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Abstract

In our earlier work the concept of interpolation has been
generalized and a unifying model for generating 3-D objects from two
given contours has been presented. The formalization of the unified
interpolation model is given in this paper. Both the linear and non-linear
unifying models are discussed. The effects of the various elements of the
interpolating matrices on the generated object are illustrated. Several
theorems about the properties of the generated objects. are derived.
These models provide versatile techniques for generating a multitude of
3-D objects from given contours.

Keywords:  3-D objects, linear interpolation, non-linear interpolation, parametric
modelling, computer aided design.




1. INTRODUCTION

Three dimensional objects are generated using many methods such as rotational and/or
translational sweep [1-4], constructive solid geometry [5,6], construction from

orthographic views [7,8] and use of blending functions [4,9].

In our earlier work [10] we have generalized the concept of interpolation and used it to
generate 3-D objects from two given contours. Various factors that affect the shape of
the generated object have been identified and discussed. A unified model for generatilig
3-D objects from two given contours has been proposed. Two interpolating matrices
have been employed for this purpose. The effects of the diagonal elements of these
matrices on the generated object have been studied and reported in [10] where the

discussion assumes that all the off-diagonal elements are equal to zero.

In this paper we formalize the unified interpolation model and discuss the linear and non-
linear cases. All the elements in the interpolating matrices of this model may be non-
zero. We illustrate the effects of the various non-zero off-diagonal elements as well as
the zero diagonal elements on the generated objects by several examples. Many

theorems about the properties of the generated object using this model are presented and

proved.
2, UNIFIED INTERPOLATION MODEL
The interpolation between two quantities # and w is given by
v=o.u+(l-o).w . (1)

for 0 € o < 1; we refer to this as the standard interpolation. Lofted surfaces [9,11] and

~ Coons surfaces [12] use this standard interpolation.




A set of interpolated quantities, denoted by V, can be obtained by assigning different

values to «. It is possible to make « a linear or non-linear function of some parameter,

say 5. Then
) =ols). u+ {1-a()} . w

The boundary conditions v(0) and v(1) are linear combinations of % and w for linear as
well as non-linear ou(s). Depending upon the function ofs), the given quantities # and w
may or may not be present in the interpolated set, V, of quantities. Thus the interpolation
discussed above gives rise to interpolation, partial interpolation, extrapolation or a

combination. We refer to this as the generalized interpolation [10].

The concept of interpolation can be applied to generate 3-D objects. We start with two

given contours, C; and C,, each represented by a set of M points. These points are

selected using any of the techniques such as equiangular, equidistant, random, multiple
occurrences etc. given in [10]. Consider two corresponding points pZ, and p2 on C; and

C, respectively. Each p% , for k=1, 2, is represented in cartesian co-ordinates as

k k k k.T
Pn=1%n Ym Zuml

where[A]T denotes the transpose of matrix A. When all of the co-ordinates are functions

of some parameter £, Eq. (3) becomes

paft) = t)  yalt)  zt)].

These points are used to generate N points using interpolation. This process is repeated

for all the M corresponding points, i.e., for m=1, 2, ... , M, on the two given contours.

v (2)

.. (3)
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The X, Y, Z coordinates of a 3-D object generated from the interpolated contours can be

represented by

i1 22 L1 22 iy 22
=ax +ax, Y=a,y+ayy, =Qs7 +a3Z

where, af, for k=1, 2 and i=1, 2,3, are interpolating functions and p* =[x* y* 2,4 for k=1,2,

represent all the points on the given contours. Eq. (5) can be compactly represented, in

matrix form, as
P=A!.pl+A2.p?

where, P=[X Y Z]T and A%, for k=1, 2, are 3 X 3 matrices w1th off diagonal elements
equal to zero. The interpolated object is defined by N contours generated from Eq. (6),
these generated contours are represented as P* for n=1, 2, ... ,. _ N. Further, P, represents
the m™ point on the n generated contour, while P,, represents the set of m™ points on all
generated contours. The curve joining all these P,, points is referred to as L, curve. The
set of L, curves is denoted as L set. The elements of A* in this equation are the
interpolating functions which may be linear or non-linear functions of some parameter(s)

resulting in linear or non-linear interpolation respectively.

