnage was
used for the implementation. |

Some gra.phical capabilities provided by the system are very important for the
display. Examples are double buffering and the lighting model. The double buffering
techni(iue provides the possibility for animation. The lighting model greatly enhances
the quality of the display.

The technique of double buffgring allows the creation of graphics that appear to
~ change smoothly. The system’s standard bit planes are divided into two halves; one is
displayed while the other half 1s rendering. When the drawing is complete, the system

swaps buffers; the previously invisible buffer (now containing the next frame) becomes
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visible, and the previous visible buffer becomes invisible and becomes available for
drawing the next frame [IRIS-4D Series, 1990].

The appearance of the surface on the display depends on three lighfing compo-
nents; the material, the lighting sources, and the lighting model. The material rep-
resents a set of properties that determines how it behaves under illumination. Each
Tight source has a position and a color. The lighting model defines the characteristics
of the lighting environment. In this environment, both the light and the material
with which polygons are drawn, along with other primitives can be controlled. In the
lighting model, the surface normal vectors for vertices control how the lighting of the |

final surface appears.

5.2 The Software Description

The software developed for this project includes thé dynamic data structure imple-
mentation and real-time display for both regularly spdc‘ed data sets and irregularly
spaced data sets, along with the preprocessing for irregularly spaced data sets. The
display software includes the shaded surface and wire-frame display for both regu-
larly spaced data sets and irregularly spaced data sets. Preprocessing for irregularly
spaced data sets is to generate subsets and to create the Delauney triangulation for
the subsets.

For the régularly spaced data set programs, there are approximately 10,000 lines
of C code for shaded surfaces. For the irregularly spaced data set, the preprocessing
software contains about 3,800 lines of C code, and the shaded surface construction

and display software has about 5,300 lines of code.

5.2.1 The Implementation for Regularly Spaced Data Set

The data structure created for this approach has been discussed in chapter 2. The

software for display includes the lighting model, color mapping, and double buffering
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techniques. In this approach three versions of the display are generated. They are (1)
a wire-frame display where the surface is represented by the outline of the triangles;
(2) a smoothly shaded surface; and 3. a non-smoothly shaded sur_fa.ce. In the second
and third cases the lighting model is applied. In the second case, the entire surface is
smoothly shaded. In the third case, the lighting is smoothly shaded within a triangle,
but not smoothly shaded between triangles. .For the smoothly shaded surface, since
the lighting model greatly depends on the normal vector specified for a vertex, the
normal vector specified for a vertex which is shared by several triangles should be
able to represent all of these triangles. Here a mean normal vector is calculated.
This mean vector is specified for the sha.rgd vertex. By doing this, the lighting for
a triangle can be smoothly transferred to its neighboring triangles. No individual
triangle can be identified from the surface. For the non-smoothly shaded surface, the
smooth transfer of the lighting is not applied. Every single"tria,ngle can be identified
from its neighboring triangles.

The architecture of thé algorithm for all the cases is shown in Figure 5.1.

The data set used here is a regularly spaced digital terrain model derived from
the Louisburg data. It has 650x800 points. When about 4000 triangles are used to
construct a triangular mesh, the update speed is approximately 10 _times/second for . .
wire-frame, and 5 times/second for shaded surface. Near real-time is achieved and

the image of the high resolution area has very good quality.

5.2.2 Preprocessing for the Irregularly Spaced Data Set

The irregularly spaced data set preprocessing includes subset generation and Delauney
triangulation creation for the subsets. The algorithms used for ihe preprocessing have
been discussed in chapter 4. The architecture for the subset generation algorithm is
shown in Figure 5.2.

Eight subsets are generated. The number of points and triangles in each subset

1s shown in Table 5.1. The times shown are for running on a SUN Workstation SUN
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Figure 5.1: The algorithm for surface display of the regularly spaced data se.ts.
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4/150 with 32 MB RAM and 650 MB harddisk.

