SEMI-AUTOMATED KNOWLEDGE ACQUISITION
FROM
EXISTING TEXTUAL DATABASES
by

Joozar K. Vasi

TR92-068 August 1992

This is an unaltered version of the author's
M.Sc.(CS) Thesis

Faculty of Computer Science
University of New Brunswick
P.O. Box 4400
Fredericton, N.B. E3B 5A3

Phone: (506) 453-4566
Fax: (506) 453-3566

SEMI-AUTOMATED KNOWLEDGE ACQUISITION FROM EXISTING TEXTUAL
DATABASES

by
Joozar K. Vasi
BSc(Physics), Bombay University, 1984
BSc(CS), University of New Brunswick, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science in Computer Science
in the Faculty
of

Computer Science

This thesis is accepted.

Dean of Graduate Studies
THE UNIVERSITY OF NEW BRUNSWICK
August, 1992
® Joozar K. Vasi, 1992

Table of Contents

ADSITACE ... eeecreccrercrncsssositssssesssissstsastssssneraresssnsssnssnressrnsssasasstresassssssarasasasassssansbebnons v

Acknowledgments rehtassssssssisesestsasnanasesnsate vi

List 0f Figures.....coceccevesereesrecsesssacessasans TR vii

LIST OF TADIES «.veerreneccrencrcrencrrsvsssssasssssasssssssssssnsersssserenssrsnsssssusssssasessssasesavarerararavasasarasanes ix

1. INEPOAUCHOM .. ccersrcrerererrissssrsssssssssssrssssanssssassessnassasssssnnsssrassssssasssssasasarassrassearasasenone 1

1.1. Background . 1

1.2. The Interactive Operating AdviSor.....ivieeeeccicrnirennes 1
1.3. Literature Review : 4.

f 1.3.1. Attempts to Computerize Plant Operating Proceduresccoceveenene. 4

: COPMA ..o ooireieievecrernerenenctssie st st sesasasans trererernesveeneesmresaensiansinsiinen

' Integrated OAS ..o eerrreererreeesreessrseesersaenenes 6

/ PCONS. Feeereeeeseresesssreserereseesstesaseeennrerstentsioeteseneeereretnse b bas s aa st e b s e 10

COMPRO ...vivvrnvriiirisiriviniorreresressersesses oenereneneaae s enenenessanesers b b aen 12

PASS oottt a st s ae s bbb e s s bbb e b e bbb e neen 13

1.3.2. Important features of Attempts to Computerize Plant Operating

Procedures......eerererrerencreressorenensans : retsesaseronsssensuisisreresns 16

1.3.3. A General Overview of Formal Languages..........cccovueenenessrsssasasansnae 16

1.3.4, Techniques for Analysis of Textual DOCUMENES....ccorvrnescsirisaresaressorsss 20

© Salton and SMIth......coeioeeecirnrrricristn e AT 23

Jacobs and-Rau......covviiiniinnniner Cevesieseare e eatae s 24

Lehnert and Sundheim ... et erverens 26

1.4. Tools in UNIX available for textual analysis...... 27

L1, LEX wiriicrerncrcsnsssssasssasssrsssossasssesserssersnssnassnsvoansnsasasase resesersrersrarsenersrorssasese 28

1.4.2, YACConinsrersenrsnsssisasssrersnesnesasssassressnosrassrassnesseranesons e 29

1.4.3. Interaction of Lex and Yacc . e 29

1.5, Statement of Problem 29

2. Context-free Grammar Representation of a Language for Plant Operating
PTOCEAUIES «.oeeerteercrerciersnsscssrossiossssorsisssiossnssasassansssassssessnas " _ 32

2.1. GENRL representation of OMFTs revesssssbeesrnsssassarenssrase b nsar it s ans 32

ii

2.2. GENRL representation of EFTScccicnenarennrccninenenimsesssssssasssssssesssns 33
2.3. Recognizer of GENRL Using Lex and Yace ..cevmercreerecceccerarnerssnesrorrenns 34
3. Translation of Operating Manual Text to GENRLcvcccverrrvrerrnrssersrsersrans 38
3.1. Structure of Operating Manuals.......cviierererccscrerens .38
3.2. Structure of Text Used for Translation 40
3.3. Overall Architecture of GENRL Knowledge Acquisition Too)cerevereees 40
3.4. Important Tokens . . 42
3.5. The Parsing Process . : ' 43
3.5.1. Preprocessing : 43
3.5.2. Breakdown into components creerreeseasierens 45
3.5.3. RESCANNINE..cevnenmmeeresmmenesesesesessrssesoresoee . erererereenns 46
36 The Printing ProCess.....ieinicnnnsnninissisiisiosssosssesereressssssssssassssssnssnasorss 49
3.7. An Example Translation . 49
4. The Implementation of GENT . esststsnsnirsestsrnasatesesisesesesases 52
5. Interactive Completion and Verification To0]ccovueevererreemsinsssessessssssasossnseses 56
0. SUNMIIINALY . .cocesrvsssessssrssstsssasessrsssnsssrarararesasasssasssssassssssnsssnsasasersssssssnsssnassrassrne 59
7. References " . rereressssresnenas 61
Appendix 1. GENRL representation of OMFTs........ 64
Appendix_z. GENRL representation of EFTs ' vereressnsesesarerasansses 68
Appendix 3. Lex specification for OMFTs _ 70
Appendix 4. Yacc specification for OMFETS.cuiireersierersensemseressessesessesssesssasssases 72
Appendix 5. Lex specification for EFTs ' 78
Appendix 6. Yacc specification for EFTs. | 80
Appendix 7. Lex specification for GENT.couuiverermreesneressssssesssssessnessneesssssassssrasss 84
Appendix 8. Yacc specification for GENT.ceveevisorisssrnisrnireranens 90
Appendix 9. Lex specification for rescanningcccccceercnereerercreccarerascresasensseronasens 95

Appendix 10. Lex specification for part of the preprocessor 98

iii

Appendix 11. Printing routines of GENT eermsesssssemmessesaes s ATA st RR s ann 103

Appendix 12, Header file for GENT “ N 110

Appendix 13. Utilities used by GENT eeeeeeeneseseserenen 112

Appendix 14. Driver programs for GENT 120

iv

Abstract

The introduction of this thesis looks at languages to represent plant operating pré)cedures.
Techniques that can be used to translate plant operating procedures from textual form to
these languages are also explored.

A context-free grammar representation of a knowledge base for plant operating
procedures called GENeric Representation Language (GENRL) was developed. A non-
interactive syntax checker for GENRL using Lex and Yacc was built.” The design and
partial implementation of GENRL Knowledge Acquisition Tool (GENKAT) were
completed. GENKAT translated plant operating procedures from WordPerfect text files
to a knowledge base whose structure was developed previously. This knowledge base
consists of 14 different frames corresponding to fourteen generic tasks typical of plant
operating procedures.

GENKAT consists of two main components. The first component accepts input from
WordPerfect text files and produces a partially complete knowledge base. The second
component allows the user to interactively modify the knowledge base.

GENKAT was developed using Sed, Lex, Yacc and C on the SUN™ Sparcstation 2. It
consists of 1975 lines of code. It was used to automatically translate chapter 5 (Normal
Operations) and chapter 6 (Abnormal Operations) of the liguid zone control operating
manual of the Pt. Lepreau generating station. - This resulted in a total of 1125 GENRL
frames. Four of the fourteen generic tasks are currently recognized.

Acknowledgments
I would like to thank AECL for their financial support for my work,

‘Thanks are also due to Professor Brad Nickerson, my supervisor, for his patience and
supervision.

Finally, I want to thank my father, Khozema, and my mother, Nafisa, for their support.

List of Figures

Figure 1. Composition and relation between generic and specific components of the TOA

[Maillet 90]. e D
Figure 2. A procedure in PROLA [SVEITe Q0T. ..o ecviier e eeeeseeesereemesesensvens 4
Figure 3. COPMA man machine interface [Krogs@ter 89)...uurvvovvorveerererens SUPTURT 5
Figure 4. Diagram of overall structure of on-line COPMA [Krogsater 89].......ccvvvvnee. 6
Figure 5. Overall structure of Integrated QOAS [Bhatnagar 907. ..ot ioveeveeineeierecseerenn 8
Figure 6. Cost versus benefit curve for converting to different procedure formats

[KIIEZET T ittt ettt e e st s e s essaratese s s e e sasasasaesrsssnssssssesssnnsessasssesons 11
Figure 7. A clause being built in PCONS [Krieger 911, oo cereseevereseasaeans 12
Figure 8. The compile and test approach [Horne 89]. ' 14
Figufe 9. Example of a DFA recognizing a regular 1anguage.........coouvevueeervrvereenenennne. 17
Figure 10. Example of 12 VU | U ORSURTUBSOUP U 18

Figure 11. Example of a deterministic Turing Machine (TM)........cccccevvvvvivinrivrvrrarenn. 20
Figure 12. Chomsky hierarchy of 1anguages.ccc.covivmiiciicicrceceeeenrrcrersesscnees 20
Figure 13. Overview of phases of natural language processing {Luger 89]. 22

Figure 14. PLNLP recognizing "today large disk arrays are usually available but using

short texts and small dictionary” [Salton 89].........covvvivrrvrvierreereceeree oo e 24
Figure 15. "Bo.ttom—up“ Iiﬂguistic analysis and "top-down" concéptual interpretation in

SCISOR [JACODS 0T .cuervrieirreicnieeiereee ettt ent et eserenenon .25
Figure 16. Overall structure of SCISOR [JAC0ODS F0T. covvoririereecreeiereresresrneressseseeesesnsens 26
Figure 17. Hierarchy of UNIX tools [Mason 90]. 28
Figure 18, Using Lex and Yacce [Mason 0], c.vevecevrevereeeveersrvesiserissrerenssesseessessssssesssssses 30

Figure 19. Interaction between C routines main(), yylex(), and yyparse() [Mason 90]...30
Figure 20. GENRL description of three OMFTS......oevevvveneenenen... e bee 33
Figure 21. Sample ART code for three OMFTS [Maillef 90]. coeveivvvvrivenneerienereeerennrenns 33
Figure 22. GENRL description of two EFTS.cvveiriiicriinireniten e sssssessiiaenes 34

- vl

Figurf_a 23
Figure 24
Figure 25
Figure 26
'Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figuré 34
Figure 35

editor

Figure 36
Figure 37

Figure 38
Figure 39
Figure 40

Figure 41

. Sample ART code for two EFTs [Maillet 90]. ...cocoovvvvirvniiioinniiniennnn. 35
. Parsing statistics for OMFTS. ..ot ssesnes rerermbeererrreene 35
. Parsing statistics for GENT COde.oovmnmiiiininiriininiinininnniessiese s cenenec 37
. Parsing statistics fOr EFTS.cooovviviniimini it 37
. Major parts of a manual containing operating procedures (Johnson 88]........ 39
. Example components of input text, and their relationships.ccovevvveennene 41
. ATCHIECHUTE Of GENKAT. oooer s oeseseeseessrsssssossos oo seeeseesoesssses 42
. Overall architecture 0f GENT.......coovimiiriiiini i, 44
. UNIX preprocessor for input text as seen in the vi editor.....cocvvevneinerennenn. 45
. Yacc specification for input text (truncated). ..oveveeevnrnerrerercennnnnesiniciee 46
. Input and Qutput files of rescanning stage. S 48
. Sentence not properly' interpreted by GENT. rrerereapesaeeneneesarnaesassinens 48
. Input WordPerfect text and preprocessed output file as seen by the vi
... 50
. Data structure for sample ranslation. ... 50
. The ART knowledge base obtained from input WordPerfect text of Figure 35.
................ eveeeebeiestsibertor e b e tebit et rreer et eseaea b st nee e renerermsnbensentessressssrrarsrasnns D1
. Data structure for storing section details.covvviviienicennieinene 54
: Data structure for step details. ... 54
. Data structure for equipment details.coeeverreiieinninieiiieennre e 55

. Proposed screen Iayout for GENICOVE.........ccooiiiimeineiniieees 56

vidi

List of Tables

Table 1. List of generic tasks [Maillet 30]. ...ocovevevieecrennnnnnn. et saae st e s 3
Table 2. Tokens indicating the start of major components of input teXt,oceeevrvreeenne 41
Table 3. GENT fil€ SYSIEILorviiuiiiiriririorenrereecrsrneniressenreraesseasesessrorsesssssesmtonerorensones 52

ix

H
i
3
i
3
3
3
J
i

1. Introduction

1.1. Background

~ Plant operating manuals are an established method for making available information on

how to operate efficiently any large plant. Power plants, especially nuclear power plants,
use operating manuals extensively. For example, there are over 200 operating manuals at
Pt. Leprean comprising of more than 10,000 pages. There is a need to make this
voluminous information available to plant operators efficiently (i.e., the right information
quickly). To achieve this end many attempts have been made to computerize plant
operating procedures. Some of these attempts are described in this chapter.

" 1.2. The Interactive Operating Advisor

The Interactive Operating Advisor (IOA) built by Maillet [Maillet 90] is an expert
system which provides a computerized version of plant operating procedures in the liquid
zone control manual [Parker 87] of the Pt. Lepreau nuclear power plant. Like many
expert systems the TOA is composed of the following three parts:

1} A set of rules
2) A database of facts

3) An inference engine for firing the rules according to matches with the database
- of facts

These three parts can be classified into the following categories:

1) Generic component: This component defines the structure and control of the-
IOA. 1t consists of all the three parts mentioned above but the database of
facts does not contain the declarative knowledge of the manual (the slots of
frames are empty).

2) Specific component; This component consists of the declarative knowledge
present in the manual. This knowledge is present in the database of facts. The
database of facts has all the declarative knowledge of the manual in addition to
the general structure that describes them.

The database of facts consisting of both components will henceforth be called frame
templates or just frames. '

Figure 1 shows the generic and specific components of the IOA,
Two types of frame templates were defined by Maillet. They are:

1) Operating Manual Frame Templates (OMFTs): These templates describe
operational procedures and other information of the operating manual when
completely filled.

2} Equipm'ent Frame Templates (EFTs): These templates model the physical
system of the nuclear power plant as described in the operating manual when
completely filled.

(" Generic Component:)
Structure and Control |

Empty Frame Tempiates
Rule Groups
____Inference Engine /

(" Specific Component:
Operating Manual
Declarative Knowledge

Completely Filled Frame
_ . Templates W,

Figure 1. Composition and relation between generic and specific components of the IOA
[Maillet 90].

All OMFTs have one slot for the location of the information they contain. This
information is divided into two parts. The first part consists of the procedure number and
step number if present. The second part consists of a sequence number. The sequence
number is used to sequence the OMFTs within a procedure or procedure step.

Within the expert system, a control frame keeps track of what procedure number, step
number, and sequence number of the operating manual are currently being processed.

Maillet also defined generic tasks which are small elements of work that require similar
processing, For each generic task there is one OMFT and one rule group. OMFTs
provide a method of representing the task in a form understandable to the expert system.
The rule group is responsible for overseeing the execution of this task. Table 1 shows
the primary tasks for which OMFTs and rule groups were developed.

Table 1. List of generic tasks [Maillet 90].

- 1) Equipment-state-requirement-with-and-logic
2) Equipment-state-requirement-with-or-logic
3) Select-equipment-item

4) Monitor-equipment-item

5) Find-equipment-item

6) Display-text

7) Display-diagram

8) Wait

9) DispIay-Cuﬁent—context

10) Link-context-with-return

11) Link-context

12) Conditional-link-context

13) Conditional-link-context-with-return

14) Question-link-with-return

As new generic tasks are recognized to be present in operating procedures the generic
component (excluding the inference engine) can be extended to include them.

EFTs and OMFTSs will vary from manual to manual, They form the basis of the
language [Hopcroft 79] of the variable portion of the IOA knowledge base. Adherence
of EFTs and OMFTs to the language can be verified using standard language verification
techniques [Aho 86).

1.3. Literature Review

1.3.1. Attempts to Computerize Plant Operating Procedures

Five projects related to automating operating procedures at nuclear power plants are
described below: '

COPMA

A project was undertaken in Halden, Norway, to produce a Computerized Operating
Manual (COPMA) for nuclear plant operating procedures {Krogs&ter 89] [Sverre 90}
[Nelson 90]. On-line COPMA (on the TI explorer) needs a procedure database encoded
in the language PROLA. COPMA is connected to the nuclear power plant simulator (on
a Norsk Data computer) and can access its process database.

A procedure in PROLA is encoded as follows:

Procedure «<procedure-identifier>
Step «step-identifier>
Instruction
Instruction

Endstep

Step <step-identifier>
Instruction
Instruction

Endstep

Endprocedure

Figure 2. A procedure in PROLA {Sverre 90].

Any number of instructions can reside in each procedure step. Instructions are the
actions and checks that the procedure designer wants the operator or computer to do at
the moment, such as give or read some specific information, ask the operator to manually

perform some checks, let the computer automatically check and evaluate some condition,
let the computer monitor a process condition, or branch to another procedure step. The
PROLA language syntax checker and compiler were written in Prolog.

PROLA procedures are entered using an off-line Procedure EDitor (PED). PED also
supports: '

1) An editor for procedure graphs that can be entered within a procedure
2) PROLA editing and compiling
3) Annotations to procedures

4) A variable address table that simplifies access to the simulator database during
COPMA execution

The COPMA screen consists of many windows which have différent responsibilities of
helping the operator. The man machine interface of COPMA simulates a desk of
manuals as shown in Figure 3. '

Procedure hamea
Step description Active
procedure
pane
Overview
pane Step survey
pane
Work
pane
Overvisw pane
commands
Dialogue pane

Figure 3. COPMA man machine interface [Krogseter 89].

Each window is an object with attributes and information to interpret a set of commands.
Windows interact with the help of a message coordinator which is itself an object. The
message coordinator buffers input messages received from windows and redistributes
them to windows that need to be informed with the help of a queue.

Each procedure is a static data structure which can be activated to produce an object of
the class 'procedure’. Another module called the kernel is responsible for handling active

procedures. Also a communication module is present between COPMA (on a T
Explorer) and the simulator (on a Norsk Data computer). Communication programs on
the two computers communicate by exchanging messages over Ethernet using the
TCP/IP protocol (see Figure 4),

T Remote
Pane and P
Kermnel :
Message COPMA
Coordinator Com munlcdltlon
F—1 |
Remots

N

Figure 4. Diagram of overall structure of on-line COPMA [Krogsazter 89]

Communication _

|
I
|
|
|
l

Integrated OAS

The integrated Operator Advisor System (OAS) is a knowledge-based system for the
plant monitoring, procedure management, and diagnosis. It was developed by the
Laboratory for Artificial Intelligence Research at Ohio State University [Bhatnagar 90].

The overall architecture of the OAS is based on four generic tasks [Chandrasekaran 86)
from which the four modules of the OAS were developed. Each generic task has the
following information:

1) a task specification in the form of generic types of input and output
information; '

2) specific forms in which the basic pieces of domain knowledge are needed for
the task, and specific organizations of this knowledge particular to the task;

3) a family of control regimes appropriate to the task.

Generic tasks can be used in problem solving if:

1) the complex problem can be decomposed into generic tasks;

2) paths and conditions for information transfer from the agents that perform
these generic tasks to the others which need the information can be established;

3) knowledge of the domain is available to encode the knowledge structures of
the generic task.

Each generic task has its own representation language and qontrol regime,
The OAS consists of four modules as shown in figure 5: |
1) An intelligent database (generic task of data abstraction)
2) A Plant Statu.'s Monitoring System (PSMS) (generic t_ask of monitoring)

3) A Dynamic Procedure Monitoring System (DPMS) (geneﬁc task of plan
execution for situation control}

4) A Diagnosis and sensor Validation System (DVS) (generic task of diagnosis)

The detection of abnormal functioning is handled by the PSMS (generic task of
monitoring) and the control of abnormal functioning is handled by the DPMS (generic
task of plan execution for situation control).

DPMS takes care of;

1) selecting procedures that will best maintain the plant safety in the shortest
possible time, when a number of malfunction states are detected and when
during the execution of a procedure other more critical safety threats are
detected;

2) guiding the operator through the steps of an identified plan;
3) monitoring the success of a procedure;

4) modifying the procedure to maintain plant safety when the executing
procedure is not, or cannot be, successful.

Plant
Computer
Y
* Database

Y
Plant Status Monitoring System(PSMS)

Action ldentification

« EOP Entry Conditions |
« Abnormal events
* Alarms
Y Y
Dynamic Procedure
ﬁ Monitoring system(DPMS)
* EOP Management

Diagnosis and sensor
Validation system(DVS) || |+ Abnormal Event Response

* Alarm Response
Instructions

Events >

s

«Muitiple Response

Failure

Figure 5. Overall structure of Integrated OAS [Bhatnagar 90].

A high level language called language called Dynamic Procedures Representation
Language (DPRL) was developed to represent safety threats and abnormal event
procedures, and relationships among these procedures to control abnormal plant
functioning. |

DPRL provides constructs for the representation of the following:
1) Steps of procedureé
2) Objectives of the procedures and how they relate to the overall plant safety
3) Relations among sub-procedures that make up a procedure
4) Success criteria of a procedure
5) Alternatives to maintain plant safety if the procedure.'is nbt successful

The procedures and the relationships among them are represented at four levels of
abstraction: SPECIALIST, PLAN, PROCEDURE and STEP. The level of abstraction
increases from abstract to detailed from SPECIALIST to STEP.