One can clearly observe that af scale the x coordinates of the given contours to give the
X coordinates of the generated object; there is no contribution from the y or z coordinates
of the given contours towards the X coordinates of the object. Similar observations can
be made about the ¥ and Z coordinates. We refer to the 3-D object generation process
based on Eq. (6) as the generalized interpolation model. This model has been

extensively studied and reported in our earlier work [10].

e ()
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In general, we can introduce non-zero elements in the off-diagonal positions of the A*

matrices in Eq. {6). This model is then defined as the urified interpolation model.

One can further modify Eq. (6), following the treatment analogous to 3-D homogenous

transformations, to obtain the generalized formulation for the interpolated object as
P=A . p'+ 2. p

where, P=[X Y Z H]T, p'=[x* y* z¢ 1]7 for k=1, 2 and F* are 4 X 4 matrices. We refer
to the object generation model based on Eq. (7) as the homogeneous unified interpolation

model.

The interpolating matrices 4* transform the given contours which in turn determine the
shape of the 3-D object. The standard transformation matrices used in computer graphics
[4, p. 213] affect the entire 3-D object by carrying out scaling, rotation, shear, transiation
and perspective projection of the object. The elements of the interpolating matrices have
similar effects as those for the elements of the standard transformation matrix with one
major difference that the former ones modify the components (i.e. generated contours
and the L curves) used to synthesize the object while the latter ones affect the entire

object itself.

This paper is devoted to the study of the unified interpolation models. When all the
elements of A* are linear functions of some parameter, s, we get linear unified
interpolation model whereas when at least one of the elements of AF is a nonlinear

function of s we obtain non-linear unified interpolation model.

o (7)




3. LINEAR UNIFIED INTERPOLATION MODEL

Consider Eq. (6) with elements of A*, for k=1, 2, as linear functions of s, i.c.,

k k k
where, e; and q; are constants. Combining Eqgs. (6) and (8) we get the equation of the

object as
P=(Els+ QD). pltp + (B2 s+ 09 . p(t)

If we vary the parameter s between 0 and 1, Eq. (9) gives two end contours, P! and P¥ |

of the object. At s=0, the generated contour P! is given by
Pi=0Q1.plt) +Q%.p7(@)
while at s=1, the generated contour P¥ is
P¥ = (B! + Q1) . Xt + (B + 09 . (1)
An intermediate contour, P* , then can be written as
Pr=PN .5+ (I-5).P!

Thus Eqgs. (12) and (9) represent the standard interpolation between contours P/ and PN
The interpolating functions for the individual X, Y and Z coordinates may be different, as

such the contours P! and P¥ may not, in general, have any similarity with the given

contours C,; and C, . Eqgs. (9) and (12) represent the generalized linear interpolation

between the given contours C, and C, ; the generated end contours P/ and P¥ form the

caps of the generated object.

.. (8)

e (9)
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3.1 Properties

. .. . . . ! 2
The process of object generation involves selecting two corresponding points p,, and p,,

from the given two contours C, and C, , generating interpolated points using Eq. (9) and

connecting the corresponding points on the generated contours by straight lines
(assuming linear inter-contour connectivity, see [10]). The curve joining the points p,, ,

pi y e .,pﬁ is denoted by L,,. The set of all L,, , for m=1, 2, ... , M, is denoted by L.
Theorem 1. When the interpolating functions a; and aj, for i=1, 2, 3 and j=1,2, 3, are

linear functions of some parameter s, all the curves in the set L are straight lines.
. . X ' . I 2
Proof. From Eq. (9) we can write the equation of the X coordinates of the points p,,, p,,

N
.y Ppon L, as

2 . 2 4 2 4 2 % 2 i 2 %
X ={YexMt)+ Tepyt) + Tep)is+ { Tapxkt) + SqyHt) + Taszit)}
k=1 k=1 k=1 k=1 k=1 k=1

= o8 + B, | .. (13)
Similarly, ¥ and Z coordinates of L, can be shown to be

Y=c,s +B, (14

Z =08+ By | ...(15)_

For given contours C, and C,, o; and B, for i=1, 2, 3 become constants for specified

values of z;, and #, . Consequently, the curve L, is a straight line. Thus follows the

theorem.

Corollary 1. The principal orthographic projections of L, are straight lines with the

slopes O,/0;, /0L, and O, /¢, in the Xy, yz and zx planes respectively.




Proof. The proof follows directly from Theorem 1.
Theorem 2. When the interpolating functions ailj and alzJ , for i=1, 2, 3 and j=1; 2, 3 are

n+1

linear functions of some parameter s, the distance D, between P, and P, is

proportional to the increment in parameter 5.

