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ABSTRACT

In the literature it is assumed that given a line segment and a
generator there is only one way to replace the line segment by the
generator to produce the fractal image, i;e., a fixed traversal direction is
assumed for each segment. We introduce the concept of traversal
strategies wherein each of the segments of the initiator and generator can
be traversed in three ways. This results in 3¥ » 3€ fractal images for a
O-segment initigtor and an M-segment generator; these are referred to as
the traversed geometric fractals. In contrast, a single fractal image is
obtained without the use of traversal strategies. A software tool, Ranéoh‘,
has been developed to generate traversed geometric fractals. Several

examples are included.

Keywords: Geometric  fractals, traversal strategies, generaiors,

initiators, fractal images.



1. - INTRODUCTION

The concept of fractals has been introduced by Mandelbrot [MAND77, MANDS2].

Fractals can be classified into three groups, namely, geometric, algebraic and stochastic.

Algebraic fractals are generated from iterations on algebraic transformation
functions. The fractals generated from the self-squared function z - 72 + ¢ have been
extensively studied [MANDS2, PEIT86]. Many other algebraic transformations have
also been used for generating interesting fractals [PICK90, GUJAS1, GUJA92a].

Stochastic fractals are fractals generated using a random process [FOURSZ,

VOSS85]. Coastlines and terrains are classical examples of stochastic fractals.

Fractals géneratcd using geometric patterns are referred to as geometric fractals.
These are constructed using a given generator and an initiator which are sets of arbitrary
line segments. The construction process consists of replacing each segment of the
initiator by the generator, reduced and displaced so as to have the end points coincide
with those of the segment being replaced. Bach of these generated segments is then
replaced with a scaled copy of the generator. This process is repeated for the required
number of iterations. In this process the given order of the end points defining the
initiator and generator segments determines the segment replacement strategy and hence
the final fractal image. In other words, the initiator and generator .segments are traversed

only in one direction defined by the given order of the end points.

In this paper, we propose the use of multiple traversal strategies for the segments of
the initiator as well as those of the generator. It is shown that a large number of fractal
images can be generated by changing the traversal strategies for the given initiator and/or
- generator. We refer to the fractals generated lising the multiple traversal strategies as the

traversed geometric fractals.



2.  PRELIMINARIES

In this section we introduce notations for the initiators and generators followed by a

segment identification scheme,

2.1 Initiators

An initiator is a set of line segments upon which a fractal image is built. The

segments may be of equal or unequal lengths and either connected or disconnected.

An initiator is denoted by E, the i** segment of an initiator is denoted by E; and the

two end points of E, are denoted by ¢;; and ¢;,. The number of segiments in an initiator is

denoted by Q. Thus, an initiator is defined as
E = {Ej’ Ezs (LI ] EQ}!

where, E;=(e;;,¢€;), €;=(;,y;) and thex;; and y;; are the X and y coordinates for

ie {1,2,...,Qandje {12},

2.2  Generators

A generator consists of a set of line segments used to generate fractal images. The

line segments need not be of equal length or even connected.

A generator is denoted by G while the i* segment of a generator is denoted by G;.

The two end points of G, are denoted as g;; and g;,. Further, the number of segments in

a generator is denoted by M. Thus a generator is defined as

G= {G}, Gz, P GM}’



where, G; = (g;; » 8;2)> &; = (x;; » ¥;) and the x;; and y;; are the x and y coordinates for

ie {l,2,...,M)andje {1,2}.

A generator has a starting point, A, and an end point, B, which are used in the
generation process for a fractal image. The points A and B are denoted as A and M
respectively in many of the figures in this paper. Note that these may not be the same as
the starting and end points of any of the generator segments. Without loss of generality
the two end points of a generator are located on the X-axis at an equal distance, a4, from
the origin, i.c., A = (-a, 0) and B = (a, 0). Thus A and B give the orientation and size of a

generator.

Generators can be divided into two categories, namely, symmetric and

non-symmetric.

2.2.1 Symmetric generators

Symmetric generators can further be . sub-divided into the following three

categories: odd symmetric, even symmetric and bi-symmetric.

2.2.1.1 Odd symmetric generators

These generators exhibit symmetry through the origin. Such a symmetry is
obtained by two successive reflections in mirrors placed perpendicular to the X-Y plane

along the principal axes. In an odd symmetric generator, for every G, there exists a
unique G, , for i, ke {1, 2, ..., M}, such that x;; = X5 , ¥;; = Vo a0d X5 = -X;;
. ¥i2 = Vs - Inother words, g, is the reflection of g, through the origin and g;, is the

reflection of g, ; through the origin.