A SPECIALIST is defined for each malfunction state for which a procedure is available.
SPECIALISTSs initiate required procedures to combat the malfunction state and have the
knowledge for safety maintenance if those procedures fail. The knowledge
representation of a SPECIALIST is structured as follows [Bhatnagar 90]:
{SPECTALTST (NAME)
(SUPER-SPECIALIST)
" (SAFETY-GOAL }

{SUB-SPECIALIST)
{PLANS })

PLAN and PROCEDURE: The PLAN represents the actual control procedure at an
abstract level. The PLAN contains the name of the procedure, and the sub procedures
and the steps that make up the procedure. A PROCEDURE is a subPLAN. Both PLAN
and PROCEDURE contain knowledge for plan execution, monitoring, and modification.
A PLAN is represented as follows [Bhatnagar 90]: '

{PLAN (NAME)
{SAFETY-GOAL }
{EXECUTION-TYPE)
{PREREQUISITE)
{CRITERIA)
(USED-BY }

(BODY)}

STEP: This is the most detailed level of knowledge representation. It can contain:
1A Idisplay action
2) Actions that are done on or using some system or component
3) Conditional actions done on or using some system or component
4) Actions to verify the effects of the actions taken
5) Actions to monitor the effects of actions taken for a ..given amount of time

A display step is structured as follows [Bhatnagar 90]:

{DISPLAY (This procedure is a sub procedure of PEI-B13})

On identification of each malfunction state the conflict resolution scheme in the OAS
updates a plan set that contains the names of the SPECIALISTS for the already detected
maifunction states.

A human interface in the form a shell with templates for SPECIALISTs, PLANSs, and
PROCEDURE:s is provided to help in filling in the procedural knowledge available from
the plant manuals and from the expertise of the plant personnel. The creation of the
knowledge base starts by defining the malfunction states and the procedures to control
them. The SPECIALISTs, PLANS, and PROCEDURES are created with the help of a
shell which displays required templates to be filled in. All the information filled in is
checked for correct syntax before it is compiled. The shell can help in completing the
knowledge base in many ways. One useful check would be to point out which
SPECIALISTs, PLANs and PROCEDURES have been mentioned but have not been
compiled.

PCONS

10

:
:
S
1

The paper describing PCONS [Krieger 91] begins by introducing different formats for
storing procedures. Figure 6 shows an approximate cost versus benefit curve for
converting procedutes to different formats.

objects

code

cost

paper N
P

benefits

Figure 6. Cost versus benefit curve for converting to different procedure formats
[Krieger 91].

The costs associated with representing procedures can be reduced no matter how the
procedures are stored provided the format is chosen before hand. To convert procedures
from paper to text one does not have to convert the text to images stored on disk and then
to text files that can be manipulated by a word processor. Intermediate conversion steps
need not be followed.

PCONS was developed in the Symbolics Genera environment. The basic module in
PCONS is a clause which is either a complete sentence or a part of a sentence. The
writer creates a procedure by using existing modules or creating new ones. Commands
to the database allow the writer to locate existing modules based on parameters such as
object category (e.g., valve) or operation type (e.g., close).

The successive stages of building a clause are shown in Figure 7.

Objects close, valve V25, and valve 24 are stored in an object base separate from
PCONS. They are retrieved from the object base by menus. Other formatting is also
added to the clause by the interface to make it readable (e.g., the word "and" in Figure 7).

11

Close
Close valve V25

Close valves V25 and V24

Figure 7. A clause being built in PCONS [Krieger 91].

Storing plant items in an object base allows the use of multiple formats. Some of the
formats developed in the project were: '

1) Textual format: Formatting of text is done on each module in a procedure.
Annotations can be retrieved from the object base when the procedure refers to
the object (i.e., the can be stored with the object).

2) On-screen format: Procedures appear on the screen in a format similar to the
textual format. When the operator points to an object in the procedure text
(e.g., valve 20), he can perform operations on the object (e.g., close valve 20).

3) Executable code format: A code fragment of a programming language can be
~ created by fetching objects from the object base. For example the following
fragment will print a message to the operator on the screen to close valves 25
and 24:

printf("Close valves V25 and vV24*};

COMPRO

COmputerized PROcedures (COMPRQO) [Lipner, 911 is a computer implementation of
emergency operating procedures developed by Westinghouse Electric Corporation.
Lipner and Orendi give a description of computerization issues that were addressed
during the development process but they provide no implementatiori details.

The issues considered were:
1) Operator freedom
2) Sequential steps

3) Critical safety function status trees

12

43} Rediagnosis
5) Foldout page
6) Notes and cautions
7) Continuous monitoréd parameters and initiated actions
8) Prioritizing the issues
9) Integration with graphic display systems
PASS

Procedure Analysis Software System (PASS) [Robert 8] [Horne 89] is an ongoing EPRI
project to investigate computer based methods to improve the development, maintenance,
and verification of plant operating procedures. The first main goal of the project was to
investigate the applicability of Structured Software Analysis (SSA) to computerizing
operating procedures. SSA methods offer benefits only if procedures are transformed
into a format that can be easily be used by a computer (e.g., a programming language).

A translator, which used natural language techniques, was developed to perform the
conversion. Finally, possibilities for automated verification methods for computerized
procedures were considered.

Typical Westinghouse Emergency Operating Procedures (EOPs) have a title, a scope,
entry conditions, steps, and optional appendices containing supporting material. A step
has three components

. Action: represents an action or an observation made by the operator

. ExpectedResponse: gives an observation to be make by the operator to
verify the step action, or more information on how to perform an action

. ResponseNotObtained: gives an action to be performed if the
ExpectedResponse is not observed

The grammar of a Westinghouse procedure is:

Procedure — Boilerplate Step+

13

BoilerPlate — TITLE SCOPE CATEGORY DATE REVISION SYMPTOMS NOTES
CAUTIONS CONDITIONS ' '

Step — Action ExpectedResponse ResponseNotObtained
Action — TEXT Instruction+

ExpectedResponse — TEXT Instruction+
ResponseNotObtained — Instruction+

Instruction — Rule | IMPERATIVE | NOTE | CAUTION
Rule — IFEXPR THENEXPR ELSEEXPR

In the PASS system all procedures are represented as structured text instead of rules and
text corresponding to the rules. The PASS compiler has the information about the inpﬁt
vocabulary of terms and their syntactic classification. It transforms the structured text to
assertions and rules for on-line execution. Computerized versions of plant operating
procedures were produced using the compile and test approach shown in Figure 8.

Figure 8. The compile and test approach [Horne 891].

The compiler translates the text into a set of logical assertions and rules containing the
form verb system state. Verbs in these forms are mapped to one of the following
semantic primitives: '

14

. Query: Verbs like verify and check correspond to observations of a plant
system or component through an instrument. '

. Set. These verbs (such as set or trip) correspond to operator actions that
realign a plant system or component through a controller.

. Goto: Procedures may invoke other procedures through this primitive.

. ReferTo: Procedures may refer the operator to additional information in
this procedure or some other procedure

The syntax used to compile procedure text is a subset of standard English specialized for
procedures. Augmented Transition Networks (ATN) perform syntax analysis. The
current PASS syntax rules have 31 independent ATNs.

It was concluded that the following was essential to make procedures suitable for
automated computer analysis '

. The final state of the plant on executing a procedure should be precisely
defined.

. The vocabulary of plant actions, components and states should be
constrained.

. ‘Procedures should be written using well specified and limited grammatical
structures.

o Whenever possible a plant action should be accompanied by a description

to verify that the action succeeded. B

. Care should be taken to consistently represent and correlate blocks of
AND/OR portions of procedures.

o Procedures should be written on a computer file in a form that allows the
writer to add comments about the issues and information sources
considered in writing those procedures.

15

1.3.2. Important features ot Attempts to Computerize Plant Operating

Procedures
Most of the attempts described previously had the following in common:

1) The language to represent procedures is built around procedure steps as its
basic building block. Each step contains operator actions and checks typical of
plant operating procedures. Therefore each step has restricted content.

2) Object oriented programming techniques were nsed to handle complexity.

3) An elaborate man machine interface was developed. The system has to be
"operator-friendly."

4) Monitoring of system parameters is done automaticaliy. The computerized
manual is connected to the simulator.

5) Procedures have a hierarchy among them. Procedures that handle safety
threats have precedence over procedures that handle abnormal events.

6) An intelligent editor for the knowledge base was developed to check for
correct syntax and semantics.

7) If a translator to computerize procedures is to be developed then the format of
the input procedures should have the characteristics identified in the PASS
- project. '

1.3.3. A General Overview of Formal Languages

Translation between one machine format and another, for example, between a
prbgramming language and assembler is a well-documented problem in computing
literature (e.g., [Aho 86]). These methods, however, are defined for only certain classes
of texts — only those that can be described by context-free languages (or subsets of
them).

Context-free languages are part of a hierarchy of languages, called the "Chomsky
hierarchy” [Luger 89] [Hopcroft 79]. These classes are defined because they form

16

potential models for namral languages. The languages, in order of increasing
complexity, are:

1) Regular languages: In this class of language all productions are of the form
A—-wB
A-w

- where A and B are non-terminals and w is a string (possibly empty) of terminals. The
machine that recognizes a regular language is called a Deterministic Finite Automaton
(DFA) and an example is shown in Figure 9. This machine makes a decision on what
state to go to on the basis of its current state (say A in Figure 9) and the current input
symbol (say 0 in Figure 9). The input symbol is consumed. If the machine is in some
acceptable final state (e.g., A in Figure 9) on scanning the input stream symbols, the
machine halts and declares that the sequence of input symbols is in the language. A
regular language can also be recognized by a Nondeterministic Finite Automaton (NFA)
because every language recognized by a NFA can be recognized by a DFA. Regular
expressions [Hopcroft 79] can also be used to represent reguiar languages.

2) Context-Free Languages (CFLs): In this class of language all productions are of the
form:

A-a

Figure 9. Example of a DFA recognizing a regular language.

where A is a non-terminal and o consists of terminals and non-terminals in any order.
The machine that recognizes a context-free language is called a nondeterministic Push
Down Automaton (PDA) and an example is shown in Figure 10.

17

The instantaneous description of the machine is fully determined by the current state (q
in Figure 10) and the stack of symbols. The next set of instantaneous descrintions is
determined by its current state (q in Figure 10), the current input symbol (0 in Figure 10
which is consumed) and its current symbol on top of the stack (A in Figure 10). The

“next state of the stack is obtained by popping the current stack symbol of the stack and
pushing zero or more stack symbols on the stack. A sequence of input symbols is said to
be in the language if the stack becomes empty, or equivalently, the machine reaches a '
designated final state,

K]

O] == DO |-
[

N i |wmjo]=

Figure 10. Examplé of PDA. |

The CFLs contain Deterministic Context-Free Languages (DCFLs). The syntax of most
programming languages can be described by DCFLs. LR grammars [Hopcroft 79]

generate exactly the DCFLs. To prove a language is a DCFL usually involves building a
Deterministic Push Down Automaton (DPDA) or LR-grammar to describe the language.

LR parsing is attractive for the following reasons [Aho 86]:

1) LR parsing method is the most general non backtracking shift-reduce parsing
method known, yet its implementation is efficient.

2) The class of grammars that can be parsed using LR methods is a proper
superset of the class of grammars that can be parsed with a predictive parser.

3) An LR parser can detect errors in a left-to right scan of the input as soon as
possible.

1t is very tedious to construct a LR parser by hand. Therefore parser generators like Yacc
(see section 1.4.2} are used to do the job.

18

3) Context-sensitive languages: In this class of language all productions are of the form:
o—h

where o and B consist of terminals and non-terminals in any order with |o| < |B]. The
machine that recognized context-sensitive languages is the Linear Bounded Automaton
(LBA). An LBA is a nondeterministic Turing machine satisfying the following two
conditions:

1) Its input alphabet includes two special symbols ¢ and $, the left and right end
markers, respectively.

2) The LBA has no moves left from ¢ or right from $, nor may it print another
symbol over ¢ or $.

4) Recursively enumerable languages: In this class of language all productions are of the
form:

o-p

where o and B consist of terminals and non-terminals in any order. The machine that
recognizes a recursively enumerable language is the deterministic Turing Machine (TM)
which is shown in Figure 11, '

The instantaneous description of this machine determined by the input symbols to the
rightmost non blank or the symbol to the left of the head, whichever is rightmost; and the
current state of the head within this string (e.g., abcqgaaa in Figure 11. The current input
symbol being scanned is to the left of the state q). On the basis of the current
instantaneous description the head of the machine moves right or left. During this
motion the head writes a symbol on the input tape. At the end of the move the finite
control of the head changes state. The deterministic TM accepts a sequence of input
symbols on tape if its head starts scanning from the left edge of the input tape and the
finite control reaches a designated final state,

It is possible that the deterministic TM may never halt on an input sequence of symbols
not in the language.

19

Note that this machine is more powerful than the other two machines because of its
rescanning and writing capabilities.

Q

Finite
Control

Figure 11. Example of a deterministic Turing Machine (TM).

Figure 12 gives an overall view of the hierarchy of these languages showing complete
contmnment of one language within another.

Context-sensitive
ontaxi-fres

Figure 12. Chomsky hierarchy of languages.

When text is being analyzéd, the regular part of text is recognized first since the
fecognition machine (the DFA) is simple and easy to program. If this machine (the
DFA) is unable 1o do the job (when constructs of the form allb2 have to be recognized)
then the context-free part of the text is recognized by the PDA. Some constructs cannot
be recognized by a PDA (e.g., constructs of the form allbfich), These constructs include
declaration of a variable before use and the problem of checking that the number of
formal parameters in the declaration of a procedure agrees with the number of actual
parameters in a use of the procedure [Aho 86]. The semantic analysis phase of a
compiler takes care of these two problems. |

1.3.4. Techniqués for Analysis of Textual Documents

20

There are many levels of analysis of natural language. They include [Luger 89]:
1) Prosody deals with the rhythm and intonation of language.

2) Phonology studies how sounds form language. This is important in
computerized speech recognition and generation.

3) Morphology is concerned with what constitutes words.

4) Syntax studies rules that determine legal sentence and rules to recognize and
generate sentences.

5) Semantics considers meaning of sentences and its components and the way in
which it is conveyed in natural language.

6) Pragmatics determines the way in which language is used and its effects on the
listener.

7) World knowledge includes of the physical world, the world of human social
interaction, and the role of goals and intentions in communication. This
background knowledge is essential to understand the full meaning of text or a
conversation. '

All of these levels interact extensively.

The problem of natural language analysis of textual data can be divided into three phases
as shown in Figure 13.

1) Parsing: This process involves use of language syntax (relationship between
tokens). The end result is normally a parse tree.

2) Semantic interpretation: This stage produces a representation that reflects the
meaning of the text (i.e., how the text relates to the real world). The end result
are normally frames or logic based representations. Semantic consistency
checks (analysis) are also performed during this phase.

3) Contextual knowledge/world interpretation: Structures from a knowledge base
are added to the internal representation of the sentence. This knowledge base
contains world knowledge required to complete the meaning of the sentence.

21

{ wput |

i
Parsing

i

Semantic interpretation

y

Contextualb/worid
knowledge interpretation

translator

input to:
database query handler
etc,

‘Figure 13. Overview of phases of natural language processing [Luger 891
Machines that can be used for parsing include [Gazdar 89]:

1) Finite-State Transition Networks

2) Recursive Transitton Networks

3) Augmented Transition Networks

4) Chart Parsers

Simple modifications of these machines are used to perform translations of natural
language. Determining which machine to use is guided by three factors:

1) Mathematical adequacy: The machine cannot recognize constructs that are
required to be recognized.

2) Notational adequacy: The machine is a good model of the Natural Language
Processing (NLP) probiem. RTNs are preferred over FSTNs since they allow
commonly occurring subpatterns to be expressed as a named subnetwork, and
large networks to be built up in a modular way. A RTN does not become 100
large because of repetitive specification. |

22

3) Efficiency: A machine that takes less time is preferred.

Two papers discussing text analysis were studied, along with a review paper of 15
techniques. '

Salton and Smith

This paper describes how text analysis can be used for automatic construction of book
indices by using the PLNLP syntactic analyzer.

Tt was recognized that the syntactic analysis phase of natural language processing can
encounter the following problems:

1) Ambiguous parse trees
2) Incomplete vocabulary
3) Requirement of extensive storage and computer speed

To overcome these three obstacles additional contextual information is obtained by
machine dictionaries and manually prepared knowledge bases that reflect the semantic
properties of the particular area of discourse. The knowledge base can form a semantic
network. The following information retrieval strategy can be used to gather information
relevant to the area of discourse from the knowledge base:

1) The available search request is analyzed into a formal representation similar to
- that vsed for the knowledge base. '

2) A fuzzy matching operation is performed to compare the formalized search
requests with the elements of the knowledge representation.

3) An answer to the search request is constructed if the degree of match between
knowledge base and search request is sufficiently great.

The PLNLP syntactic analysis system has been developed at the IBM Research
Laboratory in Yorktown Heights. This system analyzes complete sentences, as well as
sentence fragments, producing in each case one or more syntactic parses for each
sentence, ranked in decreasing order of presumed correctness. When the input cannot be
analyzed using the normal grammar rules, a "fitted” parsing system is used to produce a

23

reasonable analysis for the apparently intractable fragment. Figure 14 shows PLNLP
recognizing part of a sentence.

CMPD DECL NP NP NOUN today
AJP ADJ largs
NP NOUN disk
NOUN arrays
YERB are
ADS ADP ADV usually
ADJ avallable
CONJ but
DECL NP AP ADJ wming
AJP ADJ short
NP NP NOUN texts
CONJ and
NP NOUN smali
NOUN dictionary

Figure 14, PLNLP recognizing "today large disk arrays are usually available but using
short texts and small dictionary” [Salton 89].

This paper demonstrates the power of syntactic analysis.

Jacobs and Rau

The System for Conceptual Information Summarization, Organization, and Retrieval
(SCISOR) [Jacobs 90] is a prototype system that performs text analysis, creates a
knowledge base, and answers queries with the conceptual representation of information
in the knowledge base. This system works in constrained domains. The present
implementation of the system analyzes text from an on-line financial service (Dow Jones
™) about corporate mergers and acquisitions. It runs on the Sun™ workstation and
consists of 50,000 lines of Common Lisp code.

SCISOR processes news at the rate of approximately six stories per minute performing
the following tasks:

. Lexical analysis of the input character stream including extracting names,
dates, numbers. '

. Reorganizing the raw news feed into a definite structure with separate
headline, byline, and dateline designations.

24

Beveare said it bad received an offer from an
Investment group to bo acquired for $16 a.

INPUT:
share, or about $127 million,
PARTIAL
(BOTTOM
-UP}) recelved
SYNTACTIC Hievers
ANALYSIS; an offer
acquired
offer
trom for
127 million
an
investment grotp ¥ 16 Per share
PARTIAL ACQUIRING OFFER
(BOTTOM-UP) | Exch-for: Cfieter: investor-group
SYNTACTIC Offerce: Revere
ANALYSIS:
$127000000
}
T ATiONs |CORP-TAKEOVER-OFFER
{TOP-DOWN): Offerer: {isa Company {fills actor)}
' Offeree: (isa Company {fills cbject))
Offered:(isa Maney (fills object))
: o ANTIC CORP-TAKEOVER-OFFER
i ANALYSIS: Target: Revere
* Total Value: $ 127000000
$-per-share
price: | PAYMENT
Amount: $16
Demon.: share
Suitor: investor-group

Figure 15. "Bottom-up" linguistic analysis and "top-down" conceptual interpretation in

SCISOR [Jacobs 901.

25

Raw Article Takeover

Newsload Structures Articles
——{ Prefilter o Filter

Articles | Knowledge
Natural Language ™1 Base
" | Processing PrograrrJ Grganizati
1
Knowledge
User [Baae
Queationsy” Grammar Lexicon i
———\ Concaptual Hierarch:
- Quectloml Knowiedge
- Base
Retrieval
Responses 1
or Alerls

Figure 16. Overall structure of SCISOR [Jacobs 90].

Classifying a new item into a corporate merger, acquisition, or other topic;
a natural language analysis of the news item is performed using "bottom-
up" linguistic analysis and "top-down" conceptual interpretation as shown
in Figure 15.

A knowledge base that handles the storage and retrieval of the conceptual
representations of the news items. -

The overall structure of SCISOR in Figure 16 clearly shows how the tasks mentioned
above are performed.

Lehnert and Sundheim

Lehnert and Sundheim [1991] compare natural language processing methods with more

“conventional approaches to text analysis. This comparison is based on a recent
evaluation of text-analysis technologies by the US Defense Advanced Research Projects
Agency (DARPA). Lehnert and Sundheim {Lehnert 91] conclude that natural language
techniques are better for certain types of applications:

26

"...text-analysis techniques incorporating natural language processing are
superior to traditional information-retrieval techniques based on statistical
classification when applications require structured representation of the
information present in texts.”

Lehnert and Sundheim include the following summary of the state-of-the-art in text
analysis.

"...text-analysis techniques have progressed far beyond database interface
applications and have demonstrated clear viability for information extraction
from unconstrained text.”

These conclusions were reached by comparing 15 text analysis systems. The input for
each system comes from news articles concerning terrorism. The answer key to the
translation consisted of output templates. These templates were developed for each
article that was considered for testing the text analysis system. The template generated
by the system and the template that formed the answer key were bompared with regard
to:

1) Recall or the completeness of the output templates
2) Precision or the accuracy with which the output template was filled

3) Overgeneration or the amount of irrelevant information generated by the
system '

4) Fallout or the tendency to fill slots incorrectly as number of potentially
incorrectly filled slots increases

The two best performers had a recall of over 40%, with precision over 60%. Many sites
where this experiment was performed had trouble with discourse analysis. In discourse
analysis information of input sentences have to be reorganized into target template
instantiations. | |

1.4. Tools in UNIX available for textual analysis

Figure 17 shows the UNIX tools available for textual analysis. The higher the location
of the tool in the pyramid the more complex it is to use. The functionality of a tool at the
bottom of the pyramid is much less than the one present on the top.