Proof. D), can be written as

Do = { XX + O Yol + (@ - ) Y12

= (Spe1—8) { (@y)? + (0)? + (005)> }2.
Since o, ¢, and o, are constants, D), is directly proportional o the increment in

parameter s, proving the theorem.

Remark. If the increments to s are equal then the distances between all pairs of

consecutive generated points on L, are equal. Consequently, the distance between any

two consecutive points on any of the principal orthographic projections of L, is also

equal to a constant.
3.2 Examples

We illustrate the use of linear unified interpolation model by several examples. In ail
these examples we generate various 3-D objects using the same two given contours,
namely a circle and a square. The objective is to illustrate the effects of the various
elements of the interpolating matrices on the shape of the generated objects as well as the
theorems. These examples demonstrate a rich class of objects that can be generated from

the same two given contours. One can use many other types of given contours such as a

... (16)
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star, Lissajous ﬁguré, ellipse, n-sided polygon. Such contours have been used for
generating 3-D objects using generalized interpolation model in [10]. In all the examples
given in this paper we show four views; the left-top is the top view (xy plane), the left-
bottom is a front view (xz plane), the right-bottom is a side view (yz plane) and the right-

top is an isometric view [2,3].

Consider the circle and the square as the given two contours, defined by the following

parametric equations:

C, : Circle
x=cos(t,), y=sin(t;), z=10, 0y <2n
C, : Square
x=5 cos(ty) .| cos(ty) | , y=3 sin(t,) . | sin(ty) |, z=0-,- 0<t,<2r

We generate the objects by setting 7, =1, =t. The increment for ¢ is chosen to be #/10 so
that every contour, given as well as generated, is represented by 21 points (i.e. M=21).
Note that the first and the last points are the same. Each object is constructed by

generating 9 contours (i.e. N=9).

Figure 1 shows the object generated using Eq. (9) with the following values of

interpolating matrices:
Ei=], Qi=0, FE=-1, @=I

where I is the identity matrix. This represents a case where diagonal elements of A! are s
and those of A2 are (1-s), i.e., the use of the generalized interpolation model. Therefore
- caps of the generated object are the given contours as can be clearly seen. All the curves

in the set L are straight lines as given by Theorem 1. Further the distance between any

10
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two consecutive generated contours is constant due to constant increment in parameter s,

illustrating Theorem 2,

The effect of the introduction of a non-zero off-diagonal clement, s, in the interpolating
matrices, given by Eq. (20), is illustrated in Fig. 2. The objects in Figs. 2(a) - (d) are
generated by setting one of the off-diagonal elements of A! to s, i.c., the shearing effect is
due to the circle. For Fig. 2(a), al,= s, i.e., the x-coordinates are modified with the value
of s multiplied by the corresponding y-coordinates. Thus the xy and xz views are

changed and the yz view remains the same. Modification of the given circle into an

ellipse can be clearly observed. In Fig 2(b), i,= s, hence the xy and xz views are altered.
Here the x-coordinates are modified with s; since z is a constant (=10) for C,, top cap

remains the circle except it is translated in the x-direction. The yz view remains the same
as in Fig. 1. Note that the object in this figure is scaled smaller in size compared to that
in Fig. 1 to accommodate all the views in the same size viewpoﬁ. Effect of setting ai,=

is illustrated in Fig. 2(c). For Fig. 2(d), al,=s i.e. z-coordinates are affected by the
factor sx. Consequently as value of s increases from 0 to 1 the tilt in the generated

contours is apparent; the xy view is unaffected.

For the object represented in Fig. 3, we have introduced non-zero elements equal to 0.1
in all the off-diagonal elements in E (keeping the diagonal elements unity) in Eq. (20).
All the views of the object are affected by the shear introduced for all the
x-y-z coordinates. In addition, since the shear is applied to the z-coordinates, the
generated contours are no longer parallel to the x-y plane. The bottom cap is the same as

the given square.

11



The objects given in Fig. 4 are generated by introducing a constant term in one of the
off-diagonal ¢lements in AZ. In Fig.4(a), af,=2, i.e., the x-coordinates are modified by a
constant multiplied by the corresponding y-coordinates. For Fig.4(b), aj;==2 i.e. the
x-coordinates are modified by two times the z-coordinates, which are equal to a constant
10 in our case, of the points on the first contour. Thus the x-coordinates are translated by
20. Since the graphics package. [2,3] centers the object in the viewport, the translation

effect is eliminated and the object appears to be the same as shown in Fig. 1. The value
of the element s, s set to 2 for Fig. 4(c) while @;,=2 for Fig. 4(d).