G, and G are called odd corresponding segments. We define a function I' () which
operates on G; to give its corresponding segment if it exists, ie., G; = I' (G and
G, =T,(G). Note that when { = k, we have only one line segment and the mid-point of

the segment lies on the origin; I'_(G,) does not exist in that case.

Some examples of odd symmetric generators are given in Fig. 1(a).

2.2.1.2 Even symmetric generators

There are two kinds of even symmetric generators, namely, even symmetric about

the X-axis, and even symmetric about the Y-axis.

In an even symmetric generator about the X-axis, for every G, there exists a unique
G, for i, k e {1, 2, ..., M}, such that x;; = x;; , ¥;; = Yy a0d X3 = X2
Yi2 = Vio- G; and G, are called x-corresponding segments, ic., G; = I (Gp and
G, = I',(G) . Note that when i = &, we have only one line segment which lies on the
X-axis and ' {G;) does ndt exist in that case; i.e., for segments that lie on the X-axis, no
x-corresponding segments are required. Further, a segment parallel to the Y-axis, with its
mid-point on the X-axis also does not have an x-corresponding segment. Some examples

of even symmetric generators about the X-axis are given in Fig. 1(b).

An even symmetric generator about the Y-axis is one where for every G, there
exists a unique G,, for i, k € {1, 2, ... , M}, such that x;; = -x;, , ¥;; = ¥, and
Xp = Xg » Yiz = Vi O; and G, are called y-corresponding segmenis, ie.,
G; =T (G, and G, = T,(G;). Note that when i =, we have only one line segment which

lies on the Y-axis and in this case I'(G,) does not exist, i.e., for segments that lie on the

Y-axis no y-corresponding segments exist, Further, for segments that are parallel to the



X-axis with their mid-points lying on the ¥-axis, no corresponding segments are required.

Some examples of even symmetric generators about the Y-axis are given in Fig. 1(c).

2.2.1.3 Bi-symmetric generators

It is possible that a generator may be symmetric around both the X and Y axes. In
that case, such a generator is odd symmetric as well as even symmetric. We refer to
these generators as bi-symmetric generators. The last generator in each of the Figs. 1(a),

(b) and (c) is a bi-symmetric generator.

2.2.2 Non-symmetric generators

A non-symmetric generator is a generator which is neither an odd, nor an even nor
a bi-symmetric generator. Some examples of this type of generator are given in Fig.

1(d).

2.3 Segmént Identification Scheme

Given a generator with M segments, there are M! ways to number its segments. We
introduce an identification scheme to number the segments from 1 to M. This scheme
determines the starting and end points of each segment uniquely, and is crucial for
traversed geometric fractals. A similar scheme is used to identify the segments of an

initiator.

The algorithm for the identification scheme looks at the end-points of segments that

have not yet been numbered to find the point with the smallest x coordinate. If more than
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one point has the same smallest x coordinate, then the point with the largest y coordinate
is selected. Then the algorithm picks a second point which is connected to the first point,
such that the second point has the smallest x coordinate. If more than one point has the
same x coordinate, then the point with the largest y coordinate is selected. The segment
with these two end-points is marked as segment 1 with the first point found being its
starting point and the last point found being its end point. Similarly, other segments are
focated until all segments are numbered. An adjustment is needed for an even
symmetric generator with x- or y-corresponding segments that are vertical in order to

satisfy the definition of even symmetric generators about the X or ¥ axis.

Examples of how segments of generators are numbered using the identification
scheme are given in Fig. 2. For the sake of clarity, some of the line segments are
identified by only one of its end points. Figure 2(a) illustrates the identification of the
segments and their end points for various generators. Figﬁre 2(b) gives an even
symmetric generator about the X-axis before and after the adjustment while Fig. 2(c)
gives an even symmetric generator about the Y-axis before and after the adjustment.

Note that no such adjustment is needed for horizontal x- or y- corresponding segments.

3. TRAVERSAL STRATEGIES

The generation process given in the literature for geometrical fractals is as follows.
In the first itcration each line segment of the initiator is replaced by a copy of the
generator. This copy is obtained by reducing and displacing the generator so as to have
its end points coincide with those of the segment being replaced. In the second iteration
this procedure of copying the generator is repeated for every line segment in the
generated pattern from the first iteration. Similar process is carried out for the

subsequent iterations. The termination condition is usually the preselected number of



iterations. Alternatively, one can use the size of the generated segments to terminate the
process. If there are M segments in the generator and Q) segments in the initiator, the
resulting image after N iterations consists of QMY segments. Every level of iteration

contains smaller copies of the generator exhibiting the property of exact self-similarity.

In the literature it is assumed that given a line segment, from the initator or a
gencratéd intermediate pattefn, there is only one way to replace that segment by the
generator. Thus, there is a fixed implicit direction for each of the segments of the
initiator, generator as well as the generated patterns. We refer to this as the implicit

traversal direction.