27

complexity utility
of use
C

/ YACC N
J/ LEX \ -
/ AWK AN
yd | SED AN
ya GREP AN

Figure 17. Hierarchy of UNIX tools [Mason 90].

Using tools in general has two main advantages:
1) No duplication of effort which spanned many years

2) The problem can be solved at a more abstract level using more problem
oriented constructs '

Lex and Yacc were used extensively in this thesis. A brief description of the nature of
these tools follow.

1.4.1. Lex

Lex is a translator that converts regular expressions and their associated C routines that
follow it into C code [Sun 90]. The regular expressions that match input text follow two
rules:

1) The longest regular éxpression is matched if two regular expressions match the input
text. |

2) If two expressions of equal size are matched then the expression that comes first is
matched to the input text. ' '

28

Lex provides right and left context checking for matching regular expressions.

1.4.2. Yacc

Yacc is a translator that converts its input specification to C code [Sun 90]. The input
specification is in terms of an LALR(1) grammar. This input specification recognizes a
valid sequence of tokens and performs some actions on recognition of the sequence,
These actions, which are specified in C code, can access values from the value stack
(which contains inherited attributes attached to terminals and non-terminals) which runs
in parallel with the Yacc state stack, When Yacc is invoked with the -v option, a file
called y.output is produced. This file contains a human-readable description of the
parser.

1.4.3. Interaction of Lex and Yacc

Figure 18 shows how Lex and Yacc can be used to produce an executable program which
can be used as a translation tool or a language recognition tool. The Gnu C compiler
(gce) is present in the Figure 18 since it was used in this thesis.

Figure 19 shows how main (), the scanning routine produced by Lex (vylex()), and
the parsing routine produced by Yacc (vyparse ()), interact when processing input
text. Main () calls yyparse (), andyyparse() callsyylex(}. yylex() scans
input text and returns the token number recognized to yyparse (), or zero if it is the
end of input text.

1.5. Statement of Problem

As mentioned in section 1.2 the IOA consists of a generic component and a specific
component. The generic component includes the structure of the database of facts that
consists of empty EFTs and OMFTs. To get a working IOA this structure has to be filled
in the appropriate places by the declarative knowledge present in the liquid zone control
manual. This corresponds to the area of discourse analysis [Lehnert 91].

The following was proposed to be implemented considering sections 1.2, 1.3 and 1.4:
1) Develop a context-free grammar for OMFTs. This will give'plant procedures a

formal representation.

29

Figure 18. Using Lex and Yacc [Mason 90].

, evaluate input

ragquest next
token

returr: O if input is

" Ny read characters
valid or 1 if not

from input

return token numbear or Ly &
0 if EOF o

Figure 19. Interaction between C routines main (), yylex (), and yyparse()
{Mason 90].

2) Develop a context-free grammar representation of EFTs. This will give
equipment items a formal representation.

3) Buiid a scanner and parser for the EFT's and OMFTs. This constitutes the first
step in the construction of an interactive completion and verification tool for
EFTs and OMFTs.

4} Perform a translation from the electronic text {Johnson 91} to OMFTs.

30

5) Design and build a prototype for interactive completion and verification of the
generated instances. '

Tasks 4 and 5 were partially completed.

31

2. Context-free Grammar Representation of a Language for
Plant Operating Procedures

Context-free productions are used to represent computer languages since they offer
significant advantages to the language designer. The advantages are [Aho 86]:

1) A grammar gives a precise, yet easy-to-understand syntactic specification of a
language.

2) From certain classes of grammars we can automatically construct an efficient
parser that determines whether a source program is syntactically well formed,

3) New constructs can be easily added to the language as it evolves.

A GENeric Representation Language (GENRL) for plant operating procedures was
developed. This language in the form of context-free productions gives OMFTs and
- EFTs (see section 1.2) a precise and concise representation.

2.1. GENRL representation of OMFTs

The grammar for OMFTs can be found in Appendix 1. There are a total of 48
productions in the grammar. This grammar shows in detail the structure of all the
generic tasks enumerated by Maillet (see Table 1). Figure 20 shows three productions of
the grammar. The instance-of slot determines which generic task this production
corresponds to. |

The first production corresponds to the generic task of equipment-state-requirement-
with-and-logic (due to the slot (instance-of requirement)). Text for non-terminals
<generic-task-name>, <context-name:>, <context-seg-no:, and
<equipment -desc-seqg> has to be acquired from a manual containing operating
procedures. The non-terminal <documentation> can contain the empty string. The
non-terminal <genei‘ic—task—name_> should be unique (this is required by ART)
and should reflect the characteristics of the frame recognized (this provides good
documentation). The non-terminals <context -name> and <context -s eg-no:>
indicates where in the manual this frame is located. The last non-terminal
<equipment -desc~seqg> consists of a list of equipment items together with the state
each equipment item is supposed to be in. The next 2 productions are for the generic

32

tasks equipment-state-requirement-with-or-logic and select-equipment-item. The
corresponding frames that appear in Maillet's code are shown in Figure 21.

<reguirement-frame» ;:= :
{defschema <generic-task-name> <documentation>
{instance-of requirement}
{context (<context-name> <context-sedg-no=}}
{equipment-list <equipment-desc-seg>+))

<requirement-or-frame> ::=
(defschema <generic-task-name> <documentations
{instance-cf reguirement-or)
(context {«<context-namer<context-seg-no»)}
{equipment-list <egquipment-desc-segs>+))

<gelect-frame> ::=
{defschema «generic-task-name> <documentationx>
{instance-of select)
{context {<context-name> <context-seg-no>))
{equipment-list <eguipment-degc-seq>+)}

Figure 20. GENRL description of three OMFTs.

{defschema reg-5-2-1-step-1
(instance-of reguirement}
{context (5-2-1-step-1 1}
(equipment-list (1 v73 state "=" closed) (2
V78 state "=" closed} (3 v103 state "="
closed})) : ' '

{defschema reg-5-2-l-step-3
{instance-of requirement-or}
{context {5-2-l-step-3 1}
{equipment-list (1 iecl state isclated} {2
iec2 state isolated)})

{defschema select-5-2-4-step-23
{instance-of select)
{context {5-2-4-step-3 1)}
{equipment-1ist {1 pl state on} {2 p2 state -
on} (3 p3 state onl}) : ' -

Figure 21. Sample ART code for thrée OMFTs [Maillet 90].

2.2. GENRL representation of EFTs

The grammar for EFTs can be found in Appendix 2. There are a total of 33 productions
in the grammar. This grammar shows in detail the structure of all the equipment items
found in the liquid zone control manual {Parker 87]. Figure 22 shows productions that

33

recognize two equipment items, namely a tank and a pump. The instance-of slot
determines which equipment item is being recognized.

Let us consider how a tank EFT is represented by the first production in Figure 22, The
non-terminal <equipment -name> represenis a unique string and has to reflect the
type of equipment that is being recognized. The non-terminal <documentations
contains the empty string or some description of the equipment item. The instance-of
slot determines the type of equipment this frame represents. The other slots determine
other characteristics of the tank instance such as:

1) where it is located (the belongs-to slot)
_2) its description (the equip-desc slot)

3) its pressure (the pressure slot)

4) its state (the state slot)

There are restrictions on the expansion of the non-terminals associated these slots. These
restrictions serve to give an accurate description of any physical instance of a tank. Note
that other properties can be added to the tank specification by introducing new slots.
Figure 23 shows Maillet's code representing these two equipment items.

<tank-frame> ::= (defschema <equipment-name:>
<documentation:>

{instance-of tank}

{belongs-to <tank-placement>)

(equip-desc <string>}

{pressure <number:>)

{state <tank-state>) }

<punp-frame> ::= {defschema <equipment-namex
<documentation>

{instance-of pump) :

{belongs-to demineralized-water-system)

{equip-desc <string>)

{state <pump-state:>}

{breakers <breakers-states>})

Figure 22. GENRL description of two EFTs.

2.3. Recognizer of GENRL Using Lex and Yace

34

This recognizer can form an essential part of the interactive completion and verification
tool {see chapter 5) for GENRL. '

Appendix 3 and Appendix 4 give the Lex and Yacc specifications to recognize OMETs
specified by the grammar in Appendix 1. The process of producing an executable

program is depicted in Figure 18.

{defschema TK1
“syatem tank 1"
(instance-of tank)
{belongs-to helium-cover-gas-system)
{equip~-desc "Delay Tank"}
{pressure 80}
(state open}}

{defschema P1
"system pump 1"
{instance-of pump) .
{belongs-to demineralized-water-system)
{equip-desc "System Pump 1)
{state off)
{breakers closed})

Figure 23, Sample ART code for two EFTs [Maillet 90].

PARSING STATISTICS:
Lines parsed 200 Schemas parsed 31
SCHEMA BREAKUP:
Requirement 3
Requirementor 1
Select 0

Constraint 0
Findequipment 0
Cleanupfing 0
Defcontext 8 —
Digplay 11
Displayfigure O
Connect 7
Connectreturn 0
Condceonnect 0
Condconnector 1
Questicncennect O
Cleanupselected 0
Holdcontext 0
Clearcontext 0
Wait 0

Error schemas: 0
END OF STATISTICS

Figure 24. Parsing statistics for OMFTs.

35

The output obtained on running this executable program on part of Maillet's ART code is
shown in Figure 24. The output obtained clearly shows the breakdown of recbgnized
frames. It also shows there were no errors detected in the GENRL code. Error recovery
provided by Yacc is implemented. Whenever an error is encountered the C routine
yyerror () is invoked. Normal parsing of OMFTs will continue after three valid
tokens representing the beginning of an OMFT are recognized. This feature prevents
multiple invocations of yyerror (). This routine prints the line number in which the
error occurred and the frame where the error occurred. The lookahead token present
when the error occurred is also printed.

Figure 25 shows the output obtained on running the executable program on ART code
produced by GENT (see section 3.3). The parser completely recovered from the error on
line 4771 in frame 687.

The reéognizer for EFT's was implemented in a similar fashion as OMFTs. Appendix 5
and Appendix 6 give the Lex and Yacc specification to recognize valid EFTs according
to the grammar given in Appendix 2. The output obtained from a run of the executable
program is shown in Figure 26. This output gives the breakdown of all valid equipment
item frames recognized. Once again error recovery is available, but there were no errors
in this example.

36

&.out: syntax error near line 4771
near schema 687
lookahead token 40
lookahead token
PARSING STATISTICS:
Lines parsed 8060 Schemas parsed 1125
SCHEMA BREAKUP:
Requirement 116
Requiremencor 0
Select 0

Constraint 0
Findecquipment ©
Cleanupfind 0
Defcontext 247
Display 494
Displayfigure 0
Connect 267
Connectreturn 0
Condconnect. 0
Condconnector 0
Questionconnect 0
Cleanupselected 0
Holdcontext 0
{learcontext 0
Wait 0

Error schemas: 1
END OF STATISTICS

Figure 25. Parsing statistics for GENT code.

PARSING STATISTICS:

Lines parsea 737 Schemas parsed 103
SCHEMA BREAKUP:

Tanks 2

Pumps 3

Compressors 2

Heaters 1

Valves 87
Ionexchanges 2
Pressure-indicaters &
Handswitchs 1

Error schemas 0

END QF STATISTICS

Figure 26. Parsing statistics for EFTs.

37

3. Translation of Operating Manual Text to GENRL

3.1. Structure of Operating Manuals

NB Power has published a document entitled "How to Write a Power Plant Operating
Manual, RD-01364-P2" {Johnson 88] which describes in detail the structure and content
of a plant operating manual. Plant Operating Manuals (OMs) contain instructions for:

1) Normal operations for start-up, running and shutdown
2) Abnormal events which are foreseeable and appropriate operator action

3) Additional information to permit System monitoring, trouble shooting, and
where appropriate, corrective action

Generally there is one manual for cach independent plant system. There can be many

~ manuals for one system if the sysiem is very complex, or one manual for many systems if
each system is not complex and possibly interrelated. Figure 27 shows the major parts of
amanual. A description of each chapter follows [Johnson 88].

Chapter 1 (System Scope) gives a short description of the system covered by the
operating manual. The purpose of this chaptér is to ensure there is no confusion as to
which system is covered by this manual,

Chapter 2 (Operational Flow sheet) contains references to the applicable system flow
sheets, location diagrams, and control schematics.

Chapter 3 (Operating Rules and Limits} is divided into two groups. The first group
(Licensing Requirements) contains operating rules and limits which guarantee
compliance with operating licenses and are repeated verbatim from the original
document. The second group (Other Requirements) consists of rules and limits that may
relate to NB Power practice, personnel safety, economic considerations, etc.

Chapter 4 (System Hazards) contains a brief list of the primary personnel and equipment
dangers associated with the system. '

Chapter 5 (Normal Operation) includes routine procedures (e.g., Start Lip procedure).

38

NUCLEAR OPERATIONS FORM 30008 HEw O1.075

EFHERGHE é FOWER FUNCTION SYSTEM: UNIT- Bsi
STORAGE TRANSFER
. POINT LEPREAL G 5 COPERATING MANUAL 4 RECOVERY 1 33330
I - "
0.0 INDEX B
S aravs INDFE®
1.0 SYSTEM SCOPE
2.0 OPERATIONAL FLOWSHEET
3.0 OPERATING RULES AND LIMITS
3.1 Licensing Requirements
3.2 Other Requirements
4.0 SYSTEM HAZARDS
4.1 Equipment
4.2 Personnel
5.0 NORMAL OPERATION
5.1 Shutdown State
5.2 Start up Procedure
5.3 Operating State
5.4 Shutdown Procedure
5.5 Other Routine Operations
6.0 ABNORMAL OPERATION
7.0 ACTION FOLLOWING TRIPS AND ALARMS
7.1 Trips :
7.2 Alarms
B.0 FAILURE OF AUXILIARY SERVICES
r
8.1 Electrical :
8.2 air
8.3 Water
8.4 Computers
8.5 Others
9.0 ~ CHEMICAL CONTROL
| 1.0 TEST INDEX
1.0 REFERENCES -
| APPENDIX 1 VALVE AND HANDSWITCH LIST
RD-01364-p2
APPENDIX 2 INTERLOCK DIAGRAMS Rev., 4
Appendix §
[APPENDIX 3 5.0.5. INDEX Page 1 of 1
PREPARED BY: APFROVED 8Y: CATE: REV.: PAGE:
System Engineer Technical Sup. 0 1 or XX
l _

Figure 27. Major parts of a manuval containing operating procedures {Johnson 88].

39

Chapter 6 (Abnormal Operation) describes procedures to correct abnormal functioning of
the system.

Chapter 7 (Action Following Trips and Alarms) contains both automatic action and
recommended operator action following a computer annunciated alarm. Alarms are
listed by priority

Chapter 8 (Failure of Auxiliary Services) describes equipment response to a failure of
one of the following auxiliary services: electrical, instrument air, water, computers, and
other. Required operator action is not covered here.

Chapter 9 (Chemical Control) identifies system parts requiring chemical control,

Chapter 10 (Test Index) contains only an index to the relevant system tests, The
procedures for all regularly performed tests are in the operational testing manual.

Chapter 11 (References) gives a list of reference material,

The liquid zone control manual was chosen as the manual to be used for computerization
because it was proposed by Point Lepreau staff as being representative of power plant
operating manuals in general [Maillet 90]. Maillet computerized chapters 5 and 6 of the
manual. The same material was chosen to be translated in this thesis because a
comparison could be made between the knowledge base encoded by Maillet and the
knowledge base obtained by the GENRL Knowledge Acquisition Tool (GENKAT) (see
section 3.3). However, an accurate comparison could not be made because the manual
used for the translation had changed since Maillet used it to develop EFTs and OMFTs,

3.2. Structure of Text Used for Translation

The input text can be considered to consist of chapters, sections, subsections and steps.
The relationship between these components is shown in Figﬁre 28. A typical character
sequence indicates the beginning of any of these components. Table 2 shows the tokens
(see section 3.4) that indicate the start of these components. The previous component
also ends at this point. The contents of textual paragraphs within these components
require natural language textual analysis to extract information from them.

3.3. Overall Architecture of GENRL Knowledge Acquisition Tool

The first step of the knowledge acquisition process involves recognizing an instance of a
generic task present in the WordPerfect file. On recognition, the declarative knowledge
of the generic task has to be acquired from this file. This is done by filling the slots of
the frame associated with the generic task. This is what the GENRL Translation tool
(GENT) does.

Table 2. Tokens indicating the start of major components of input text.

Token name : Component
CHAPTERTAG ' Chapt;:r
SECTIONTAG Section
SUBSECTIONTAG Subséction
STEPTAG Step

§.0 Normal Operations

5.1 Shutdown State
Degcription ...

5.2 Start-up Procedure
Description ...

5.2.1 System Preparation
| Step 1. Close V73]

| Step 2. Open V10 |
efc...

5.2.2 Adjustment of Tank Pressure
Description ...

5.3 Operating states
Description ...

| Step 1. Start pump P2

ste ...

Figure 28. Example components of input text, and their relationships.

41

Figure 29 shows the overall architecture of GENRL Knowledge Acquisition Tool
(GENKAT). GENT and the design of GENRL Interactive COmpletion and VErification
tool (GENICOVE) will be explained in the following sections.

Operating GENRAL partially
Translation
Manual tool (GENT) complete
Text flles GENRL code

GENRL
context free : Interactive
grammar e COmpiletion
description and VEritication
tool
of GENRL _ (GENICOVE)

complete GENRL

representation of
procedures

Figure 29. Architecture of GENKAT.

3.4. important Tokens

The tokens recognized in the translation process can be seen in the Yacc specification for
the input text in Appendix 8. A short description of each of the tokens follows. An
instance of each token is included with the description. These instances appear in Figure
28, The recognition of these tokens in input text is accomplished by the Lex
specification shown in Appendix 7.

1. CHAPTERTAG: This is the chapter number (e.g., 5.0).

42

2. CHAPTERHEADER: This is the chapter heading that follows a chapter
number (e.g., Normal Operations that follows 5.0). '

3. SECTIONTAG: This is the section number within the chapter {e.g., 5.1).

4, SUBSECTIONTAG: This is the subsection number within a section (e.g.,
5.2.1).

5. HEADER: This is thé heading following a section number or Subsection
number (e.g., Shutdown State after 5.1).

6. STEPTAG: This consists of the word "Step” followed by the step number
within a section or subsection (¢.g., Step 1 in subsection 5.2.1).

7. PARAGRAPH: This token follows a section heading (token HEADER), a
subsection heading I(tokerl HEADER), or a step number (token STEPTAG) (é. 2.
The text between 5.1 Shutdown State and 5.2 Start-up Procedure). The end of a
paragraph token is recognized when a new chapter, section, subsection or step
begins. This happens when tokens with a "TAG" suffix are recognized.

3.5. The Parsing Process

This process consists of three stages. They are:
1) Prel;_rocessing
2) -Breakdown into main components
3) Rescanning

These stages seem to be the most natural way to divide the problem. considering the
structure of input text. The complexity of processing increases from the former stages to
the latter stages. Figure 30 gives an overview of the three stages together with the inputs
and outputs files involved in the processing of input text.

3.5.1. Preprocessing

This stage eliminates unwanted text and also makes some changes to the text considering
ART syntax. The following is done during this stage:

43

Input text }
containing E
operating B
procedures K

lex toksns
recognized
for summary

orinting

preprocessing

breakdawn into
componsnts
and translation

preprocessed E
text E

text contained
In PARAGRAPH
token

Extracted
details obtainad
by rescanning

Rescanning

lex tokans
racegaized for
summary printing

Figure 30. Overall architecture of GENT.

1. All carriage return ("M in vi, \r in UNIX, 015 as an octal number) characters
are eliminated.

2. All formfeeds (AL in vi, \f in UNIX, 014 as an octal number) that represent
beginning of pages are replaced by two newline (not displayed in vi, \n in UNIX,
012 in octal) characters. This will make newline characters the only line
delimiters in the text.

3. All lines containing blanks are converted to null lines. This makes delimiters
between the main components (chapters, sections, subsections, and steps) of the
input text two or more newline characters.

4. All double quote (") characters are prefixed by the backslash (\) character.
This conversion is required because of the ART use of double quotes as string
delimiters. The backslash allows the double quote character to be included in
strings.

5. All lines present at the beginning of a page (after the formfeed character)
which indicate continuation of a chapter, section, or subsection are deleted. The

Lex specification that deletes these lines is shown in Appendix 10. All deleted
lines are printed to a diagnostic message file. A warning message is printed when
a chapter, section, or subsection number is out of sequence. An out of sequence
major component number (tokens CHAPTERTAG, SECTIONTAG, and
SUBSECTIONTAG) causes the breakdown into components stage not to
recognize the end of a chapter, section, or subsection. This major component
number is considered part of the present component.

The UNIX shell script responsible for this preprocessing is shown in Figure 31.
The executable deleteheadings program present in Figure 31 is obtained from the
Lex specification of Appendix 10.

¥ preprocessor for operating plant
procedures

Author : Joozar Vasi

Date : 29/6/92

#

sed 's/"M//g@' S* |
sed 's/"L/\

kY

/gt i

sed 's/"~[}[1*$//' |
sed 's/\"/\NNNWY/gt
deleteheadings

Figure 31. UNIX preprocessor for input text as seen in the vi editor.