The z-coordinates are changed with two times the x-coordinates of the points on the
given circle in Fig. 4(d). Thus, none of the generated contours for the objects in Figs.

4(a), (¢), and (d) resemble the given contours.

Effects of multiple constant shear (i.e., off-diagonal) elements are shown in Figs. 5(a)

and (b). For Fig. 5 (a), we use ai,=a},=2, whereas all the off-diagonal elements of Al

are set to 2 for Fig. 5(b).

We show some further effects of the non-zero off-diagonal elements in the interpolating
matrices in Fig. 6.- We introduce shear effect for both the given contours by setting a;1=s

and afzz(l -5) in Fig. 6(a). For Fig. 6(b) one shear element, aél, is s for the first contour

while one shear element (afz) is a constant (0.5) for the second contour. The effect of a

negative constant off-diagonal element, ai2=—2, is illustrated in Fig. 6(c); this object is the

same as the one given in Fig. 4(a) except that it is rotated by 90° about the z-axis.

All the objects presented so far are generated with non-zero diagonal elements in AZ and
. A2 The diagonal elements for both A/ and A? are set to zero while all the off-diagonal

elements of A! and A? are set to s and (/-s) respectively for the object shown in Fig. 7.

12



For Fig. 8 we use the following interpolating matrices:

[ 0.9
0.2
L 0.3

Al

(0.8
A? = | 0.1
L 0.3

0.1
1
0.2

0.1
0.9
0.1

03
0.1
0.9 )

0.2 )
0.2

0.9 )

(-s) +

The object is warped in all directions.

[ 0.1
0.3
0.2

(0.9
0.1
L 0.1

0.2
0.1
0.3

02
0.8
0.2

0.1
0.2
0.2 )

0.1
0.2

6.9 )

... (21a)

... (21b)

In all these figures the curves in the set L are straight lines as given by Theorem 1 and the

distance between any two generated consecutive contours along an L, curve is constant

as given by Theorem 2.

4. NON-LINEAR UNIFIED INTERPOLATION MODEL

In the non-linear unified interpolation model at least one element aij of Ak, for k=1, 2, in

Eq. (6) is a non-linear function of s.

In this case the three principal orthographic

o e . 12 N
projections of the curve L,, joining points P, Dms-.-» Pm OR the generated contours are

straight lines or curves depending upon how many rows of A* contain non-linear
functions. We denote projections of L, on the x=0, y=0 and z=0 planes as L, L and L,

respectively.

13



4.1 Properties
. . . 1 .
Consider any two corresponding points p. and p:: on two consecutive generated

contours. The X, ¥, Z coordinates of p,, are

2
Xo = S dils,) Xk + diafs,) - Y4+ dogls,) - 2t ... (223)
k=1
2 k k k
Y = 2 ay(s,) - Xk + Gpls,) - Y& + apsls,) - 2 ... (22b)
k=l
Z k k k
Zp = 2 a5yfs,) - X + Gsals,) . Y + safs,,) - 2 ot (220)
k=1

The projection L, is a straight line only if the slopes (Y:',:'j - ¥ ,,:1 — X, are the same

for n=1,2, ..., N—-1. This is true if the interpolating functions a5, for {i=1, 2}, {/=1,2,3}

and {k=1, 2}, are linear functions of s; if any of these interpolating function is non-linear,
L, is not a straight line. Similar statemenis can be made by L, and L). The curve L, isa

straight line only when all L. L) and L, are straight lines. Based on this discussion we

state the following theorem.

Theorem 3. For non-linear unified interpolation all L,, curves in the set L are, in general,

non-linear when at least one of the interpolating functions is non-linear. Further, when

two corresponding rows in the interpolating matrices A? and A? are linear functions of s,
although L_ is non-linear, one of its projections, L., L or L, is linear.

14
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Theorein 4. 1If the first two rows of the two interpolating matrices are non-linear

functions of s, the shape of the object in the z-direction is proportional to

2 i k k
3 [a;; (2) X* + ap; (Y% + dag3 (2)29]
k=1 '

Proof. In the cylindrical coordinate system (r,9,z), when © is equal to some constant 6,

the shape of the generated object in the z-direction is given by r as a function of z. In this

system
(ry? = XY + (¥)?
= (X)? (1 +tan? 6,) | . (23)
ie., r=2X | .. (24)
with A = (1 + tan® 9)12 | ... 25)

Eq. (22a) gives an expression for X as a function s. Since the third rows of A’ and A? are

linear functions of s, z is obtained by linear interpolation using Eq. (15). Since o, and B,

in Eq. (15) are constants, § can be expressed as a linear function of z and from Egs. (22a)

and (24) the theorem follows.