We propose the notion of multiple traversal directions for each of the segments.
We use vector T to encode the traversed directions of the scgments of the generator. This

vector T represents the traversal strategy for the generator segments.

The traversal strategy vector (T) for an M-segment generator is defined as

thjrz .. IM

where the traversal direction of the i segment of a generator is denoted as 7, and
e {0, 1,2} Th§ i segment of a generator is denoted as G, , and the two end points of
G, are denoted as g;; and g;,. When the traversal direction 7; of G; equals 0, it méans that
G, is being traversed from g;; t0 g;,, t; = 1 represents G; being traversed from g;, 10 g;;,

and finally, ¢, = 2 represents G, being traversed from g; ; to g;, as well as from g, 10 8 )

An i* segment, with ¢, = 2 , can be regarded as consisting of two pseudo-segments,
one pseudo-segment having the traversal direction equal to O and another pseudo-
segment having the traversal direction as 1. The total number of pseudo-segments for a

generator is denoted by m. Some examples of generator traversal strategies are shown in




Fig. 3 where M, m and T for each of the generators are identified; note that the line

segments are identified with only one of their end points.

Similarly, the concept of traversal strategy can be applied to the initiator. The
traversal strategy of an initiator, denoted by S, defines the traversal directions of the

segments in an initiator. The traversal direction of the i segment of an initiator is

denoted as s, The traversal strategy vector () for a @-segment initiator is defined as
=55, ..- 89 where s5;€ {0, 1,2},
The total number of pseudo-segments for an initiator is denoted by q.

For an M-segment generator, there are 3¥ possible ways to traverse a generator; and
for a O-segment initiator, there are 32 possible ways to traverse an initiator. Thus, by
using different traversal strategics for a given generator and a given initiator, one can
generate 3¥ ¢ 32 fractal images after N iterations without modifying the generator or the
initiator, In contrast, only a single image can be obtained when the concept of traversal

strategy is not used.

In the above discussion we have assumed that the traversal strategy of the
generator, T, remains the same for all iterations. We refer to this as the static traversal
strategy. Tt is possible to change the traversal strategy at every iteration. We denote the
traversal strategy at the n' iteration as 7. This gives rise to the idea of dynamic

traversal strategy. In this paper we explore only the effects of static traversal strategies.

4. GENERATION PROCESS

The initial fractal image, denoted by F?, is defined to be the same as the initiator.

The subsequent geometric fractal image F! is constructed by replacing each line segment




of F? by a proportional copy of a generator. Each line segment of F in turn can be
replaced by a proportional copy of the generator to produce yet anoth_er.fractal image F?,
and so on. The process of replacing each line segment of a fractal image by a
proportional copy of a generator can be carried out to any desired number of iterations.
A geometric fractal image at the n* iteration consists of a set of line segments, and is
denoted as F=. Thus the basic principle of generating geometric fractals can be stated by

the following iterative formula

Fr = B(F=1,G,T7),

where, B() is a function which takes a fractal imagé, Fr1_a generator, G, and a generator
traversal strategy T* as input, and produces the fractal image corresponding to the next

iteration.

An example of the traversed geometric fractal generation process is shown in Fig. 4
along with the generator and initiator used. The generator used has two connected
segments of equal lengths and the initiator contains only one segment. The distance
between the starting point A and the end point B 'of_ the generator is considered to be the
unit length. All the segment lengths of a generator are also measured in terms of unit
length; the segment lengths are denoted by RI and R2. N represents the total number of

iterations in the generation process.

Figure 5 shows the traversed fractal images produced with the nine possible
raversal strategies for a two-segment generator when N = 5; this generator and the
initiator are the same as those in Figure 4. Note that when T = 00 we obtain the
conventional geometric fractal image reported in the literature (this image, for N = 5, is

also given in Fig. 4).

We propose a scheme for identifying the segments of the generated fractal images

based on the segment identification scheme introduced earlier. We denote each segment

10



of the fractal image at the »* iteration as ¥, where n is the iteration count, i/ is the

pseudo-segment of E, j is the pseudo-segment of G, and & goes from 1 to m™L. Figure 6
shows an example of how segments of the generated fractal images at various iterations

are numbered.

if VZ‘,C is a direct descendant of 5‘,,’;‘3 , then j, k, p and [ are related to each other as

follows:
p=|_§2-_|, and z=|_ﬂ%lﬂ_|-m<p-1>.

Further, if7;’ represents the ancestor of ;% . 5, for 1 </ <m.