3.5.2. Breakdown into components

This stage divides the text of the liquid zone control manual into its main components.
These components were described in section 3.2, Lex and Yacc were used to perform

the processing following the same scheme depicted in Figure 18. The generic tasks of
display-current-context, display-text, and link-context are recognize'd during this stage.

The structure of the text as seen in Figure 28 is reflected in the top level Yacc rules
shown in Figure 32. The complete Yacc specification used during this stage can be
found in Appendix 8. These rules form a LALR{1) grammar since Yacc does not
produce any shift-reduce or reduce-reduce conflicts. The relationship between the tokens
specified in capital letters in the Yacc grammar and input text can be found in section
34,

45

chapters : chapter
I chapters chapter

chapter : CHAPTERTAG CHAPTERHEADER sections

"
sections : section
| sections section

section ;: SECTIONTAG HEADER PARAGRAPH
| SECTIONTAG HEADER PARAGRAPH subsections
| SECTIONTAG HEADER subsections
| SECTIONTAG HEADER PARAGRAPH steps
!} SECTIONTAG HEADER PARAGRAPH steps subsections

subsections : subsection
| subsections subsection

subsection : SUBSECTIONTAG HEADER PARAGRAPH
{ SUBSECTIONTAG HEADER steps :
| SUBSECTIONTAG HEADER PARAGRAPH steps

steps : STEPTAG PARAGRAPH
| steps STEPTAG PARAGRAPH

Figure 32. Yacc specification for input text (truncated).

When a Yacc rule is recognized all the inherited attributes [Aho 86} associated with
tokens can be accessed by the C code associated with the rules (see Appendix 8). These
attributes are provided by Yacc for semantic analysis. All the tokens with a "TAG"
suffix have an attribute that is a number, All other tokens have an attribute which is a
string. The content of these attributes is determined by yylex () and is passed to
vyparse () by the global variable yylval.

In the rescanning stage the inherited attribute associated with each PARAGRAPH token
is rescanned and any information obtained is stored in a data structure. A detailed
explanation of this process is given in section 3.5.3,

After completion of this stage and the rescanning stage all the knowledge of the input
text is stored in a data structure (see chapter 4). This data structure contains information
of an entire section. On successful recognition of a section, the content of this data
structure is printed according to GENRL syntax.

3.5.3. Rescanning

This stage involves the recognition of generic tasks other than ones recognized during
stage 2. The string attribute of a PARAGRAPH token has to be rescanned to extract

information about other generic tasks. The string attribute contains English sentences.
Accordingly, Natural Language Processing (NLP) methods have to be use to analyze the
text and extract information from them. :

The followin g method was used to gather information for a requirement frame (generic
task of equipment-state-requirement-with-and-logic):

The string attribute of the PARAGRAPH token is scanned line by line. The end of the
line is indicated by a period followed by a blank or a newline character. One line of the
PARAGRAPH token is scanned to determine if it contains any equipment items which
are known in advance. These equipment items can be obtained by considering the
components of the liquid zone control system. The presence of other words such as "off"
is also detected while searching for equipment items. These words help in obtaining
settings of equipment items, If some information cannot be obtained regarding
equipment settings, then default information is inserted. When the end of a line is
reached the process of scanning the next line begins, ;

The Lex specification that uses the above method is given in Appendix 9. Important
words are only recognized if they are preceded and succeeded by non-alphanumeric
characters. This rescanning is invoked by a call to the program equipparse. Places
where this invocation takes place can be seen in the Yacc specification of Appendix 8.

Figure 33 shows contents of input and output files after the rescanning stage of GENT is
completed. The strings stafe and ""="' are present in the output file since no information
from input text can be obtained for these slots for valves, V73, V78 and V103. These are
the default values associated with all equipment items. An equipment number is added to
the beginning since it is necessary for the requirement frame. The word "closing” is
recognized by the Lex specification and the word "closed” is printed in the equipment
state slot.

There are shortcomings of the above method that essentially uses a FSTN with memory
to extract information. They are: '

1) The Lex specification has a limited vocabulary. In Figure 34 important words
like "if", "then" and "otherwise" are not recognized.

2) Information peculiar to certain equipment items is not differentiated in the
specification. Equipment items can be stored as objects. When a reference is

47

made to them the valid settings or default settings can be retrieved from the
object base. The contextual/world knowledge information is not complete in
the Lex specification. '

Input file:

Step &. Isolate the balance header by closing
valves V73, v78, and v103.

Output file:

1 V73 state *=" closed
2 V78 state "=" closed
3 V103 state "=* closed

Figure 33. Input and Output files of rescanning stage.

If V73 is closed, then open V72; otherwise open valve V48

Figure 34. Sentence not propesly interpreted by GENT.

3) The basic unit for gathering information into a data structure is a sentence.
Dependencies across sentences and PARAGRAPH tokens will have to be
stored in memory.

4) More information can be extracted if valid sequences of tokens are recognized.
For instance, if the "if then otherwise” sequence is recognized then the frame
corresponding to the appropriate generic task should be output (see Figure 34).
Given the text inf Figure 34, the Lex specification will infer that all the valves
have to be opened. This is so because the word "open" is present at the end of
the sentence. Again, this can be remedied if valid seqhences of tokens are
recognized.

5} When more than one generic task is recognized by the rescanning stage of the
parsing process, a conflict resolution scheme will have to be devised. The Lex
specification in Appendix 9 on scanning the text in Figure 34 will print the
requirement frame which indicates the presence of the generic task of
equipment-state-requirement-with-and-logic. This is not correct.

Some advantages of this method are:

48

1) It does not require a complete vocabulary of all English words because the Lex
specification has the knowledge of the area of discourse. If this knowledge
was not utilized, extensive storage requirements will be needed for the
complete English vocabulary.

2) No complete grammar has to developed for English sentences. Problems of
ambiguity and time-consuming backtracking parsing methods are avoided.

3) Variations of an important word (e.g., auto, Auto and AUTO) result in only
one word being printed in the output obtained after rescanning (i.e., auto).

~ 3.6. The Printing Process

The net result after the parsing process is a data structure. The content of this data
structure is described in detail in chapter 4. According to the content of this data
structure, the printing routine generates ART code. It is invoked by yyparse () on
successful recognition of a section (see Appendix 8). For the section being recognized
and each of its subsections there is a node in the linked list. For each node a def-context
and two display frames are printed. A section or subsection node can have a linked list
of steps attached to it. The same three frames are printed for each step preseﬁt ina
section or its subsections. If a linked lList of equipment requirements is attached to a
section, subsection, or step node, then a requirement frame is printed. Connect frames
are printed as links in the data structure are traversed. Appendix 11 contains the
complete code for the printing process.

3.7. An Example Transiation

- Figure 35 shows part of the input WordPerfect document and the file obtained on

preprocessing this part of the input document. Step 6 seen in Figure 35 is present in.
chapter 5, section 5.1, and subsection 5.2.1. Figure 36 shows the data structure which is
created on completion of stages 2 and 3 of the parsing process. Figure 37 shows the
knowledge base created on completion of the printing process.

Step 7 follows Step 6. Therefore a final connect frame to step 7 is printed. This frame
corresponds to the generic task of link-context. If the token SUBSECTIONTAG is
found after Step 6 (i.e., there was no step 7), then the final frame printed will be a display
frame (generic task of display-text) indicating the end of the subsection.

49

Input WordPerfect text:

M

Step 6. Isolate the balance header by cleosging
valves V73, V78, M

and V103."M

~M

Preprocessed outpﬁt file:
Step 6. Isolate the balance header by clesing

valves V73, V78,
and V103.

Figure 35. Input WordPerfect text and preprocessed output file as seen by the vi editor.

|

6
"lsciate the _
balance 0 0 1]
h..d.r by - a » - L] L]
closing V73 V78 V103
© valves ¥73, "state™ ‘state”. “state”
V?a, H_® . L L.
and V103. "cloged" "closed"! "i"clogsed”
- i i

Figure 36. Data structure for sample translation.

50

{defschema context-5-2-1-8tep-56
{(instance-of def-context)
{context 5-2-1-Step-6)}
{header "5.2.1 Realign System Components For Start-Up")
{desc "Step 6. Isclate the balance header by closing
valves V73, Vv78, and v103. ")} '

{(defschema display-5-2-1-Step-6-a
(instance-of display)
(context (5-2-1-Step-6 1))
(header "5.2.1 Realign System Components For Start-Up")
(desc "Proceed with 5.2.1 Step 6 Verification."))

(defschema reg-5-2-1-Step-6

(instance-of requirement)

(context (5-2-1-8tep-6 2}

{equipment-list (1 V73 state "=" closed) {2 V78 state
"=% closed) (3 V103 state "=* closed)})

{(defschema display-5-2-1-Step-6
(instance-of display)
(context (5-2-1-Step-6 3))
(header "5.2.1 Realign System Components For Start-Up")
{(proc-stream "Completed")
(desc *5.2.1 Step 6 completed"))

{defschema connect-5-2-1-Step-6-a
(instance-of connect) '
(context (5-2-1-Step-6 4})
(go-context (5-2-1-Step-7 1}))

_ Figure 37. The ART knowledge base obtained from input WordPerfect text of Figure 335,

51

4. The implementation of GENT

GENT was developed on the SUN™ Sparcstation 2 running SunQOS Release 4.1.1.
OpenWindows™ Version 2 was also used to enter, test and run GENT. GENT utilizes
UNIX utilities Sed, Lex and Yacc [Pike 84], and the C programming language [Ritchie
78]. The GENT parsing process consists of 1100 lines of code; the GENT printing
process consists of 370 lines of code; the supporting C routines for the parsing process
consist of 439 lines of code. The common header file used by all files in GENT consists
of 66 lines of code. Table 3 gives the breakdown of files of GENT among the various

file systems mentioned above.

Table 3. GENT file system.

File system File sub-system Files File type
GENT parsing Preprocessing deleteheadings.l Lex specification
process Preprocessor UNIX shell script
Breakdown into main.c C code
components lzcman.] Lex specification
lzcman.y Yacc specification
{ Rescanning mainl.c Ccode
eqiupreq.l Lex specification
GENT Printing printsect.lib.c C code
process print.lib.c C code
Supporting C utilities.lib.c Ccode
routine for GENT equiputilities.lib.c | Ccode
parsing process
Header file for header.h Ccode
GENT

52

The GENT parsing process and the GENT printing process are explained in sections 3.5
and 3.6 respectively. The data structure used to gather information during the breakdown
into components and rescanning stages of the parsing process is shown in Figure 38.
Information of a complete section is held in it. The data structure used to store
information about step details appears in Figure 39 and the data structure for equipment
details appears in Figure 40. The header file (header.h) that contains the C description of
these data structures is present in Appendix 12.

Appendix 13 contains the code for supporting C routines of GENT. Appendix 14
contains the driver program for the breakdown into components stage of the parsing
process {main.c) and the driver program for the rescanning stage of the parsing process
(mainl.c).

GENT translated the complete content (2209 lines) of Chapter 5 (Normal Operations)
and Chapter 6 (Abnormal Operations) of the liquid zone control manual [Johnson 91].
This consists of 75759 characters. The final outcome of the translation was 8059 lines of
GENRL code consisting of 1125 frames. ' '

One error was detected by the non-interactive syntax checker of GENRL on line 4771 in
the generated GENRL code for chapters 5 and 6 (see section 2.3). This error occurred
because a requirement frame was not properly printed due to wrong information present
in the data structure containing equipment details (see Figure 40). This data structure has
character pointers (pointers equipment attribute, equipment operator, and equipment
value) that point to strings which describe equipment details. These pointers were set to
"null" instead of the default values associated with the equipment items (see section
3.5.3). The GENICOVE tool discussed in chapter 5 could be used to fill in the correct
information. '

The time taken (the real time of the UNIX time command) to run the preprocessor of
GENT (see Figure 31) was 2.8 seconds, and the time taken to run the command to
perform the rest of the translation was 23.7 seconds.

33

number

— character pointer
character pointer

details E—

ast step

s, (o}
requirement

Ilst

naxt section

number

hand

character pointer

character pointer
—

Aatall

firstatep || slep details |

Iast step e —

oquip:mmt equipment details
requirsment

list

+
next 1

Figure 38. Data structure for storing section details.

Step number Character
ainter :
Step description _E...,,_.__..
Step squipment details w{Equipment —-
M detalis
Naxt atep
4
Step number Character
int
Step description poler
$tap squipmant detaiis wiEquipment —-
detalis
Naxt siep

R

Figure 39, Data structure for step details.

54

flag (unimportant) |aharacter | 118G {unimportant) |character
equipment painter squipmaent pointer
name character namse characlor
'a",':"t""t poinier ‘?t“_':“:‘m pointer
, "_ ute character : ". ute character
sguipment pointer squipment peinter
operator ™ | operator
character characier
equipment pointer squipment pointer
value - value i >

Figure 40. Data structure for equipment details.

55

5. Interactive Completion and Verification Tool

The screen layout of GENICOVE (GENRL Interactive COmpIetidn and VErification
- tool) is shown in Figure 41. This tool provides the capabilities of being able to see
translated text directly alongside original text. It provides windows for

1) Prepfocessed operating procedures text,
2) PartiaIIy complete GENRL knowledge base, and

3) Interactive prompts from GENICOVE.

1 2
Preprocessed Partially complete
operating GENRL knowledge
procedures text base
(vi editor) {vi editor)
3

Interactive prompts from
GENICOVE

Figure 41. Proposed screen layout for GENICOVE.

There is interaction between windows 1 and 2 and between windows 2 and 3.
GENICOVE works as follows: |

1) The preprocessed operating procedure text is loaded into window 1. A sample
of this text appears in Figure 35.

2) The partially complete GENRL knowledge base (see Figure 37) is loaded into
window 2. |

56

3) GENICOVE scans the partially complete knowledge base in window 2 until it
finds an error. The scanning is interrupted and the cursor is automatically
placed on the line where the error occurred.

4) Window 1 is updated to reflect the location of error in the preprocessed
operating procedure text. Links exist from the partially complete GENRL
knowledge base to the preprocesSed text, i.e., from window 2 to window 1.
These links can be established by GENT during the translation,

5} The user makes corrections based on the error message in window 3.
6) Parsing continues from the start of the OMFT or EFT which caunsed the error.

The GENRL grammar (see sections 2.1 and 2.2) provides the basis for a syntax checker
(see section 2.3) that scans EFTs and OMFTs, and flags entries which are incomplete or
incorrect. This is only part of the error checking that GENICOVE must be capable of. It
should be able to track down semantic errors as well as errors in procedure logic in EFTs
and OMFTs. '

A common semantic error that can occur is the recognition of a wrong generic task. A
frame associated with the gehen'c task of equipment-state-requirement-with-and-logic
may be printed when the frame associated with equipment-state-requirement-with-or-
logic has to be printed. Checks for duplicate frame names can also be included in
GENICOVE. ART deletes previous frames with the same name in a knowledge base.
This is normally not wanted. '

Some of the logical errors typical of plant operating proc.édures are [Horne 891:

1) Compliance with Explicit Specification: This test assumes that the plant's final
state at the end of the procedure is well-defined. In this test a search is made
to determine if any prior plant states along with its procedure steps required to
arrive at the final state violate the procedure’s final state specification.

2) Consistency: This checks whether concurrent active procedures do not require
plant settings which are incompatible. For example, one procedure requires a
valve to be closed, and a concurrent procedure requires it to be open.

- 57

3) Compliance with constraints: This test searches states consistent with
procedures but inconsistent with constraints specified in technical
specifications of procedures.

4) Acceptability of Operator Information Rate: This checks whether the rate of
information processing warranted by procedures is well within reasonable
limits for human operators.

5) Absence of Cycles: A cycle occurs if the final state of one procedure is the
entry state of another and conversely.

6) Existence of instrumentation: Checks are made to see that reference to
instrumentation is valid for a particular system.

7) Agreement in State: State names are valid for certain components. They
should refer to the right component. For example, a pump being open is
invalid; it can only be on or off.

8) Proof of Coverage: Undesirable plant states should be generated and abnormal
state operating procedures should be simulated to check whether the plant has
reached a normal state.

Detecting some errors in procedure logic (e.g., Proof of Coverage) requires a complete
computerized model of the plant system for which the operating procedure applies.

Use of the vi editor is a simple way of providing the user with a tool to modify the
translated text as necessary in window 2. Window 1 runs vi in read-only mode. Use of
interactive prompts from the scanning tool provides a method of verifying that the
translated code is free of syntactic, semantic and procedure logic errors.

Alternatively, a user can run GENICOVE in batch mode on a complete selection. The
user can select one or more frames from window 2. These frames will be checked for
errors. This use of GENICOVE has the possible disadvantage of producing many errors
when only one error has occurred. This is typical of other translation tools such as
compilers. |

58

6. Summary

GENRL, a context-free language for plant operating procedures, was developed based on
a knowledge base consisting of frames [Maillet 90]. A syntax checker for GENRL using
Lex and Yacc was developed. A knowledge acquisition tool (GENKAT) for GENRL
was designed and partially implemented. GENKAT accepts WordPerfect operating
procedure text and generates GENRL frames. GENKAT consists of two tools, namely
GENT and GENICOVE. GENRL Translation tool (GENT) is responsible for producing
a partially complete GENRL knowledge base of frames. These frames are used by the
GENRL interactive COmpletion and VErification tool (GENICOVE) to produce
computerized plant operating procedures. The present implementation of GENT does
" not result in any loss of input text because the all input text appears in the frame that
indicates the beginning of a new section, subsection or step (the def-context frame).

- . Presently GENT is capable of recognizing four generic tasks [Maillet 90]. It has to be
enhanced to recognize all fourteen generic tasks. This may require more sophisticated
NLP methods [Gazdar 89] than the one used for extracting details for a requirement
frame. This frame corresponds to the generic task of equipment-state-requirement-with-
and-logic.

GENT translated 2209 lines of WordPerfect text to produce 8059 lines of GENRL code
consisting of 1125 frames. These lines represent approximately half of the entire liquid
zone control manual. The bulk of the information representing operating procedures is
present in this part of the manual (i.e., chapters 5 and 6) together with chapters 7 and 8

(see Figure 27).

Equipment frames could be generated using equipment lists {(e.g., Appendix 1 Valve and
Handswitch List in Figure 27). Information from other parts of the manual (other than
chapters 5, 6, 7, and 8) should be inserted in the computerized operating procedures.
These parts normally represent information that can be used as annotations to procedures.
It is also possible to use the GENT approach to capture textual descriptions in these
chapters.

The recall and precision percentages [Lehnert 91] of GENT have yet to be obtained.
 These numbers give a measure of how accurately GENT has translated the text to
GENRL. Recall and precision percentages will also determine how much work has to be

59

done by GENICOVE to obtain a knowledge base free of errors in syntax, semantics, and
procedure logic.

GENICOVE has been designed. Its implementation will require the following to be
completed (see chapter 5);

1. The user-interface shown in Figure 41 has to be developed.

2. Links from partially complete GENRL code to preprocessed operating
procedure text have to be established.

3. Errors in GENRL syntax are presently recognized non-interactively by Lex and
Yacc (see section 2.3). This parser has to be enhanced to make it interactive
and to include checks for semantic errors and errors in procedure logic.

[Aho 86]

{Bhatnagar 90]

[Chandrasekaran 86]

[Gazdar 89]

fHopcroft 791

[Horne 89]

[Jacobs 90]

[Johnson 88]

[Johnson 91}

{Krieger 91]

7. References

A. Aho, R, Sethi, and J. Ullman . Compilers, Principles.

Techniques. and Tools. Addison-Wesley Publishing Company,
1986.

R. Bhatnagar, D. Miller, B. Hajek, and J. Stasenko. "An integrated
operator advisor system for plant monitoring, procedure

management, and diagnosis”". Nuglear Technology 89 (3}, March
1990, pages 281-317.

B. Chandrasekaran. "Generic tasks in knowledged-based
reasoning: high-level building blocks for expert system design”.

IEEE Expert, Fall 1986, pages 23-30.

G. Gazdar and C. Mellish. Natural Language Processing in
PROLOG. Addison-Wesley Publishing Company, 1989.

J. Hopcroft and J. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addlson -Wesley Publishing
Company, 1979.

C. P. Home. "Methods for testing the logical structure of plant
procedure documents”. Proceedings of 1989 Conference on
Advanced Computer Technology for the Power Industry.

{Scottsdale, AZ}, December 4-6, 1989, 17 pages.

P. S. Jacobs and L.F. Rau. "SCISOR: extracting information froin

on-line news". ACM Comm 33 (11}, November 1990, pages 88-
97. .

A.R. Johnson. "How to write a power plant operating manual”.
Point Leprean, NB: RD-01364-P2 Rev, 4, 1988,

A. R. Johnson. "Liquid zone control”. Electronic WordPerfect
text of the Point Lepreau Generating Station Operating Manual
34810, April 1991.

J. W. Krieger. "From paper to objects: improving the information
value of procedures”. Pr ings of Frontiers in Innovativ.

@mmnu.ﬁzr_m;u\lummu (Jackson, WY), September
15-18, 1991, pages 566-574.

61

[Krogsater 89]

[Lehnert 91}

fLipner 91]

{Luger 89]

[Maillet 90]

[Mason 91]

[Nelson 90]

[Parker 87]

{Pike 84]
[Ritchie 78] -

[Robert 89]

M. Krogsater, J. Larsen, S. Nilsen, and F. Owre. "The
computenzed procedure system COPMA and its user interface”.
list Meeting on ial

mmhgenge in Nuclear Power Plants (Helsinki, leand) October
10-12, 1989 pages 1-13.