Theorem 5. ¥ two rows of A! are proportional to a non-linear function w(s), with

elements of A? proportional to the addition of the corresponding elements of A7 and some

constants, then one of the principal orthographic projections of L,, is a straight line.

Proof. Let

a; () ="y wis) ... (263)

@ (s) =8 (ay+ 1y ... (26b)

15



with [i=1, 2}, {j=1, 2,3} and Y » Sij » W as constants. Substituting Eq. (26) in Egs. (22a)
and (22b) one can obtain the slope of L., as (Y::I—Y"m)/( m”—Xf,,) for n=1,2, ... ,N-1. In

this expression the term {w(s,,,)—w(s,)} appears in both the numerator and denominator

and gets cancelled, as a result the expression contains only the terms involving ¥;; , 6; and
Ky Consequently the slope of L, is a constant, i.. the projection of L, in the z=0 plane

is a straight line.

Similar arguments can be made to prove that when i=1, 3 in Eq. (26) projection L) isa

straight line and when i=2, 3, projection L, is a straight line.

Theorem 6. When all the three rows of A are proportional to a non-linear function w(s),

with the elements of A? proportional to the addition of the correspbnding elements of Af

and some constants, all the three principal orthographic projections of L, are straight

lines, i.e., L,, is a straight line.

Proof. The proof directly follows as the combination of the three cases discussed in the

proof of Theorem 5.
4.2  Examples

In this section we give sample objects generated using the non-linear unified
interpolation model. For all these objects the two given contours are the circle and the
square defined by Egs. (18) and (19) respectively. Further we use the following non-

linearities in all the examples:

wy(s)=sin’ (sn/2), w,(s) = cos? (sT/2).

It is possible to use many other types of non-linearities, as well as the modifying

functions, as discussed and illustrated in our carlier Work [10].

16
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We now present the cases where non-linearity is introduced in the diagonal element(s) of
Al and A2, The shear effects by non-zero off-diagonal elements are given followed by

illustrations for theorems.

The objects in Fig, 9 are generated using unified non-linear interpolation with non-
linearity in the diagonal elements of the interpolative matrices and all the off-diagonal

elements equal to zero. For Fig. 9(a) the diagonal elements of A7 and A? are:

1 11 2 2 2
ay; =wy(S), Qo =as3=s, a1 =y =dz =(I-5).

Thus only one element is non-linear. The curves in the set L are all non-linear.
However, since the second and third rows of A/ and A? are linear functions of s, the
projections of the L curves in the side view turn out to be straight lines as given by

Theorem 3. The other two projections of the L curves are non-linecar. One non-linear

element for each contour is introduced for Fig. 9(b) where the a{f values are:

1 i 1 2 2 2
ayy = wis), ay =an=s, aj; = w(s), ap = 3= (1-5)

Again L” curves are straight lines in the side view. The object is considerably changed
compared to that in Fig. 9(a). Two non-linear elements are introduced for each contour
in Figs. 9(c) and (d). The parameters for Fig. 9(c) are

1 1 1 2 2 2
ayy = Ay = wy(8), az=s, a1 = Gy = Wy(8), dz=(1-9)

while those for fig. 9(d) are

ail = '57’;3 = w1(5)1 a32= (1-5), afl = agg = Wz(S), a§2=(1~s).

. . z . . . . - .
‘The L curves are again non-linear, The L’ projections in the top view are linear since the

slopes of the components of the L, curve turn out to be constant due to the specific nature

17
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of the interpolating matrices and ¢; being equal to ¢, in Egs. (18) and (19).
Fig. 9(d) is quite different compared to Fig. 9(c). Since the non-linearity is used for the
z-coordinates, the spacing between the generated contours in Fig. 9(d) is not constant as

is the case for Figs. 9 (a) - ().