We denote the number of psendo segments in the generated fractal image after n

iterations as ¥», and () as the function which returns the number of traversal directions

that are equal to 2, either in S or 7. Then, the number of pseudo-segments is given by

PO =0 +y(S)
W =0 e (M +y(T))
W2 = e (M +y(T) =¥ e (M +y(D)

and therefore by induction

Tr = (Q + (S« (M +y()"

5.  EXAMPLES

We have developed a software package, name Rangoli, to generate traversed

geometric fractal images [GUJA90]. Rangoli, a word in Marathi (a language from the
" Maharashtra state of India), refers to the beautiful geometric patterns drawn in the

frontyard of a house. Rangoli is written in VS FORTRAN and runs on an [BM 3090-

11



180VF. The system runs under MVS/XA TSO using the IBM 5080 graphics workstation
and uses a subset of the IBM supplied graPHIGS software package [IBMS6] as the host
graphics environment system. The figures given in this section are generated using
Rangoli. In each of these figures, the distance between the starting point A and the end
point B of the generator is considered to be of unit length. All the segment lengths of the

gencrator are measured in terms of this unit length are included as Ri, fori=1,2, ... | M.

Fractal images from odd symmetric generators with single and multiple segment
initiators are given in Fig. 7. The generator in Fig. 7(a) has three connected segments of
equal lengths and these segments are connected to tﬁe starting points A and the end point
B. Four disconnected segments with unequal lengths make up the generator in Fig. 7(b);
the segment G, ends at A while the G, starts B. Figure 7(c) shows examples of fractal
images generated with a connected multi-segment initiator and the same generator as that
given in Fig. 7(a). The multi-segment initiator in Fig. 7(dj has three disconnected
segments of uncqual lengths, while the generator haé three connected segments which are
not connected to A or B. Trom these figures it is apparent that different traversal
strategies of generators and initiators produce the . same. fractal image for an odd

symmetric generator.

The even symmetric generator used in Fig. 8 has symmetry around thé Y-axis and
consists of three connected segments of equal lengths. It is possible to generate
(3% « 31=) 81 images by selecting all the possible traversal strategies for the initiator and
the generator. Figure 8 shows (3%=) 27 images obtained by choosing s = 0 and selecting
all the possible values for 7. It is seen that a different image is obtained by a change in

T.

An even symmetric generator about the X-axis with six connected segments of

unequal lengths, connected to A and B, is used in Fig. 9. Note that only four out of

12



possible (39=) 729 combinations for § = 021 are shown, We see that interesting images
can be generated with just two iterations when the generator has many segments. The
number of pseudo-segments for T = 000000 is giveﬁ as
W2 =(Q+W(S) » M + (D))
= @+1e(6+ 07
= 144
This can be easily verified by inspecting the figure; note that some of the pseudo-
segments overlap. For example, in the image generétcd from the initiator segment 1, we
have 36 pseudo-segments due to six pentagons (each composed of six segments since M
= 6) with some overlapping segments. Similarly, for T = 111111 and T = 001100, each
of the images consists of 144 pseudo-segments. For T = 222222 the number of psendo-
segments in the image is given by
Y2 = (3+1)s(6+6)2=576.

Since many segments are overlapping it is difficult to count them.

Interesting images generated with a bi-symmetric generator and a multi-segment
initiator are shown in Fig. 10. The symmetry in these images resembles patterns that one
sees through a kaleidoscope. The number of pseudo—segrhents for N =1 is equal to 40
while for N = 2 it is 200.

The generator shown in Fig. 11 consists of four connected segments. Although the
generator appears to be symmetric, it is actually non-symmetric due to the positions of
points A and B. The number of pseudo-segments for T = 0000, 0010 and 1010 is 128
while that for T = 2222 is 512. |

We have carried out extensive experimentation using Rangoli as a tool for
- investigation and the results from these experiments are stated as properties [CHOIS9,

GUJA92b).
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6. CONCLUSION

In this paper we have formulated notations for geometric fractals. The generators
are classified into four categories namely odd symmetric, even symmetric, bi-symmetric
and non-symmetric. Even symmetric generators are further subdivided into even
symmetric about the X or Y axis. Segment indentification schemes for generators,
initiators and generated fractal images are given. The concept of traversal sirategies for
the initiator and generator has been introduced. It allows the gencration of 3M e 32 fractal
images from a given M segment generator and { segment initiator for a fixed number of
itcraﬁons, in contrast to a single image that can be obtained otherwise. A software tool,
named Rangoli, has been designed and developed to generate traversed - geometric
fractals. Several examples of traversed fractals generated from various classes of
generators and single and multi segment initiators have been given. It is found that the
traversed fractal images from odd symmetric generators with different traversal strategies

are identical (although the number of pseudo-segments in each image may be different).
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