W. Lehnert and B. Sundheim. "A performance evaluation of text-
analysis technologies”. Al Magazing, Fall 1991, pages 81-94.

M. H. Lipner and R. G. Orendi. "Issues involved with

computerizing emergency operating procedures”. Proceedings of
L : i

(Jackson, WY), September 15-18, 1991, pages 556-565.

G. Luger and W. Stubblefield. Artificial Intelligence and the

Design of Expert Systems. Benjamin/Cummings Publishing
Company, Inc., 1989,

G. Maillet. "Knowledge Representation for a Power Plant
Interactive Advisor", Technical Report TR90-050, Faculty of
Computer Science, UNB, Fredericton, N.B., July 1990, 114 pages.

T. Mason and D. Brown. lex & vace. O‘Rellly & Associates, Inc.,
January 1991,

W. Nelson, N. Fordestrommen, C. Holmstrom, M. Krogsater, T.
Karstad, and O. Tunold, "Experimental evaluation of the
computerized procedure system COPMA: preliminary results”.
Presented at the Enlarged Halden Programme Group Meeting on
Computerised Man-Machine Communication (Bolkesjo, Norway),
February 11-16, 1990, pages 1-22.

D. Parker and S. LeClair. "Liquid zone control”. Point Lepreau,
NB: Point Lepreau Generating Station Operating Manual 34810
Rev. 4/8, December 17, 1987.

R. Pike and B. Kernighan, The UNIX Programming Environment.
Prentice-Hall, Inc., 1984.

D. Ritchie and B. Kernighan. The C programming language.
Prentice-Hall, Inc., 1978.

- C. Robert, C. P. Hortne, and J. M. Fahley. "Methods for improving

the development and maintenance of plant operating procedures”.

Proceedings of the EPRI Conference on_the Applications of

62

[Salton 89]

[Sun 90]

[Sverre 89]

Expert Systems to the Utility Industry, June 1989, 14 pages.

G Salton and M. Smith. "On the application of syntactic
methodologles in automauc text analysis”. Pr ings of
nal ACM SIGIR Conf 1 h

and Dev glgpmgn]; in Information Retrieval (Cambridge, MA), June
25-28, 1989, pages 137-150.

Sun Microsystems, Inc.. "Programmer’s Overview Ultilities &
Libraries". Revision A of 27 March, 1990, pages 203-264,

J. Sverre, M. Krogsater, I. Sverre, S. Nilsen, W. Nelson, and F,

Owre. "Computerized procedures -- the COPMA system -- and its

proposed validation program”. Proceedings of the Expert Systems

Applications for the Electric Power Industry (Orlando, FL), June
5-8, 1989, 13 pages.

63

i
]
]
:
]
1
i
]
i
[

- Appendix 1. GENRL representation of OMFTs

<gt-knowledge-base> ::= £ | <gt-knowledge-base> <gt-frame:>

<gt-frame> ::= <requirement-frame> |
' <regquirement-or-frames> |

<gelect-frame> |
<conztraint-frame> |
<find-equip-frame> |
<cleanup-find-equip-frame> |
<def-context-frame>» |
<display-£frame> |
<display-figure-frame> |
<connect-frame> |
<connect-return-frame:> |
<cond-connect-frame> |
<cond~connect-or-frame> |
<guestion-connect-return-frame> |
<¢Cleanup-selected-frame> |
<hold-context-frame> |
<clear-context-frame> |
<walt-frame:

‘<requirement-frame> ::= {defschema <generic-task-name> <documentations

{instance-of requirement)

{context (<context-name> <context-seqg-nox)}

{equipment-list <equipment-desc-sed>+))
<requirement-or-frame»> ::= {defschema <generic-task-name:>

<documentation>

(instance-of requirement-or}

(context (<context-name> <context-seq-no>}}

{equipment-list <equipment-desc-gseg>+))
<select-frame> ::= {(defzschema <generic-task-name> <documentation:

{instance-of select)

{context {(<context-name> <context-zeg-no>)}

{equipment-list <equipment-desc-seg>+)}
<constraint-frame> ::= {defschema <generic-task-name> <documentations

{instance-of constraint}

{context (<context-name> <¢ontext-seq-no>)}

{until-context <context-name> <context-seg-no>)

- {equipment-id <equ1pment -desc>»))

<find-equip-frame> ::= {defschema <generic-task-name:> cdocumentatlon>

(instance-of find-equip)

{context {«<context-name> <context-gseq-no>)})

fkey <key-name>)

{properties (<equipment-prop>))
<cleanup~find-equip-frame> ::= (defschema <generic-task-name>

<documentation>

{instance-of cleanup-find-equip)

{context (<context-name» <context-seg-no>}}

{key <kKey-name»))
<def-context-frame> ::= {defschema <generic-task-name> <documentation>

{instance~of def-context)

{context <contexXt-namex)

(header <header-gstring>}

(desc <«degsc-string>))

<dizplay-frame> ::= {defschema «<generic-task-name>r <documentation>
(instance-of display)
{context {(<context-name> <context-seg-no>))
f{header <header-string>}
{{proc~stream <proc-stream-string>)}
{desc <desc-string>))
<digplay-figure-frame> ::= (defschema <generic-task-name:
<documentation>
{instance-of disgplay-figure)
{context ({<context-name> <context-geqg-no>)}
{header <header-string>)
{diagram <dlagram-name>)}
<connect-frame> ::= (defschema <generic-tagsk-name> <documentation>
{instance-of connect)
{context (<context-name> <context-gseg-no>)}
{go~-context {(«<context-name> <context-geg-no>)))
<connect-return-frame> ::= {defschema <generic-task-name>
<documentation>
{instance-of connect-return}
{context {(«<context-name> <context-seg-no>}}
{go-~context («<context-name> «<context-geqg-no»))
(stay-until-context (<context-name> <context-

seq-no>)}

(return-context {<context-name> <context-geg-

nox}j) '
<cond-connect-frame> ::= {defschema <generic-task-name> <documsntation>

{instance-of cond-connect)

{context {(<context~name> <context-seg-no>)}
fequipment-list <equipment-desc-seqg>+)
{go-context (<context-name> <context-seq-no>))
{stay-until-context {<context-name> <context-

seg-no>})}
{return-context (<context-name> <context-seq-
no>j})

<cond-connect-or-frame>» ::= (defschema <generic-task-name:>
<documentation>

{instance-of cond-connect-or)

{context (<context-name> <context-seg-no>})
(equipment-1list <egquipment-desc-zeg>+}
{go-context (<context-name> <context-seqg-no>)}
{stay-until-context {<context-name> <context-

seq-no>})
. (return-context (<context-name> <cohtext-seq-
no>»}j} .
<gquestion-connect-return-frame> ::= (defschema <generic-task-name>
<documentation> R

(instance-of guestion-connect-return)

{context {«<context-name> <context-seg-no>))
(question <guestion-string:>)

{ (go-no <go-no-symbol>)}

{go-context {<context{-name> <context-seg-no>))
{stay-until-context {<context-name> <context-

geg-no>)) :
{return-context (<context-name> <context-seq-
no>)})

<cleanup~-selected-frame> ::= {defschema <generic-task-name>
<documentation>

{instance-of cleanup-gelected)}

{context {«context-name> <contexXt-seg-no>}})
<hold-context~frame> ::= {defschema <generic-task-name> <documentation>

{instance-cf hold-context) :

{context (<context-name> <context-geqg-no>}))

65

<clear-context-frame> ::= {(defschama <generic-task-name> <documentation:
{instance-of clear-context}
(context («<context-name> <context-seqg-no>)))
<walt-frame> ::= (defschema <generic-task-name> <documentation>
{instance-of wait)
(context {<context-name> <context-seg-no>})
{Lime <time-no>})

<generic-task-name> ::= <gymbols>

<documentation>» ::= £ | <string>

<conhtext-name> ::= <gaymbol>»

<context-seg-no> ::= <digits>

<equipment-desc-gseg> ::= (<equipment-seq-no> <atomic-value>+)
<equipment-desc> ::= {<atomic-value>+)

<equipment-prop> ::= (<atomic-value> <atomic-value> <atomic-values>)
<key-name> ::= <gymbol>

<header-string> ::= <string>

<desc-gtring> ::= <string>

<proc-stream~string> ::= <string>

<diagram-name> ::= <gymbol>

<guestion-string> ::= <string>

<go-no-gymbol> ::= <symbol>

<time-no> ::= <digits>

<gymbeol> ::= "Any sequence of <alphas» that in not a <numbers> ,<digits>
or <reserved-word>. Also the sequence does not
begin with a '?','-", or '_'* :

<string> ::= «<string-quotex<string-character»<string-quotex>

<digits>» ::= <digit>+

<equipment -seq-no> ::= <digits>

<atomic-value> ::= <symbol> | <string> | <number> | <digits>

<alpha> ::= <alphabetic> | <digit> | _ | - | ?
<number> ::= <sign»<digit>+ |
{<gign>}<digit>*.<digit>+ |
{<gign>}<digit>+E{<sign>}<digit>+ |
{«<sgign>}<digit>*.<digit>+E{<sign>}<digit>+
<reserved-word> ::= defschema |
reguirement |
redquirement-or |
select |
constraint |
- find-equip |
cleanup~find-equip |
def-context |
display |
digplay-figure f{
connect |
conhect~return |
cond-connect |
cond-connect-or |
question-connect-return |
¢leanup-gselected |
hold-context |
clear-context |
wait |
context |
equipment~1list |
until-context |
equipment-id |
key |
properties |

header | -
desc |
proc-stream |
diagram |
go~context |
stay-until-context |
return-context |

question |
go-no |
time
<string-guote> ::= *The character '"'*
<gtring-character> ::= "Any <character>. A sgsequence \«<characterx>»
includes <character> to be «string-characters>*
<digit> ::= 0{1121314I516)7|81%
<gign> t:= + | -
<character> ::= "Any ASCII character®

67

Appendix 2. GENRL representation of EFTs

<eg-knoledge-bge> ::= & | <eg-knowledge-base> <eg-frame>

<eg-frame> ::= <tank-frame> |
<pump-f{rame> |
<compressor-frame> |
<heater-frame> |
<valve-frame> |
<ion-exchange-frame> |
<pressure-indicator-frame> |
<hand-switch-frame:>

<tank-frame> ::= (defschema <egquipment-name:> <documentations>
{(instance-of tank}
(belongs-to <tank-placement>)
{equip~desc <gtring>}
{pressure <number>)
{state <tank-state>))
<pump-frame> ::= {defschema <equipment-name> <documentation:>
{instance-of pump)
{belongs-to demineralized-water- system)
{equip-desc <string>)
{state <pump-ztatex)
{breakers <«<breakers-state») }
<compresscor-frame> ::= {defschema <equipment-name> <documentation>
{instance-¢f compressor)
{belongs-to heluim-gas-cover- system)
{equip-desc <gtring>)
{state <compressor-state>)
{breakerz <breakers-ztate>»))
<heater-frame> ::= (defschema <equipment-name> <documentation>
{instance-of heater)
{(belongs-to helium-cover-gas- system)
{equip-desc «<string>)}
(state <heater-states>)
(breakers <breakers-state>))}
<valve-frame> ::= (defschema <equipment-name> <documentatjon:>
(instance-of wvalve)
{belongs-to associated-piping)
{equip-desc <string>}
{ {operation-mode <valve-cperation-mode>)}
{ (pressure <number:>)}
{(state «<valve-state>}})}
<lon-exchange-frame> ::= {defschema <equ1pment-name} <documentation>
{instance-of IEC)
{belongs-to demineralized-water- system)
{equip-desc <string>)
(state <ion-exchange-state>)
(resin fresh})
<pregssure-indicator-frame> ::= {(defgchema <equipment-name>
<documentation>»
{instance-of pressure-indicator)
{belongs-to assoclated-piping)
{equip-desc <string>}
{pressure <number>»} }
<hand-switch-frame> ::= (defzschema <equipment-name> <documentations
{instance-of hand-switch)
{belongs-to asssociated-piping)
{equip-desc <string>)
{state <gtring») }

68

<equipment-name> ::= <symbol>

<documentation> ::= £ | <string>
<tank-placement> ::= helium-cover-gas-system !
demineralized-water-system

<string> ::= <string-queote><string-character>*<string-quotex

<number> ::= {<slign>}<unsigned-number:>

<tank-state> ::= cpen | closed

<pump-state> ::= on | off

<breakers-state> ::= clogsed } open

<compressor-state> ::= auto [standby

<heater-state» ::= on | off

<valve-operation-mode> ::= manual | auto

<valve-state> ::= open | closed | locked-open | aute | manual

<ion~exchange-state> ::= not-isolated | isolated

<gymbol> ::= "Any sequence of <alpha>s beginning with a <alphabetic»
. character that is not a <reserved-word>"®

<string-gquote> ::= "The character '“'*

<gtring-character> ::=z “Any <character>. A sequence \<character> makes
_ <character> a <string-characters*
<glign» :t:= + | =~
<unsighned-number> ::= <digit>+ |
<digit>*.<digit>+ |
<digit>+E{<sign>})<digit>+ | _
<digit>*.«<digit>+E{<gign>}<digits+

<alpha> ::= <alphabetic> | <digit> | ~ | _
<alphabetic> ::= *A gingle character between 'A' and 'Z, or between 'a’

and IZIII . .
<regserved-word> ::= defschema |

instance-of |

tank |

pump |

compressor |

heater |

valve |

IEC |

pressure-indicator |

hand-switch |

belongs-to |

demineralized-water-system |

helium-~cover-gas-system |

asseocliated-piping !

equip-desc |

pressure |

breakers |

state |

open |

closed |

on |

off |

auto |

standby |

operation-mode |

locked-open |

manual |

not-isolated |

isolated |

resin |

fresh
<character> ::= "Any ASCII character*
<digit> ::= 01112131415]6[7181¢%

69

Appendix 3. Lex specification for OMFTs

SIGN [+-]7?

ALPHABETIC [A-Za-z]
DIGIT [0-9]

ALPHA (0-9A-Za-z\-_\7?]
WS [\b\err\wvifin}

%a 5000
%o 50060
%% _
{Ws} {/* delete whitespace */}
;oM™ {/* Qelete comments from input */}
5\ { { /* detect a left parethesis */
return(' (') ;
1
%) { /* detect a right parenthesis */
return{'j '}
}
" { /* detect a string */
int ¢;
start: while {{¢ = input(}) != *\\' && ¢ i= '“*},
if (¢ == "\\") .
{
input (};
goto start;
1
elge
return STRING;
_ }
defschema { return DEFSCHEMA; 1}
instance\-of { return INSTANCEOF; }
reguirement { return REQUIREMENT; 1
requirement-or { return REQUIREMENTOR; }
gelect { return SELECT; }
constraint { return CONSTRAINT; }
find\-equip - { return FINDEQUIP; }
cleanup\-£find\-equip { return CLEANUPFIND; }
def\-context. { return DEFCONTEXT; }
display { " return DISPLAY; }
display\-figure { return DISPLAYFIGURE; }
connect { return CONNECT; }
connect\-return { return CONNECTRETURN; }
condy-connect { return CONDCONNECT; }
cond\ -connect\-or { . return CONDCONNECTOR; }
question\-connect\-return { return QUESTIONCONNECT; }
¢leanup\-selected { return CLEANUPSELECTED; }
hold\ -context { return HOLDCONTEXT; }
clear\-context { return CLEARCONTEXT; }
wait { return WAIT; }
context { return CONTEXT; }
eguipment\-list { return EQUIPLIST; }
until\-context { return UNTILCONTEXT; }
equipmenti-id { return EQUIPID; }
key { return KEY;} _
properties { return PROPERTIES; }
header { return HEADER; }
desc { return DESC; }
proc\-stream { return PROCSTREAM; }
diagram { return DIAGRAM; }

70

goy-context { return GOCONTEXT; !}

stay\-untiliy-context { refurn STAYUNTILCONTEXT; }
return' -context { return RETURNCONTEXT; }

question { return QUESTION; }

go\-ne { return GONC; }

rime { return DIGITS; }

[+-] {DIGIT}+ i
{DIGIT}*\.{DIGIT}+ I
{DIGIT}+E{SIGN}{DIGIT}+ |
{DIGIT}*\ .{DIGIT}+E{SIGN}{DIGIT}+ { return NUMBER;}
{ALPHA} + { if (yytext([0] == '?')
return {VARIABLE} ;
else if (yytext[0)l=='-' || yytext{0]=="_")
return {ERRCR]) ;
else
return {SYMBOL} ;
}
{ return{ERROCR)};}

71

Appendix 4, Yacc specification for OMFTs.

%{ :

¥ include <ctype.h>
include <stdio.h>
%3

Zetart list

$token VARIABLE

%token DEFSCHEMA INSTANCECFR

3token NORMAL REQUIREMENT REQUIREMENTCR SELECT CONSTRAINT FINDEQUIFP
CLEANUPFIND DEFCONTEXT :

%token DISPLAY DISPLAYFIGURE CONNECT CONNECTRETURN CONDCONNECT
CONDCONNECTOR QUESTIONCONNECT

ttoken CLEANUPSELECTED HOLDCONTEXT CLEARCONTEXT WAIT

#token CONTEXT EQUIPLIST UNTILCONTEXT EQUIPID

%token KEY PROFPERTIES HEADER DESC PROCSTREAM DIAGRAM GOCONTEXT
Ztoken STAYUNTILCONTEXT RETURNCONTEXT QUESTION GONO TIME
%token STRING NUMBER SYMBOL

%token ' (' '}

%token ERROR

%token DIGITS

%3 /* beginning of rules section */
list /* empty */
| list stat
;
gtat requirementframe {schemano++; }
requirementorframe {schemano++; }
gselectframe {echemano++; }

constraintframe {schemano++;}
findequipframe {schemanc++;}

cleanupfindframe {schemano++; }
defcontextframe {schemano++;}

displayframe {schemano++;}
displayfigureframe {schemano++;}
connectframe {schemano++; }
condconnectframe {schemano++; }
condconnectorframe {schemano++; }

guestionconnectframe {schemano++;}
cleanupselectedframe {schemano++;}
holdcontextframe {schemano++;}
¢learcontextframe {schemano++; }
waitframe {schemanoc++:}

|
f
{
|
|
|
[
I
I
I connectreturnframe {echemanoc++; }
}
|
{
[
|
|
|
| error

requirementframe : *{*' DEFSCHEMA framename documentation
'{' INSTANCEOF REQUIREMENT *}!
'{' CONTEXT '{' contextname contextsegno ')' '}
'(' EQUIPLIST equipmentdescseqg '}' ')
{regctr++;}

i

requirementorframe : *{' DEFSCHEMA framename dccumentation
'(' INSTANCECQCF REQUIREMENTOR ')
‘(' CONTEXT '{' contextname contextgegno ')' '}’

72

{ EQUIPLIST equipmentdescseq ')' '}'
{reqorctr++;}

I

+ '"{' DEFSCHEMA framename documentation

'{' INSTANCEOF SELECT ')

"{' CONTEXT '{* contexthame c¢ontextseqno '}' '}
‘{' EQUIPLIST equipmentdescseq *‘}' '}
{selectectr+4+;}

selectframe

H

constraintframe : '{' DEFESCHEMA framename documentation
'(' INSTANCECOF CONSTRAINT '}
'{' CONTEXT '{' ¢ontextname contextsegno ')’ '}°
'(' UNTILCONTEXT '{' contextname contextsegno '}' '}°*
'{' EQUIPID egquipmentdesc '}' '}*¢
{constraintctr++;}

H

findequipframe : " {' DEFSCHEMA framename documentation
'{' INSTANCEQOF FINDEQUIP '}
'{' CONTEXT ' (' contextname contextsegno '}' ')°'
'{' KEY keyname *')}°*
{ PROPERTIES eqguipprep ‘'}' '}
{findequipctr++;}

H

cleanupfindframe : '({' DEFSCHEMA framename documentation
{ INSTANCEOF CLEANUPEFIND ')*
{ CONTEXT '{' contextname contextsegno '}' '}’
*{' KEY keyname '}' ')’
{cleanupfindctr++;}

H

defcontextframe : *{' DEFSCHEMA& framename documentation
'{' INSTANCEOF DEFCONTEXT ')'
''{' CONTEXT ccontextname °*')'
'{' HEADER headerstring '}°
'{' DESC descstring '}' ')
{ defcontextctr++;}

H

digplayframe : ‘(' DEFSCHEMA framename documentation
{ INSTANCEOF DISPFLAY '}'

*{' CONTEXT '(' contextname contextsegne '}' '}
*{' HEADER headerstring '}’

procstreamspec ')

{displayctr++;}) -

displayfigureframe : '{' DEFSCHEMA framename documentaticn
'(' INSTANCEOF DISPLAYFIGURE '}
"(' CONTEXT * (' contextname contextsegno ')*' *)°*
'{' HEADER headerstring '}'
'{' DIAGRAM diagramname '}' ')’
{displayfigurectr++;} :

.
i

connectframe : '{' DEFSCHEMA framename documentation
t{* INSTANCEQOF CONNECT ') :
'{* CONTEXT- ' (' contextname contextsgeqno '} ‘"' '}
{ GOCONTEXT ' {' contextname contextgsegno '}‘' '}' *}!
{connectetr++;}