The shear effects of linear as well as non-linear off-diagonal elements are depicted in
Fig. 10. For Fig. 10 (a) the diagonal elements are the same as the ones given in Eq. (28)
for Fig. 9(a), in addition a},= is equal to w,(s) with all the other off-diagonal elements
equal to zero. One can observe the shearing effect in the x-coordinates of the object in
Fig. 9(a). The side views in Figs. 9(a) and 10(a) are the same, since y and z coordinates
are unaffected. Linear two element shear for the given circle is used for Fig. 10(b). The
diagonal elements for Fig. 10(b) are the same as in Eq. (30) used for Fig. 9(c) while the
two off-diagonal elements af, and a!; are equal to s with all ot_her off-diagonal elements
being zero. The shearing effect on the x-coordinates can be cléarly seen in the top and
front views. The side view remains the same as in Fig. 9(c); the size of this view is
smaller due to the scale change by the graphics package (as explained for Fig. 2(b)). The
diagonal elements for the object in Figs. 10(c) and (d) arc again the same as in Eq. (30)
used for Fig. 9(c). Linear one element shear for each contour is used for Fig. 19(c),
while constant two element shear for the given circle is used for Fig. 10(d). The non-

zero off-diagonal elements are al,=s, a3,= (1-s) for Fig. 10(c) and aj,=aj,=2 for Fig.

19(d). The side views in these two figures are the same as that in Fig. 9(c).
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We construct the interpolating matrices to satisfy the conditions in Theorem 5 to generate

Fig. 11(a). In this case the interpolating matrices are

C 0.9wi(s) O.1w,(s) 0.09w(s)
Al =] O.1w(s) 0.95w,(s) 0.07w (s)
L 1 K Ky

[ 0.9(0.9w,(5)+0.9) 0.08(0.1w,(s)+0.08) 0.05(0.0%w,(s5)+0.07)
A2=| 01w (5)+0.01 0.95w,(5)+0.95 0.07w,(5)+0.07
0 0 1-5

and therefore L’ curves in the top view are straight lines.

To generate the object shown in Fig. 11(b) we use the following interpolating matrices:

0.9 0.1 0.09
0.1 0.95 0.07
0.1 0.01 0.9

Al = . wy(s)

9.500.9w1()+0.9)  0.8(0.1w1()+0.08)  0.5(0.09w1(s)}+.07)
A2=0.1 | 0.50.1w(s)+0.01) 9.7(0.95w1(s)+0.095) 0.2(0.07w1(5)+0.09)
0.6(0.1w1()+0.01) 0.1(0.01w}(s}+0.05)  9.5(0.9w1(5)+0.08)

These matrices are chosen to satisfy the conditions given in Theorem 6, as a result the L

curves are straight lines.
5. Conclusion

In this paper we have extended our earlier work on interpolation techniques for 3-D
object generation. Several properties of the linear and non-linear cases of the unified
interpolation model are derived. The effects of the non-zero off-diagonal elements as
well as zero diagonal elements are illustrated. Many of the theorems are exemplified. It
is demonstrated that these models provide versatile techniques for generating multitude
~ of 3-D objects from given contours. The elements of the interpolating marrices in these

techniques have similar effects as those of the elements of the transformation matrix with
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one major difference that the former ones modify the components used to synthesize the

object while the latter ones affect the entire object itself.
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Fig. 1. Unified |inear interpolation:
Generglized linear case.
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Fig..2, Unified linear interpoltation:
Single s element shear effect.
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Fig. 3. Unified finear interpolation: -
Multiple 0.1s elements shear effect.



Fig. 4. Unified linear ‘interpolation:
Single constant element shear effect.
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Multiple constant element shear effect.

Fig. 5 Unified linear inlerpolalion:




Fig. 6. Unified linear interpolation:
Miscellaneous effects.
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Fig. 7. Unified tinear interpolation:
Zero diagong| elements.
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Fig. 8. Unified linear interpolation:
All non-zero elements.
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{a) One non-linegr element.

(b} One non-iinear element
for each-contour.

AN
//f?y NN/ TN

(¢} Two non-linear elements.
for each contour (a¥ and 0;;).

(d) Two non-lineur elements
for each contour (05 and o).

ng. 9. Unified non-linear interpolation:
Non-linear diagonol element(s).




{a) Non-linear single element shear (b) Lineor two element shear
for ene cantour, for one contour.

N 77T A W
AL T VNN (A LN
{c) Linear one element shear {d} Conslant two element shear

for each contour. for one contour.

Fig. 10. Unified non-linear interpolation:
Shear effects.
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{a) Theorem 5.

{b) Theorem 6.

Fig. 11. Unified non-linear interpolation:
[llustrations of theorems.