Set The number | Time for generating | The number | User time for creating
of points the point subsets of triangles the triangle sets
0 119845 600.00s * 239067 7h 3m 50.43s
1 35225 343.00s 70178 31m 12.22s
2 10739 29.90s 21297 2m 50.55s
3 4702 28.18s 9249 47.86s
4 2160 10.81s 4198 11.23s
3 982 4.83s 1891 6.10s
6 441 : 2.70s 825 2.95s
7 187 1.92s 325 1.88s

* time for the overplot removal algorithm

Table 5.1: The number of points, triangles and processing time for the subsets of the
Louisbourg data set.

5.2.3 The Implementation for Irregularly Spaced Data Sets

The data structure and the method for constructing the surface have been discussed in
chapter 4. The display includes a ighting rﬁodel, color mapping, and double buffering
techniques. Due to the complexity of getting mean normal vectors for a vertex which
is shared by .severa,l triangles, the smoothly shaded surface was not implemented.
The Wire—fra.rﬁe and non-smoothly shaded surface (same color within one triangle)
are generated. The architecture of the algorithm is shown in Figure 5.3.

In this approach the update speed is about 5 times/second with about 3700 tri-

angles representing the surface.
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Chapter 6

Conclusions

The major achievement of this thesis is the creation of dynamic spatial data structures
for displaying large terrain surfaces with variable resolution in near real-time. The
software works for both regularly spaced data and irregﬁlar]y spaced data. The.
constructed terrain surface has a variable resolution, with the gazed area having a
higher resolution than other areas. As the update of ﬁhe display is near real-time,
the high resolution area can be moved quickly enough in response to a change in the

gaze direction and the illusion of a full-field high resolution image is obtained.

6.1 Variable Resolution Approaches

In the gaze-directed approach with regularly spaced data, an algorithm for efficiently
finding the view center was developed. From the view center a triangular mesh
is constructed with variable resolution. The resolution for an area depends on the
distance from the area to the view center. The highest resolution is for small distances.
The resolution also depends on the distance from the viewpoint to the view center,
H the distance is small, the resolution for the entire surface is high. The resolution
is controlled by a function which is related to thése two distances, This function

is designed to be easily adjusted. The size of the triangles on the surface are varied
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continuously in response to changing the distances. Six degrees of freedom are allowed
when viewing the surface. They are specified by giving the positions of two points
in 3D épace which defines the view line. The software produced for thé approach is
able to display a 650 by 800 digital terrain with both lighting and coloring models.
The update speed is about 10 times/second for wire-frame, and 5 times/second for
shaded surface with approximately 4000 triangles in each display.

The smoothness directed approach with regularly spaced data was designed to ease
the problem caused by large differences in the 2 direction. If the difference in z was
too big, the resolution could be reduced significantly. To solve this problem, triangles
with large differences in z are detected and subdivided so that the z difference is
acceptable. This approach was abandoned due to its complexity and research time
limitation. |

In the gaze-directed approach with irregularly spaced data, several subsets are
generated. From these subsets, triangular meshes are created by using Delauney
triangulation. Each triangular mesh has a different resb'lution. After the view center
is determined, the terrain 1s divided into several areas. The resolution for every area
is decided by the distance from the area to the view center and the distance from
the view center to the viewpoint. As soon as the resolution is decided for an area,
a triangular mesh with the required resolution is employed to fill the area. Different
meshes are “stitched” together along their boundaries. This approach can display a
variable resolution surface of about 4000 triangles at a rate of approximately 5 Haz.
1t is particularly valuable due to the fact that the original data points are preserved
and displayed. ‘

6.2 Further Research

Possible items for further research include (1) better selection of subsets which may

take z values into consideration during a subset selection, {2) adding a user interface
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for changing the function controlling the variable resolution {see equation 4.2), and
(3) adding an interface with the bat for flying which should allow start/stop update;
i.e. when the bat motion stops, the resolution function is changed dyﬁamically to
give more resolution. Can the smoothness directed approach (described in chapter 3)

be combined with the irregularly spaced data display methods?
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