73

i

connectreturnframe : '{' DEFSCHEMA framename documentation
{ INSTANCEOF CONNECTRETURN ')°
{' CONTEXT '{' contextname contextseqno '}‘' '}‘
‘(' GOCONTEXT ' ({' contextname contextsegno '}' ')’
‘(' STAYUNTILCONTEXT '(' contextname contextsegno ') "1
'{' RETURNCONTEXT '({*' contextname contextsegno ')' ')' '}
{connectreturnctr++;})

i

condconnectframe : '{' DEFSCHEMA framename documentation
*{' INSTANCEOF CONDCONNECT '}
' CONTEXT °* (' contextname contextsegno '}' ')
' EQUIPLIST equipmentdescseq '}
' GOCONTEXT ' (’ contexthame contextsegqno ‘')* *')°*
' STAYUNTILCONTEXT °* {' contextname c¢ontextsegno '}' '}’
' RETURNCONTEXT ' (' contextname contextseqno ‘'}' ‘3*' ')
{condcoennectctr++; }

i

condconnector frame : '{' DEFSCHEMA framename documentation
'{* INSTANCECF CONDCONNECTOR '}
‘{® CONTEXT ' (' contextname contextseqno '}‘' *}‘*
'{' EQUIPLIST equipmentdescseg ')’
{ GOCONTEXT '{' contextname contextseqno syt
" {' STAYUNTILCONTEXT '{' contextname contextsegno '}' '}
' (' RETURNCONTEXT ' (' contextname contextsegno '}' ')+ ')

{condconnectorctr++; }

B

questionconnectframe : '{* DEFSCHEMA framename documentation
*{' INSTANCEOF QUESTIONCONMECT *}°'
{ CONTEXT '{' contextname contextsegno '}' '}

‘(' QUESTION questionstring ')
gonospec '}
{questionconnectctr++;}

i

cleanupselectedframe : '{' DEFSCHEMA framename documentation
'{' INSTANCEQOF CLEANUPSELECTED ‘}'
‘(' CONTEXT ' (' contextname contextsegno ')' ')' '}

{cleanupselectedctr++;}

]
i

holdcontextframe : '(' DEFSCHEMA framename documentation .
*{' INSTANCEOF HOLDCONTEXT '})'® -
'(' CONTEXT '({' contextname contextsegno ')' ')' ') -
{heldcontextctr++;}

.
f

¢clearcontextframe : '{' DEFSCHEMA framename documentation
*{' INSTANCEQF CLEARCONTEXT *}°* .
*{' CONTEXT '{' contextname contextsegno '}' '}' ')!
{¢clearcontextctr++;}

r

'{' DEFSCHEMA framename documentatiocn

{* INSTANCECF WAIT '}

{* CONTEXT '{' contexthame contextseqno '}' ‘'}‘*
{(* TIME timeno *}' '} .
{waltectr++;}

waitframe

~

gL

framename : SYMBOL

’

documentation : /¥ empty */
| STRING

H

contextname : SYMBOL

]

contextseqno : DIGITS

.
Kl

equipmentdesgcseq : /* empty */
| equipmentdescseq eguipmentdescs

!

equipm?ntdesc : '{' atomicvalues ')

equippfop : *{' atomicvalue atomicvalue atomicvalue ')
keynam? : SYMBOL

headerﬁtring : STRING

descst?ing : STRING

procstreamspec : ‘*{* DESC descstring '}'
| ' {' PROCSTREAM proc¢streamstring '}
'{' DESC desgcstring '}

i

diagramname : SYMBOL

questionstring : STRING

gonespes *{' GOCONTEXT '{' contextname contextsegno '}'
STAYUNTILCONTEXT '({' contextname contextseqno ')

* RETURNCONTEXT *{' contextname contextsegno ')'
' GORO SYMBOL ')
' GOCONTEXT '{' c¢ontextname contextsegno *')' ')°

H
1
1
I 1
1
[}
L]

— oy

STAYUNTILCONTEXT ' (' contexthame contextsegno '}
) RETURNCONTEXT ' {' contextnhame contextsegno ')*' '}
timeno. : DIGITS
equipm?ntdescs o '{' equipmentsegno atcmicvalueg '}
atomicvalues : [/ *empty*/

| atomicvalues atomicvalue

.
r

procstreamstring : STRING

r

75

equipmentsegno : DIGITS

s

atomicvalue : SYMBOL

[STRING
| NUMBER
[DIGITS
%% /* start of programs */
char *progname; /* for error messages */

int gchemano = 0;

int regectr = 0,regorctr = 0,selectctr = 0,ceonstraintctr = 0,
findequipctr = 0, cleanupfindctr = 0, defcontextetr = 0, displayctr = 0,
digsplayfigurectr = 0, connectetr = 0, connectreturnctr = 0,
condconnectctr = 0, condconnectorctr = 0, questlonconnectctr = 0,
cleanupselectedety = 0, holdcontextetr = 0, clearcontextetr = 0, waltctr
int errorctr = 0;

ginciude "lex.yy.c"
main{argc,argv) /* main */
char *argv(];
{

.progname = argvio0l;

yyparsel(};

fprintf {stdery, "PARSING STATISTICS:\n"};

fprintf(stderr, "Lines parsed %d Schemas parsed
%d\n”,yyvlineno, schemano) ;

fprintf (stderr, *"SCHEMA BREAKUP:\n");

fprintf (stderr, "Requirement %d\nReguirementor #d\nSelect
%d\n*,reqctr, reqorctr, gselectctr);

fprintf (stderr, "Constraint %dinFindequipment %dinCleanupfind
%d\n",constraintctr, findequipctr, cleanupfindctr);

fprintf (stderr, "Defcontext %d\nDisplay %d\nbisplayfigure
zd\n",defcontextectr, displayetr, displayfigurectr);

fprintf {stderr, "Connect %d\nConnectreturn %d\nCondconnect %d\n“
connectctr, connectreturnctr, condconnectctr);

fprintf (gtderr, *"Condconnector %d\nQuestiocnconnect
%d\nCleanupselected 24\n*, condconnectorctr, guestionconnectctr,
cleanupselectedctr) ;

fprintf (stderr, "Holdcontext 3d\nClearcontext %dinWait zd\n",
holdcontextctr, .clearcontextctr, waitetr);

fprintf (stderr, *Error schemas: %d\n",errorctr};

fprintf (stderr, *END OF STATISTICS\n");
}

yyerrori{s)
char *s;
{
fprintf (stderr, "%s: %g *, progname, S);
fprintf (stderr, "near 1line %d\n",yylineno};
fprintf{stderr, “near schema %d\n*, schemano+l});

fprintf {stderr, *lookahead token %d\n", yychar};
fprintf (stderr, *lookahead token %s\n", yytext});

76

schemanoc++;
errorctr++;

}

77

Appendix 5. Lex specificafion for EFTs

SIGHN [+-]7?
ALPHABETIC [A-Za-z]
DIGIT [0-9]

ALPHA [(-9A-Za-z\-%_])
WS [AbstArywvafin]

%% :
{Wa} { /* delete whitespace */ }
AN * { /* delete comments from input */}
5\ { /* detect a left parethesis */
: - return({'(');
}
Y} { /* detect a right parenthesis */
return{‘}'};
}
5 { /* detect a string */
int ¢;
start: while ({c = input{}) != '"\\' && ¢
if {c == "\\')
{
input {);
goteo start;
}
- else
“return STRING;
4 .
defschema { return DEFSCHEMA; }
instance\-of { return INSTANCEOF: }
tank { return TANK; }
pump { return PUMP; -}
compressor { return COMPRESSCOR; : }
heateér { return HEATER; }
valve { return VALVE; }
TEC { return IONEXCHANGE; }
pressure\-indicator { return PRESSUREIL; }
hand\-switch® { return HANDSWITCH; }
belongs\-to { return BELONGSTO; }
demineralized\-water\-system { return DEMINERALIZED;
helium\-cover\-gas\-system { return HELIUMGAS; }
assocliated\-piping { return ASSCCIATEDPIPING:}

equip\-desc return EQUIPDESC; }

{
Ppressure { return PRESSURE; }
breakers { return BREAKERS; }
state { return STATE; }
open { return QPEN; }
cloged { return CLOSED; }
on { return ON; 1}
off { return OFF; }
auto { return AUTO; }
standby { return STANDBY; }
operation\-mode { return OPERATIONMCDE; }
locked\ -open { return LOCKEDOPEN; }
manual { return MANUAL; }
not\-igolated { return NOTISOLATED; ¥
isclated { return ISOLATED;)}
resin { return RESIN; }
fresh { return FRESH; }

|

{SIGN}{DIGIT}+

78

}

Y

{SIGN}{DIGIT}*"."{DIGIT}+ |

{SIGN}{DIGIT}+E{SIGN}{DIGIT}+ |

{SIGN}{DIGIT}+E{SIGN}{DIGIT}+ {

: /* detect a number */
return NUMBER;
}
{ALPHABETIC} {ALPHA}* { return SYMBOL;
. £ return ERROR; }

79

}

Appendix 6. Yacc specification for EFTs.

%{

include <«<gtdio.h>
include <ctype.h>
%}

gstart list

%roken NORMAL TANK PUMP COMPRESSOR HEATER VALVE IONEXCHANGE PRESSUREI
HANDSWITCH

$token DEFSCHEMA INSTANCECQF SYMBOL STRING

%token BELONGSTO DEMINERALIZED HELIUMGAS ASSOCIATEDPIPING EQUIPDESC
%token PRESSURE NUMBER -

%token BREAKERS

¥token STATE OPEN CLOSED ON OFF AUTO STANDBY

Ftoken OPERATIONMCDE LOCKEDCOPEN

%Loken MANUAL NOTISOLATED ISQLATED

%token RESIN FRESH

%token '(* ')

%$token ERROR

%% /* beginning of rules section */
list /* empty */
| list stat

stat tankframe {schemano++;}
punpframe {schemano++; }
compressorframe {schemano++;}
heaterframe {schemanc++; }
valveframe {achemanoc++; }

pressureiframe {schemanc++;}
handswitchframe {schemanoc++;}’

|
i
|
|
| ionexchangeframe {schemano++; }
|
|
| error

’

tankframe '{' DEFSCHEMA equipmentname documentation
'{' INSTANCEQOF TANK '}°'

"{' BELONGSTC tankplacement ')°*

'{' EQUIPDESC STRING ‘')

'(' PRESSURE NUMBER ')°

'(' STATE tankstate *)}*' *)* —
{tankctr++; }

pump frame '{' DEFSCHEMA egquipmentname documentation
' INSTANCEQCF PUMP '}

' BELONGSTOC DEMINERALIZED *)°

' BEQUIPDESC STRING *}'

' STATE pumpstate ')'*

' BREAKERS breakerstate '}' ')
{pumpctr++;}

i

compressorframe : ' (' DEFSCHEMA equipmentname documentation
. '(' INSTANCEOF COMPRESSOR ')
'(' BELONGSTO HELIUMGAS *)°*
'{' EQUIPDESC STRING ')'
{ STATE compressorstate '}’
1(: I)I

BREAKERS breakerstate 'y

80

{compregsorchl++;}

H

heaterframe ' (' DEFSCHEMA eguipmentname documentation
'{' INSTANCEOF HEATER ')
'{' BELONGSTO HELIUMGAS '}'
'(' EQUIPDESC STRING '}'
'{' STATE heaterstate '}'
'{' BREAKERS breakerstate *)* '}
{heaterctr++;}
valveframe : '{' DEFSCHEMA equipmentname documentatien
{ INSTANCEOF VALVE '}'
'{' BELONGSTO ASSOCIATEDPIPING '}'
'{' EQUIPDESC STRING '}'
restvalvespec '}
{valvectr++;}

i

restvalvespec : restpressuresgpec :
{ '{' OPERATIONMODE valveopmode ')' regstpressurespec
regtpressurespec : restgtategpec
| '{* PRESSURE NUMBER '}' reststatespec
reststatespec 1 /% empty */

| *{* STATE valvestate '}’

!

ionexchangeframe : ' {' DEFSCHEMA eguipmentname documentation
'{' INSTANCEOF IONEXCHANGE '}
' {' BELONGSTO DEMINERALIZED *')*
'(' EQUIPDESC STRING '}'
'{* STATE ionexchangestate '}
'{' RESIN FRESH *)* '}
{ionexchangectr++;}

i

pressureiframe : '{' DEFSCHEMA equipmentname documentatiocn
' {' INSTANCEQF PRESSUREI '}°®
'{' BELONGSTO ASSOCIATEDFPIPING '}
'{' BEQUIPDESC STRING '})'
'(' PRESSURE NUMBER ')*' '}'
{pressureictr++;}

K

handaswitchframe : '{' DEFSCHEMA eguipmentname documentation
{' INSTANCECF HANDSWITCH '}°
{ BELONGST(O ASSOCIATEDPIPING '})°
'{' EQUIPDESC STRING '}’
‘*{' STATE STRING ')*' *')*'
{handswitchectr++;}

i

equipmentname : SYMBOL
documentation : /* empty */
{ STRING

H

81

tankplacement : HELIUMGAS

I DEMINERALIZED
tankstate : OPEN

f CLOSED
pumpstate : ON

| OFF
breakerstate : CLOSED

I OPEN
compregssorstate : AUTO

| STANDBY

heaterstate : ON
I OFF

Fl

valvestate : OPEN
| CLOSED
| LOCKEDOPEN
} AUTO

| MANUAL

valveopmode : MANUAL
| AUTO

r

icnexchangestate : NOTISOLATED

i ISOLATED
%% /* start of programs */
char *progname; /* for error messages */

int schemano = 0;

int tankectr = 0, pumpctr = 0, compressorcty = 0, heaterctr = 0, valvectr
= 0, ionexchangectr = 0, pressureictr = 0, handswitchetr = 0;

int errorctr = 0;

#include "lex.yy.c"
main(argc,argv} /* main */
char *argv(]:
{

progname = argv[0];
yyparse();
fprintf (stderr, "PARSING STATISTICS:\n");
fprintf (stderr, *Lines parsed 2d 8chemas parsed
gd\n*,yylineno, schemano); :
fprintf {stderr, "SCHEMA BREAKUP:\n"}; ‘
fprintf {atderr, *"Tanks %$d\nPumps %d\nCompressors %d\nHeaters :
%d\n", tankctr, pumpctyr, compressorctr, heaterctr};

82

fprintf {stderr, "Valves %d\nIcnexchanges %d\nPressure-indicators
sd\nHandswitchs
gd\n*®,valvectr, ionexchangectr, pressureictr, handswitchctr);

fprintf {stderr, "Error schemas %d4d\n',errorctr);

fprintf{stderr, "END OF STATISTICS\n");

}

yyerror{s}
char *sg;

{

fprintf (stderr, “%gs: %s ", prognhname, s);

fprintf {stderr, *near line %4d\n", vvlineno);
fprintf{stderr, "near schema %d\n", schemano +1};
fprintf {stderr, *“loockahead toKen %d\n", yychar};
fprintf {stderr, "lookahead tocken %sz\n", yytext):
errorcir++; :

Schemano++;

}

83

Appendix 7. Lex specification for GENT.

* File: lzcman.l

* System: Liquid zone contrel manual parsing system

*

* Purpose: The lexical analyzer for the preprocessed input of liquid
zone ceontrol manual :

L]

* Programmer: Joozar Vasi

* Date: 24 Oct. 1992

* Detail:
*

O *;’

F R --- Include File§ —-—---mmmmmewoo o
*/

tinclude <gtrings.h>
$include *v.tab.h"
tinclude <stdio.h>
#include “header.h*

S e - Imported Variables -----------ommmemme */
extern FILE *fp; /* from main.c */

extern int chptne:; /* from lzcman.y */

exXfern YYSTYPE yvylval; /* from lzcman.y */

extern int chptetr; /* from lzcman.y */

E e ettt Imported Functions ---------—-—-----=- */
extern char *strsavel(); /* from utilities.lib.c */

extern int findnlichars{); /* from utilities.lib.c */

I¥ e e Exported Varibles -------rv-mmommommmmn */

e Local Global Variables --—---~swoweo- */
static int chpt; /* current chapter number for error checking */
static int sectno /* current section number */

static int sect; /* current section number for error checking */
static int subsectno: /* current subsection number */

static int subsect; /* current subsection number for error checking
*/

static int stepno /* current step number */

static int step; /* current step number for error checking*/
static char yytextbuf [BTOKENLEN] ; /¥ a temporary array to ztore tokens
of lex */

%}

2START CHAPTER CHPTHEADING SECTION SCTHEADING PARADESC STEPNUM
ALPHABETIC [A-Za-z\-0- 9]

DIGITS [1-9]1[0-91%*

CHAPTERNO {DIGITS}\.OD

SECTIONNG {DIGITS}\.{DIGITS}

SUBSECTIONNO {DIGITS}\.{DIGITS}\.{DIGITS}

STEPNO Stepf]+{DIGITS}

3%

{CHAPTERNO}[1+ {

/* Found chapter number. Extract current chapter number */

getsect (yytext, &chpt, §, &subsect) ;

yylval .number = chpt;

sectno = subsectno = stepno = 0;

/* set up to accept chapter heading */

fprintf{fp,*In teoken chapternc. Found chapter,'%d' section: 34!
subsection: !%d:\n*, chpt, gect, subsect) ;

friushifp);

BEGIN CHPTHEADING;

return CHAPTERTAG;

-}
<CHPTHEADING:>.+[\nl+ {

/* Found chapter heading. Set up to accept section number */

BEGIN SECTION;

fprintf {fp, *Found chapter header with newlines i%g!\n".,.yytext);

fflush(fp};

return CHAPTERHEADER;

}
<SECTION>{SECTIONNO}[1+ {

/* extract current chapter number and section number. Print error
message if chatper number is incorrect and section numbers are not in
order */

getsect (yytext, &chpt, §, &subsect} ;

if {chpt != chptno}

{

fprintf (fp, "Expecting chapter number !%d!\n",chptnoc};
fprintf (fp, "Received chapter number !%d!\n",chpt}:

fflush{fp);
}

if { sect != ++sectno)
{

fprintf (fp, "Expection section number !%4!\n*,sectno+l);
fprintf (fp, "Received section number !%di\n",sect};
ffiushi{fp});
3

gectno = secyt;

yylval.number = sect;

subsectno = stepno = 0;

/* print found details */ _

fprintf {fp, *Found sectionnc token. Found chapter: 1%d! section:!%d!

subsection: !%d!\n",chpt,sect,subsgect);

fflush{fpy);

/* gset up to accept section headlng */

BEGIN SCTHEADING;

85

return SECTIONTAG;

' }
<SECTION>{SUBSECTIONNO}[]+ {

/* Found subsection number. Extract current chapter, section and
subzection number. Print error messzage 1f chapter or section number is
incorrect or if the gubgection number is not in segquence */

getsect (yytext, &chpt, §, &subsect} ;

if {chptno != chpt || sectno != sect)

{

fprintf (fp, "Expecting chapter !%d4!, Found chapter
Igd!i\n®,chptno,chpt};

fprintf{fp, "Expecting section 1%d4!, Found section
'£A!\n*,sectno, sect) ;

fflush{fp);

}

if (subsect != ++zubsectne)
{
fprintf {fp, "Expecting subsection number !%d!\n”",subsectnol};
fprintf {fp, "Received subsection number !%d!\n",subsect);
" fflush{fp};
}
subsectno = subsect;
stepno = 0;
yylval .number = subsectno; _
/* anncunce to the world the subsecticn found */
fprintf {fp, "Found subsection token. Found Chapter:!%43:!
Sectilion: !%d! Subsecticon:!%d!\n*,chpt,sect,subsect) ;-
fflush{fp};
/* set up to accept section heading */
BEGIN SCTHEADING;
return SUBSECTIONTAG;
}
<SCTHEADING> .+ [\nl+/{SUBSECTIONNOC} {
/* Found section/subsection heading. Delete newline charaters in
token */
strepy (yytextbuf,yytext);
*index (yytextbuf, *\n') = '\0';
/* Return heading token. Also announce to the werld that
section/subsection header is found */
yylval.tokenstr = strsave{yytextbuf};
fprintf{(fp, *Installed section header !%s!. Subsections
follow\n',yylval.tokenstr);
fflushi(fp);
/* Set up to accept subsection details */
BEGIN SECTION;
return HEADER;
}
<SCTHEADING> .+ {\n}+/{STEPNO} {
. /* Found section/subsection heading. Delete newline characters in
token*/ .
strepy {yytextbuf,yytext);
*index(yytextbuf,'\n'} = *\0*;
/* Return heading token. Announce to the world that
section/subsection header is found */
yy¥lval.tokenstr = strgave{yytextbuf);
fprintf{fp,*Installed section header !%s!. Steps
follow\n*,yyvlval.tokenstr};
fflushi{fp);
/* Set up to accept step number */
BEGIN STEPNUM;
return HEADER;
H
<SCTHEADING>.+([\n]+ {

86

/* Found section/subsection heading. Delete newline character from
token*/
streopy (yytextbuf , yvtext);
*index(yytextbuf, '\n'} = *\0';
/* Return heading token. Annouce Lo the world that a
gection/subsection heading is found */
yylval.tokenstr = strsave(yytextbuf};
fprintf (fp, "Installed section header !%g!. Paragraph
Lollows\n®,yylval.tokenstr);
fflushi{fp);
/* Set up to accept coming paragraph */
*yytextbuf = '\0';
BEGIN PARADESC;
return HEADER;
}
<STEPNUM> {STEPNO}\.[1+ { :
/* Found step number. Extract step number. Print error message if
steps are ocut of =zeguence */
strepy {vytextbuf,yytext);
gscanf (yvytextbuf, "&*z 343", &step);
if (step != ++stepno)
{
fprintf {fp, "Expecting step !'%d!",stepno);
fprintf (fp, "Found step !2d!*,step};
fflushi{fp);
}
stepno=step;
/* Return step number. Announce to the worlid the step number found
*/
yylval.number = step; "
fprintf ({fp,"found step number !%d!. Step paragragh
follows\n',stepno);
ffiush{fp};
/* get up ot accept step description */
*yytextbuf = '\NO';
BEGIN PARADESC;
return STEPTAG;
}
<PARADESC>[\n] [\n]+{CHAPTERNO} {
/* Found beginning of chapter. Store section, subsection or step
details*/
yyless{findnlchars {yytext));
yyvlval.tokenstr = strsave{yytextbuf};
fprintf{fp,*Installed section/subsection/step description !%s!.
Chapter feollows\n*",yylval.tokenstr);
fflush(fp): . e
/* set up to accept another chapter */
BEGIN 0;
return PARAGRAPH;
}
<PARADESC>[\n] [\n]+{SECTIONNO} {
/* Determine whether a new section begins */
getgsect (yytext, &chpt, §, &subsect};
if {({chptno == c¢hpt) && {sectno +1 == sect)}
{ .
/* Found new section. Push sectionno back on input stream.
Return token containing details */
yvless {findnlchars (yytext});
yvlval.tokenstr = strsave(yytextbuf};
/* Announce to the world about found details. Set up to
accept section */ :
fprintf{fp,"Installed section/subsection description !%s!.
Section number follows\n*,yylval.tokenstr); '
fflush(fp);

87

BEGIN SECTION;
return PARAGRAPH;
}

{

/* No new section. Accumalate detalls */
fprintf{fp,"Found invalid section number in input
tgsl\n",yytexty};

fflushi{fp};

yyless{findnlchars{yytext));

strcat {yytextbuf,yytext};

}

else

H
<PARADESC>[\n]} [\n]+{SUBSECTIONNO} {
/* Determine whether a new subsection beging */
getsect (yytext, kchpt, §, &subsect);
if {(chptno == chpt) && {gectno == sect) && (subsectno +1 ==
subsect})
{

/* Found new subsection. Push subsection number back on the
input stream. Return token containing details */

yyless (findnlchars (yytext}};

vylval .tokenstr = strsave(yytextbuf};

/* Announce to the world about found details. Set up to
accept subsection */

fprintf (fp,*Installed sectlon/subsectlon/step descrlptlon
!%g!. Subsection number followsi\n*,yylval.tokenstr);

fflush{fp);

BEGIN SECTION;

return PARAGRAPH;

}

{

/* No new subsectlion. Accumalate paragraph */

fprlntf(fp,"Found invalid subsectlon number in input
I%s!\n*,yytext);

yyless(flndnlchars{yytext)},

streat {yytextbuf,yytext);

}

elge

3
<PARADESC>[\n] [\n]+{STEPNC} {

/* A new step is coming. Push back stepnumber on input stream.
Collect and announce to the world about found token */

yyless (findnlchars (yytext});

vylval.tokenstr = strsave{yytextbuf};

fprintf (fp, "Installed section/subsection/step description !%s!. =
- 8tep number follows\n*,yylval. tokenstr),

fflush{fp);

/* set up to accept another step */

BEGIN STEPNUM;

return PARAGRAPH;

H
<PARADESC>{\n] {

/* Paragraph has not terminated. Accumalate paragraph token */

strecat (yytextbuf,yytext};

}

<PARADESC>. + {
/* Paragraph has not terminated. Accumalate paragraph token */
strecat (yytextbuf,yytext);
}

. { fprintf (fp, *Exrror detected chapter no !%d! section no 13%d!
subsectionno !%d4! token !%s! \n",chptno,sectno,subsectno,yytext);
fflush{fp);
}

88

%2
yywrap () /* fprint statistics */
{

fprintf{stderr,"# of lines processed %d\n",vylineno);

fprintf{stderr,"# of chapters processed %d\n",chptctr);
} . .

89

Appendix 8. Yacc specification for GENT.

%{
/* __
-
* Pile: lzcman.y
* System: Ligquid zone control manual parsing system
L% .
* Purpose: Yacc specification for input text
*
* Programmer: Joozar Vasi
* Date: 24 March 1992
* Detail:
*
R e e e e e e e e L A e . . o — A e */
S F e - Include Fileg --—---——————— e */
#include <stdio.h>
#include "header.h"
/¥ - e o Module Definitions ---=-wwwemooooooo— */
/* nene *f
I e Imported Variables ---—-—-———-~~cmrnnm- */
/* none */
F i et Imported Functions --------—-—-----uwuo- */
extern void addtosectlist(); /* from utilities.lib.c */
extern volid addtesteplist(); /* from utilities.lib.c */
extern void sectfree(); . /* from utilities.lib.c */
extern FILE *efopen{}; /* from utilities.lib.c */
extern veid printsectiondetails(); /* from printsect.lib.c */
extern char *progname; : /* from main.c */
exXtern int yylineno; /* from lex.yy.c */
extern char vyytext[]; /* from lex.yy.c */
extern equipptr geteguiplist(}; /* from equiputilities.lib.c
*/ . -
ittt Exported Varibles ------------c-rwmenn */
int chptno; /* to lzeman.l and printsect.lib.c */
int chptetr = 0; /* to lzcman.l */
F A e e e T Local Typedefs -—---—------omoommmo o */
/* none */
J* mmmm e - Liocal Global Variables --------------- */
static . sectptr fzect;
static sectptr lsect;
static stepptr firststep;
static stepptr laststep;
gtatic FILE *ft1;
I* e e Local Functions ----—-wwemmmceoeemmoem */

90

/* none */

/* none */

%}
%gtart manual
2union {
char *tokenstr;:
int number ;
}
3token FORMFEED CHAPTERTAC CHAPTERHEADER SECTIONTAG HEADER ERROR

%token SUBSECTIONTAG STEPTAG PARAGRAPH
£% /* beginning of rule gection */

/* The LZC manual consists of one or more chaptetrs */
manual : chapters

{
fprintf {stderr,"#% of lines processed %d\n",yvlineno);
fprintf {stderr, "% of chapters processed %d\n",chptctr};

}

i

chapters : chapter .
} c¢hapters chapter

.
¥

/* A chapter in the LZC manual consists of a chapternumber, a
chapterheader, and the rest of the chapter */

chapter : CHAPTERTAG

: {
fsect = NULL;
lsect = NULL;
chptno = $1;
b
CHAPTERHEADER sections
{
chptetr++;
}

f

/* The rest of the chapter consists of one or more sections */
sections : gection
| secticons section

i

/* A section consists of a sectionnumber, a secticnheader and the
rest of the section. Print section details once a section is recognized
L4

/
section : SECTIONTAG HEADER PARAGRAPH
{ .
/* Add section details to linked list =*/
addtosectlist (&fsect,&lsect,$1,82,53, FRONTQ) ;
/* Pind equipment requirement details if present and add to
linked list */
ftl = efopen{*templ”, "w"};
fprintf{£tl, "%s\n",5$3);
fclose{ftl};
system{*equipparse <templ >temp2");
fsect->sectequiplist = getequiplist{};
/* Print section details and free memory holding these
details */

0%

printsectiondetails{fsect};

sectfree(&isect, &lsect);

}

| SECTIONTAG HEADER PARAGRAPH subsections

{ .

/* Add section details to linked list */

addtosectlist (&fsect, &lsect, 51,52, 53, FRONTQ} ;

/* Find equipment requirement detalls if present and add to
linked list */

f£l = efopen{"templ*,*w"};

fprintf {ftl, *%s\n*,$3});

fclose(fLl) ;

system{*equipparse <templ >temp2"};

fsect->gectequiplist = getequiplist();

/* Print section details and free memory holding these
details */

printsectiondetails{fsect);

sectfree{&fsect,&lsect);

7

| SECTIONTAG HEADER subsections

{
/* Add section details to linked list */
addtosectlist {&fsect, &lsect, 51, $2,NULL, FRONTQ?} ;
/* Print section details and free memory holding these
details */ .
printsectiondetails (fsect);
gsectfree{&fgect,&lgect);
}
| SECTIONTAG HEADER PARAGRAFH steps
{
/* Add section details to linked list */
addtosectlist{&feect,&lsect,$1,482, 83, FRONTQ) ;
/* Find equipment reguirement details if present add add to
linked list. Alse update list with step details */
ftl = efopen{“templ", "w"};
fprintf (ftl1, "%s\n",$3);
fclose{ftl};
system{"equipparse <templ >temp2*};
fsect-»sectequiplist = getequiplist{};
feect->fatep = firststep:;
fsect->lstep = laststep;
/* Print section detalls and free memory holding these
details */ ;
printsectiondetails (fsect);
sectfree{&fzect,&lzsect);
} .
| SECTIONTAG HEADER PARAGRAPH steps
{
/* BAd section details to linked list */
addtosectlist (&fsect,&lsect, $1, 82, 53, FRONTQ) ;
/* Find equipment requirement details if present add add to
linked list. Also update list with step details */
ftl = efopen{*templ", "w"};
fprintf(ftl, "&s\n*,s3);
fclose{ftl};
system{"equipparse <templ >temp2");
fsect->gectequiplist = geteguiplist{);
fsect->fstep = f[irststep:
fsect->1step = laststep;
H
subsections
{ .
/* Print section details and free memory holding these
details */

92

printsectiondetails (fsect);
sectfree{&fcect, &lsect);
H

H

/* A susection consists of one or more subsections */
subgections : subsection
! subsections subsection

H

/* B subsection consist of a subsection number, a subsection
header and the rest of the subsec¢tion */
subgsection : SUBSECTIONTAG HEADER PARAGRAPH

{

/* Bdd subsection details to linked list */

addtosectlist {&fsect,&lsect,$1,52,%3,BACKS) ;

/* Find equipment requirement details if present and add to
linked list */

ftl = efcpen(*templ", *w"};

Eprintf(ftl, "%s\n", $3);

fclose (££1);

system({"equipparse <templ >temp2®);

lsect-~»sectequiplist = getequiplist(};

}

| SUBSECTIONTAG HEADER steps

/* Add subsection details to linked list. Add step details
to ligt */
addtosectlist {&fsect,&lsect, $1, $2,NULL, BACKQ) ;
lsect->fstep = f[irststep;
lsect->1step = laststep;
}
| SUBSECTIONTAG HEADER PARAGRAPH steps

{ .
/* Add subsection details to linked list */
addtosectlist (&fsect,&lsect,$1,52,%3,BACKY) ;
/* Find equipment requirement details if present and add to
linked list */
fti = efopen(*templ”, *w");
fprintf{ftl, "%s\n",$3);
fclose{ftl};
system{"equipparse <templ >tLempZ"};
lsect-»sectequiplist = getequiplist(};
/* Add step details to linked list */
lsect->fatep = firststep;
lsect->lstep = laststep; .
} ' o

I

/* A section or subsection can contaln one or more steps */

steps : STEPTAG PARAGRAPH '

{

) /* Collect Getails of first step including any equipment

requirement detaills if present */

firststep = NULL;

lastgtep = NULL;

addtosteplist (&firststep,&laststep,$1,$2);

ftl = efopen{"templ®,"w"};

fprintf{ftl, *%s\n*,52};

fclose(ftl);

system({*equipparse <templ >temp2"):

laststep->stepequiplist = geteguiplist(};

}
| steps STEPTAG PARAGRAPH

93

{

/* Collect details of all other steps including equipment
requirement details if present */

addteosteplist{&firststep,&laststep,$2,83});

ftl = efopen{"templ®, *w");

fprintf(ftl, *%s\n",s$3);

fcloge(ftl);

system{"equipparse <templ >temp2®);

laststep->stepequiplist = geteguiplist ();

}

2% /* énd cof rules */

yyerror (s} /* for parse error */
char *g;

{

fprintf {stderr, *%s: %s“, progname,s);
fprintf(stderr, *near line 3%d\n*, yvlineno);
fprintf{stderr, "in chapter 2%d4\n”*, c¢hptno);
fprintf (stderr, "lookahead token %d\n*, vyychar):
fprintf {(stderr, *“lookahead token %s\n", vytext):;

94

Appendix 9. Lex specification for rescanning

%{
/* ___

*

* File: equipreq.l

* System: The liquid zone control manual parsing system

*

* Purpose: Gather equipment details from PARAGRAPH token attribute

. .

* Programmer: Joozar Vasi

* Date: 3 Apr. 1982

* Detail:

*

e */
i e Gt L L L e Include Files -—-----wmommmo oo */
#include <gtrings.h>
#include <malloc.h>
$include *header.h"

I mm e e Module Definitions ------------+--————— */
/* none */

IH e e - Imperted Variables ---------cwoomnoo—- */

extern FILE *fp; /* from maini.c */

[* mrmm e - Imported Functions ------=--=m--ce---- */

extern void addtoequiplist(); /* from equiputilities.lib.c

*/ .

extern void addinfotoequiplist(); /* from equiputilities.lib.c

*/ .

extern void printreqtofile{}; - A* from equiputilities.lib.c¢

*/ . ' .

extern vold equipfree(); /* from utilities.lib.c */

i e L TP Exported varibles ---ce--o-ommmmommmon */
/* none */

SN e e Local Typedefs --—-----—-—m-mmmae */
/* none */

/¥ e Local Global variables --—---------—-- */

static char curattribute[EQUIPLEN] ;

static " c¢har curoperator[EQUIPLEN];

static char curvalue[EQUIPLEN] ;

static equipptr efrontptr=NULL; /* for linked list of

equipment details */

static equipptr ebackptr=NULL;

/¥ e - Local Functions --------- e L */

/* none */

95

/* none */

%) ’

Zstart KEYWORD

%o 5000

%a 5000

DIGITS [0-%]1+

ALPHANUMERIC [&a-zA-Z0-9]

OTHER [*a~zA~Z0-9]

%%
BEGIN KEYWORD;

<KEYWORD>[aA]luto/{OTHER} |

<KEYWORD>AUTO/ { OTHER } {
/* make auto the desired state of equipment */
strecpy fcurvalue, "auto®);
fprintf (£p, "Found equipment wvalue !%s!\n",yytext);
BEGIN 0O; .
}

<KEYWORD> [sS]1tandby/{CTHER} |

<KEYWORD>STANDBY/ { OTHER } {
/* make standby the degired state of equipment */
strcpy (curvalue, "standby"} ;
fprintf{fp, *Found equipment value (%s!\n",yytext};
BEGIN O; '
}

<KEYWORD> [pP]ressure/{OTHER} ({
/* make pressure the desired attribute of equlpment */
strecpy (curattribute, "pregssure”};
fprintf (fp, "Found eguipment attribute !%s!\n",yytext};
BEGIN 0;
}

<KEYWORD>CLOSED?/{OTHER} |

<KEYWORD>[Cc]losed?/ {OTHER} |

<KEYWORD> {Cc]leging/ {OTHER} {
/* make cleosed the degired state of esquipment */
strepy (curvalue, *clogsed™} ;
fprintf (fp, "Found equipment value !%$s!\n*,yytext};
BEGIN. O;
}

<KEYWORD>QPEN/ {OTHER } I

<KEYWORD> [0Go]pen/ {OTHER} |

<KEYWORD:> [Celpening/{OTHER} {
/* make open the desired state of equipment */
strcpy (curvalue, "open') ;
fprintf (fp, "Found equipment value !%s!\n",yytext);
BEGIN 0;

}

<KEYWORD>OFF/ {OTHER} !

. <KEYWORD>{Qo]f£f/{OTHER} {
/* make off the desired state of egquipment */
strcpy {curvalue, "off*)};
fprintf (fp, "Found equipment value !%g!\n",yytext);
BEGIN 0;
3

<KEYWORD>ON/ { OTHER } I

<KEYWORD>[Ooln/{OTHER} {
/* make on the desired state of equipment */
gtrepy {curvalue, "on") ; _
fprintf (fp, "Found equipment value !%s!\n"*,yytext};
BEGIN 0O; .
}

<KEYWORD>controllers?/{OTHER} {

96

/* make controller the desired attribute of eguipment */
strepy {(curattribute, "controller"};
fprintf (fp, "Found eguipment value !%s!\n",yytext};
BEGIN 0; '
}
<KEYWCRD>TK{DIGITS}/{CTHER} |
<KEYWCORD=P{DIGITS}/{OTHER} |
<KEYWORD>CP{DIGITS}/{OTHER} |
<KEYWORD>HTR{DIGITS}/{CTHER} |
<KEYWORD>V{DIGITS}/{OTHER} |
<KEYWORD>PV{DIGITS}/{OTHER} |
<KEYWORD>PCV{DIGITS}/{OTHER} [
<KEYWORD>PRV{DIGITS}/{OTHER} |
<KEYWORD>LCV{DIGITS}/ {OTHER} |
<KEYWORD>FC{DIGITS}/{OTHER} |
<KEYWORD>FI{DIGITS}/{OTHER} i
<KEBEYWORD>IEC{DIGITS}/{OTHER} {
/*create and insert nede in equipment details linked list */
addtoequiplist {&efrontptr, &ebackptr,yytext);
fprintf (fp, "Found new equipment item !%s!\n®,yyvtext);
BEGIN 0;

}
<KEYWORD>{DIGITS}/{OTHER} {
/* make number the desired state of equipment */
strepy {curvalue, yytext) ; _
fprintf {fp, "Found eguipment wvalue !%s!\n",yyteéxt);
BEGIN 0;
}
(vMIZE Am) o _ - .
/* found end of sentence */ -
/* set default attribute, operator and state of egquipment */
if {*curattribute == '\{'}
strepy {curattribute, "state"};
if {*curoperator == '\0')
gtrepy {curcperater, "="};
if {*curvalue == '\0}')}
strepy {curvalue, "unknown"} ;
/* put details of new equipment itemsg in linked list */
addinfotoegquiplist(efrontptr, curattribute, curoperator, curvalue);
/* intialize current attribute,operator, and value */

*curattribute = "\0';
*curoperateor = *'\0';
curvdalue = '\0;

BEGIN KEYWORD;

}
{ALPHANUMERIC} { : —
/* delete interesting characters */

BEGIN 0;
}
{OTHER} {
/* delete everthing ¢f no interest */
BEGIN KEYWORD;
}
%% :
yywrap () /* dump equipment reguirement details to file and reclainm
memory */

{

printregtofile{efrontptr};

equipfree{efrontptr);

fprintf {fp,"# of lines processed in paragraph %d\n",yylineno};
}

97

Appendix 10. Lex specification for part of the preprocessor

%{
/* ___

*

* File: preprocessor.l

* System: Liquid zone control manual parsing systen

*

* Purpose: The lexical analyzer for deleting header information present
on top of page

* Preogrammer: Joozar Vasi

* Date: 26 June 13592

* Detail:

*

K e e e e e e e e o o e e e */
I e e - Include Fileg -------mmmomo o */
#include <strings.h>
L e ettt LT Module Definitions —-----w-- ———— - */
define GO 2 /* success in returning from lex */

define LINELEN 1000 /* length of longest line in input */

T i mmmm e Imported variables ----------ommmmen o */
/* none */

S* e Imported Functions -------=-voooo——- */
/* none */

A e Exported Varibles ------=-----o---o-an */
/* none */

F A i Local Typedefs --------omomommmmmmen */
/* nene */

/* meemmmmm e —- Local Global Variables -—---—-—--——uooao */

static FILE *fpl; /* for diagnostic messages */

e it Local Functions -----—-—---wnmoomo——- */
/* none */

F e e L E L P Global Functions -----s=w--ooooomoooomo */
/* none */

/* ___ */

%}

Zstart SCAN

DIGITS [1-8][0-9}*

CHAPTERNC {DIGITS}\.0

SECTIONNO {DIGITS}\.{DIGITS}
SUBSECTIONNC {DIGITS}\.{DIGITS}\.{DIGITS}
%%

o8

extern void getsect(}; /* function to get current
chapter, section, subsection */ :

static int chptno; /* current chapter number for
error checking */ _

gstatlc int chpt; /* current chapter number obtained
from text */

gtatic int sectho; ' /* current section number for
error checking */ .

static int sect; /* current section number obtained
from text */

static int subsectno; /* current subsection number
for error checking */

stati¢ int subsect; /* current subsection number
obtained from text */ :

static char yvytextbuf [LINELEN]; /* for deleting unwanted
text */

static int yytextbufindex; /* index for yytextbul */

<SCAN>{CHAPTERNO} {
/* Found chapter number. ExXtract current chapter number and write
matched text te output */
getsect {yytext, &chpt, §, &subsect) ;
chptne = chpt;
sectno = subsectnoe = 0;
ECHO;
BEGIN ©;
return GO;
) .
[\n] [\ni+{CHAPTERNO} {
/* Found chapter number. Extract chapter number */
getsect {yytext, &chpt, &gect, &subgect};
/* 1f chapter number is already found delete rest of line */
if {chpt == chptno)

strepy {yytextbuf , yytext) ;
yytextbufindex = strlen(yytextbuf);
while {(yytextbufl{yytextbufindex++] = input{}) != '\n'};
yytextbuf [yytextbufindex] = '\0*;
fprintf (fpl, "Deleted line !%s! in line
13d1\n",yytexthuf,yylineno}; .
printf{*\n\n");
unput ('\n'};
}
/* if chapter ig in order then write matched text te output */
else if {chpt == ++chptno)
{
fprintf (fpl,"found chapter new chapter !3d4d! in line
13dt\n",¢chptno,yylineno) ;
sectno = subsectno = 0;
ECHO;

3
else
/* 1f chapter is not in order print error message and write
matched text to ocutput */
: {
fprintf({fpl, "Error: expecting chapter :%d!, found chapter
124'\n¥, chptno--,chpt) ;
ECHO;
H
return GO;
}

99

[An] [\n] +{SECTIONNO} {
/* extract current chapter number and section numper */
getsect (yytext, &chpt, §, &subsect};
/* if invalid chapter is found print error message and write
matched text to output */
if {chpt != chptno}
{
fprintf{fpl,*Error: in section number !%d! in
line\n",gectno,yylineno};
fprintf{fpl, "Expecting chapter number '%d! but received
chapter !%d!\n",chptno,chpt);

ECHO;

}
/* 1f section number is already found delete rest of line */
else if (sect == sectno)

{

strepy {vytextbul ,yytext);
. yytextbufindex = strlen{yytextbuf);

while {(yvtextbuf[yvtextbufindex++] = input{)) != *‘\n'});

yytextbhuf [yytextbufindex] = '\0';

fprintf (fpl, "Deleted line !%s! in line
1gdi\n",yvtextbuf,yylineno) ;

printf{*\n\n");

unput (‘\n'};

/* if valid next section is feund write matched text to output */
elge if {(sect == ++zectno} . -

{ .
fprintf{fpl, *Found new section 1%d4d! in line
1%d!i\n",sectno,yylineno}; -

subsectno =0;
ECHO;
}

/* if section number is out of order print error message and write
matched text to output */ '

else

{
fprintf (fpl, "Error: expecting section !%d!, found secticn

134! in line !'2d!\n",sectno--,sect,yvylineno};
. ECHO;
)
return Go;
}
{\n][\n]+{SUBSECTIONNO} {
/* extract current chapter, section and subsection number */
getsect (yytext, &chpt, §, &subsect) ; -
/* if invalid chapter or section number is found print error

message and write matched text to output */
if (chpt t= chptnoc || sect != sectno)

fprintf(fpl, *Error: in subsection number !%d! in line !%4!
\n*,subsectno, yylineno}; '

fprintf {fpl, "Expecting chapter number and section number
1%4! 1%d4!\n",chptno, secthoj ; .
fprintf {fpl, "Received chapter number and sectne !%d! !%d!\n"

. Chpt,sect) ;
ECHO;
/* if subsection number already found delete rest of line */
else if (subsect == subsectno)
{

strepy (yytextbufl, yytext}; ;
yytextbufindex = strlen{yytextbuf); i
while {{yytextbuf|[yytextbufindex++] = input{}) i= *‘‘n'}; ' ;

100

yytextbuf {yytextbufindex] = '\0';

fprintf (fpl,*"Deleted line. t%s! in line
12d!\n" ,yytextbuf,vylineno};

printf ("\n\n*);

unput {'\n');

/* 1if valid subsection is found write matched text to ocutput */
else if (subsect == ++subsectno)
{
fprintf (fpl, "Found new subsgection no !%d! in line
'%d!\n",subsectno,yylineno);
ECHO;
}
/* if subsgection is out of order then print error message and
write matched text to output */
elgse
{ .
. fprintf{fpl,*Error: expecting subgection !%d!, found
subsection !%d! in line i%d!\n",subsectno--,subsect,yylineno);
ECHO;
}
return GO;
}
f\nl { ECHO; return GO;}
. { ECHO; return GO;}
2%

main()
{
fpl = fopen(“"preprocess.messages", "w"};
BEGIN SCAN;
while (yylex{) == GO);
fclogse{fpl);
o}
yywrap{}
{

printf (*\n\nECF\n"}):; _
fprintf{fpl,"# of lines processed !%4!",yvlineno);
} .

/* fetch chapter, section and subsection number if applicable */
void getsect{line,chpt,sect,subsect)

char *line;
int *chpt;
int *gect;
int *gubsect;

{

int chapter, section, subsection;
int 1i;

int peintctr = 0;

char temp[LINELEN};

strcpy (temp, 1ine);
for{i=0;i<strlen{temp);i++)
if{ templi] == '.* }
{

temp(i} = ' ';
pointctr++;

' }
if { peintectr == 1)

101

streat {temp, " 0%};
sgeanf (temp, *$d %d %d*, &chapter, §ion, &subsection};
*chpt = chapter;
*sect = gection;
*subsect = subsection;
} /* getsect{line,chpt,sect,subsect} */

102

Appendix 11. Printing routines of GENT

/* e e e . ———————————————— S

*

* File: printsect.lib.c

* System: The liguid zone control pargsing system

x*

* Purpecse: Print section detalls using routines from print.lib.c

*

* Programmer: Joozar Vasi

* Date: 24 March 1992

* Detail: :

*

e e e e e e e e e e e e e e e T o~ A $1r o A o o e o */
I mm - Include Fileg ~—----mmmmmmmmmmm o */
#include <stdio.h>
#include *header.h"

/¥ mmmmm e Module Definitiong mwmeem-—ceoommmmmmo o */
#define TAGLEN 1000 /* length of character strings
holding context information */ “

fF mmm e Imported Variables --------------eoow- */
extern int chptno; r* from lzcman.y */

/* e - Imported Functions ---------—vom—vrmoo */
extern vold printContextl{}; /* from print.lib.c */

extern void printContextZ(); /* from print.lib.c */

extern void printEndContext (}; . /* from print.lib.c */

extern void printConnect{); /* from print.lib.c */

extern void printReg(}; /* from print.lib.c */

/* e e Exported Varibles —==-w-mom--eoooooooo */

A et i Local Global Variables --------------- */
static char nullstring(] = “*; /* for printing */
D e ek Local Functions --------------—-—-—-—---- */

/* Print one step after another given a linked list of steps */
static :
void printstepsitagi,tag2,header,sptr,ctr)}

char *tagl;

char *tag2;

char “*header;
stepptr sptr;
int ctr;

103

char
char
char
int

char

steptagl {TAGLEN] ;
stepdesc[BTOKENLEN] ;
stepverstring {TAGLEN} ;
stepctr;

nextsteptagl [TAGLEN] ;

/* loop through all the zteps */
while {sptr)}

{

/* Print context schemas for a step */
sprintf (steptagl, "%=-Step-2d", tagl,sptr->stepnum} ;
sprintf (stepdesc, "Step %d. %s*,sptr-»stepnum,spty-

»>stepdetails); :

sprintf (stepverstring, "%s Step %d",tag2,sptr->stepnum} ;
printCentextl (gteptagl, tag2, header, stepdesc) ;

gstepctr = 1; '

printContext2 (steptagl, tag2, header, stepctr, stepverstring}:

/* Print an equipment requirement schema if necessary*/
if {sptr->stepequiplist}
printReq{steptagl, sptr->stepequiplist, ++stepctr);

/* Print end context schema */

printEndContext {steptagl,tag2, header, ++stepctr, stepverstring);

/* Print a connect schema to end of calling

section/subgection ¢r to next step */

>gstepnum} ;

}

if {sptr->nextstep)}
sprintf (nextsteptagl, "$s-Step-%4d",tagl, sptr->nextstep- .

printConnect (steptagl, nextsteptagl, ++stepctr,1);
}

{
printConnect {steptagl, tagl, ++stepctr, ++ctr};

}
Sptr = sptr->hnextstep;

else

/* print one subsection after another if present in a section */

static
volid

printsubsections(tagl,tag2,sptr,ctr}

char *tagl;

c¢har *tag?;

sectptr sptr;

int cLr;

{

char subsecttagl [TAGLEN] ;
char subsecttag?2 [TAGLEN];
char subsectsteptagl [TAGLEN];
char nextsubsecttagl{TAGLEN];
char subsectverstring[TAGLEN];
char *subsectdesc;

int subsectctr;

104

while ({sptr)
{

/* Print context schemas for heginning of subsection */
sprintf {subsecttagl, "%$s-%d*,tagl, sptr->sectnum) ;
sprintf {subsecttag2, "%s.%d", tag2, sptr->sectnum) ;
subgectdesc = {(sptr-»sectdetails == NULL)?nullstring:sptr-
»>gectdetails);
printContextl (subsecttagl, subsecttag2, sptr-
»header, subsgsectdesc) ;
subsectctr = 1;
printCeontext2 (subsecttagl, subsecttag?, sptr-
»header, subgsectctr, gptr->header) ;

/* Print equipment requirement schema if necessary */
if {sptr->sectequiplist)
printReq{subsecttagl, sptr-
>secteguiplist, ++subgectcetr);

/* Print steps in subsection if preszent */
if {sptr->fstep) '
{
/* Connect to first step */
sprintf {subsectsteptagl, "%s-Step-%d*~, subsecttagl, sptr-
>fstep-»stepnum} ;

printCeonnect (subsecttagl, subsectsteptagl, ++subgsectectr,1);
/* Print one step after another and a connect schema
at the end */ .
) printsteps (subsecttagl, subsecttag?, sptr->header, sptr-
»>fstep, subsectctr);
}

/* Print end context schema */
sprintf (subsectverstring, *%s %s", subsecttag?, sptr->header);
printEndContext (subsecttagl, subsecttag2, sptr-

>header, ++subsectctr, subsectverstring);

/* Print a connect schema to new subsection if present else
print a connect schema to the calling section */
if {sptr->nextsect)

sprintf {nextsubsecttagl, *%s-%d", tagl, sptr->nextsect-
>gaectnum) ; :

printConnect {subsecttagl, nextsubsecttagl, ++subsectetr,1});

}

else
{ _
printConnect (subsecttagl, tagl, ++subsectety, ++ctr};
) .

spLr=sptr->nextsect;

}
E e Exported Functions --------—-—---—----——o */

/* Print complete section details */
veid printsectiondetails(fsect)

gectptr fsect;

{
int gsectelLr;

105

char secttagl{TAGLEN]; ' 5
char secttag2|{TAGLEN]; :
char *sectdesc; :
char sectsubsecttagl[TAGLEN] ; :
char sectsteptagl [TAGLEN]; i :
extern void printsteps{);

extern void printsubsections(};

/* Print context schemas for beginning of section */

sprintf (secttagl, *%d-%d", chptno, fsect->sectnum) ;

sprintf {secttag?, "%d.%4", chptne, fsect->sectnum) ;

sectdesc = {(fsect-»sectdetails == NULL)?nullstring:fsect-
»gectdetails}; :

printContextl (secttagl,secttagl, fsect->header, sectdesc) ;

sectctr = 1;

printContext2 (secttagl, secttag2, fsect->header, gsectetr, fsect-
>header} ;

/* Print equipment requirement schema if necessary */
if {fsect-»gsectequiplist})
printReg{secttagl, fsect->gectequiplist, ++sectety);

/* Print steps in section if present */
if {fsect->fstep)
{

/* Connect to first step */ .
_ sprintf (sectsteptagl, "%s-Step-%d",secttagl, fgect->fotep-
>stepnum) ; '
printConnect {secttagl, cectsteptagl, ++sectctr,1);
/* Print one step after another and connect to section */
printsteps{secttagl,secttag2,fsect—>hEader,fsect—_
>fstep,sectetr);
}

- /* Print subsections if present */
if (fsect->nextsect)
{
/* Connect to first subsection */
sprintf (sectsubsecttagl, "%s-%d", secttagl, fsect->nextsect -
>gectnum} ; :
printConnect (secttagl, sectsubsecttagl, ++sectetr, 1) ;
/* Print one subsection after another and connect to last
schema of section */
printsubsections (secttagl, secttag?, fsect->nextsect, sectetr);
}

/* Print end context schema */ et

printEndContext {secttagl, secttag2, fsect->header, ++sectctr, fsect- -
>header) ; -

}

106

/* ___

*

* Module: print.lib.c

* System: The liquid zone contrel manual parsing system

¥

* Purpose: Functions used by printsectiondetails() in lzeman.y toe print
* Schemas

*

* Programmer: Jeoozar Vasi

* Date: 24 March 1892

“* Detail:

* .

K e o Ak ki o T o o o o o . . . i S o m m — — — */
f* mmmm e Include Files ---------mcmmcewwwno oo */

#inciude <stdio.h>
#include “header.h*

/¥ mm e Imported Variables ------------------- */
extern FILE *fpl; /* from main.c */
FE e - Imperted Functions -«-—wwe-—-o——omomoooo— */

e Global Functiong ------------------—-—-- */

/* Print def-context schema for section, subgection, or step, indicating
the context of the displayed instructions */
void printCentextl {tagl,tag2,header,desc)

c¢har *tagl;
char *tagz;

char *header;
char *desc;

{

107

fprintf {fpl, *\n\n\ {defschema context-%s\n\t",tagl};
fprintf {fpl, "\ {instance-of def-contextiy}\n\t"};
fprintf {fpl, *\ {context %s\)\n\t*,tagl};

fprintf (fpl, *\ (header \"%s %s\"\}\n\t",tag2,header};
fprintf (fpl, “\ (desc \"%s\"\)\} ", desc);

fflush{fpl);

} /* printCeontextl{tagl,tag2,header,desc) */

/* Print display schema accompanying def-context schema for section,
subsection, or step */
veid printContext2(tagl,tag2, header,ctr,verstring)

char *tagl;
char *tag2;
char *header;

int ¢tr;
char *verstring;
{

fprintf{(fpl, "\n\n\ {defschema display-%s-a\n\t",tagl};

fprintf {fpl, "\ {instance-of display\}\n\t");

fprintf {fpl, "\ {context \{%s %A\)\)}\n\t*,tagl,ctr};

fprintf (fpl, "\ (header \"%s %s\"\J\n\t",tag2,header};

fprintf(fpl, "\ {desc \'Proceed with %= Verlflcatlon AUATAG
;verstring); -

fflush({fpl}; :

} /* printContext2{tagl,tag2, header,ctr,verstring) =~/

/* print an equipment requirement schema from 11nked list of equipment
details */
void printReq(tagl,ptr,ctr)

char *tagl;
equipptr ptr;
int ctr;

{

int equipctr;

if {ptr != NULL)

{

“fprintf (fpl, "\n\n\ {defschema req-%s\n\t*,tagl):

fprintf(fpl, "\ (instance-of requirementyj\nit"};

fprintf{fpl, "\ {context \(%s #dA\)\)\n\t*,tagl,ctr);

fprintf {fpl, *\ (equipment-list"};

equipctr = 0;

while(ptr != NULL) -
{
equipcty++; _
Eprintf {(fpl," N{"};
fprintf {fpl, "%d", equipctr); _
fprintf({fpl," %s*,ptr->equipname):
fprintf{fpl,* %e",ptr-requipattribute);
fprintf{fpl,* \"%s\"",ptr-»equipoperator);
fprintf (fpl,* %s",ptr-»equipvalue);
fprintf {(fpl, "\}*);
pLr=ptr->next;
3

fprintf (fpl,"\}\)y);

ffiush{fpl};

H

} /* printReq{tagl,ptr,ctr) */

/* Print ending context schema for section, subsection, or step */
void printEndContext (tagl,tag?,header,ctr,compstring)

108

char *tagl;

char *tag2;

char *header;

int ctr;

char “*compstring;

{

fprintf (fpl, "\n\n\ {defachema display-%$s\n\t*,tagl);
fprintf (fpl, "\ (instance-of display\l\n\t");
ferintf{fpl, "\ (context \(%s ZA\}\)\n\t",tagl,ctr);
fprintf {fpl, "\ {header \"%s %s\"\}\n\t*,tag2, header);
fprintf {fpl, *\{proc-stream *Completed\"\)}\n\t*);
fprintf (fpl, *\ {desc \"%s completed\"\)\}*,compstring);
fflush{fpl);

} /* printEndContext {tagl, tag2,header,ctr,compstring) */

/* Print connect schema to connect from oche context te another */
void printConnect (fromTagl, toTagl, fromCtr, toCtr)

char *fromTagl;
char *toTagl;
int fromCtr;
int toCtr;

{ g
fprintf{fpl, *\n\n(defaschema connect-%s-a\n\t", fromTagl);
ferintf (fpl, "\ {instance-of connecti\)i\n\t"};
fprintf {fpl, *\ {context \(%s Zd\)\)\n\t",fromTagl, fromCtr);
fprintf (fpl, *\ {go-context \ {%s %A\}\)\)",toTagl,toCtr);
fflush{fpl);

1 /* printConnect {fromTagl, toTagz, tromCtr, toCtr) */

109

Appendix 12. Header file for GENT

/* __ e e
* :

* File: header.h

* System: Liquid zone contrel manual parsing system

*

* Purpose: Header file for all files in this system

*

* Programmer: Joozar Vasi

* Date: 24 Cct. 1992

* Detail:

*

o e e e e m————————— * /
[* o m e me e ———— Global Definitions -------w-cooeooo */

#define BTCKENLEN 20000 /* maximum length of paragraph token */
#define STOKENLEN 500 /* maximum length of all other tokens */

#define FRONTQ 100 /* append element of linked list in front */
#define BACKQ 200 /* append element of linked list at the back */
$define EQUIPLEN 50 /* maximum length of equipment item details */

I ¥ m - Global Macros ----—--—~-re-mcm e */

f¥ —mrmm e - Global Typedefs e mmmmeeomomoeo */

typedef int flag;

typedef struct enode { /* a basic equipment node */

flag newnode; ' /* flag indicating fresh hode */

char *equipname; /* the name of eguipment */

char *equipattribute; /* the attribute of eguipment item
to be checked */ _ _

c¢har *equipoperator; /* indication of relation hbetween
equipment attribute and equipment value */

char *equipvalue; /* the value of the equipment
attribute */)

struct enode *next; /* next entry in chain */

} equipnode, *eguipptr;

typedef struct stnode

{ /* basic =ztep node */

int stepnum; . /* step number */

char *stepdetails; /* step details */-

equipptr stepequiplist; /* equipment requirement details */
struct stnode *nextstep; /* next step if present */

} stepnode, *stepptr;

typedef struct senode
{ /* bagic section/subsection node */

int sectnum; /* section/subsection number */

char *header; /* section/subsection header */

char *sectdetails; /* section/subsgsection details if
present */

stepptr fstep; /* first step in section/subsection
if present */

stepptr latep; /* last step in section/subsection

if present */

110

equipptr sectequiplist;
struct senode *nextséct;
present*/ :
} sectnode, *sectptr;

/* ____________________________
/* none */

/*
/* none */

/*. _____________________________

/* equipment reguirement detalls */
/* next section/subsection 1f

External variables ---------------—--- */
External Functions ------------—--—----- */
______________________________________ */

i1

Appendix 13. Utilities used by GENT

/* ___
*

* File: utilities.lib.¢

* System: The liquid zone control manual parsing system

*

* Purpose: Certain utility functions

L

* Programmer: Joozar Vasi

* Date: 24 March 1992

* Detail:

*

e e e e o e e o o — — — —— ——— ————— - e e e */
D e e e Include Files =~-------mmmmmcu oo */

#include <stdioc.h>»
#include <strings.h>
$include <malloc.h>
#include "header.h*

F i it Local Functions ------weo-—ommmmmmmamon */

/* allecate an intialized node that holds section details */
static

sectptr sectalloc ()
{
sectptr p;

p=(sectptr) malloc{sizeof (sectnode));
p->sectnum = 0;
p->header = NULL;

112

p-»sectdetails = NULL;
p->fstep = NULL;
p->lstep = NULL;
p-»sectequiplist = NULL;
p->nextsect = NULL;
return(p);

} /* sectalloc{}) */

/* allocate ah initialized node that holds step details */

static
stepptr stepalloc{}

{
stepptr p:

p=(stepptr) malloc{sizeof (stepnode}); -
p->stepnum = 0;

p->»stepdetails = NULL;
p-»stepegquiplist = NULL;

p-»nextstep = NULL;

return(p};

H /* stepalloc{) */

/* free memory of equipment requirement details */
veid equipfreeiptr)

equipptr pLY;

{ .
equipptr ptrl,ptr2;

pLrl=ptr;

while {ptrl)
{
free(ptri-s>equipname) ;
free(ptrl->equipattribute);
free(ptri->equipoperator};
free{ptri-»eguipvalue);
pLr2=ptrl->next;
free{ptrl);
ptrl=ptr2;
¥

} .

/* free memory of step details */

gtatic —

void stepfree{ptr)

stepptr ptr;

{
extern void egquipfree();

stepptr ptrl,ptr2;
equipptr ptr3;

ptrl = ptr;
while(ptrl)
{
ptr2=ptrl-»nextstep;
free(ptrl->stepdetails);
ptr3 = ptrl-»stepequiplist;
equipfree(ptr3};
free{ptrl);
ptrl=ptr2;

113

F i Exported Functions --------—-—---------no

/* free memory of gection details */
void sgectfree(fsect, lsect)

sectptr *fzect;
sectpty *lsect;

{

extern void equipfree();
sectptr ptri,ptri;

stepptr ptre;

equipptr ptr3;

ptr0 = *fgect;
while (ptr0)
{

ptrl = ptri-»nextsect;
free{ptri0->headery};
free{ptri->sectdetails);
ptr2 = ptr0->fstep;
stepfree(ptr2};

ptr3 = ptrio->gectequliplist;
equipfree(ptr3};
free{ptro};

ptri=ptrl;
}
*fzect = NULL;
*lgsect = NULL;
} /* sectfree{fsect,lsect) */

/* fetch chapter, section and subsection number if applicable */
void getsect(line,chpt,sect,subsect)

char *line;
int . *chpt;
int *sact;

- int | *subsect;

{

extern char *strsave(); /* in this f£ile */
int chapter, secticn, subsection;

int i;

int pointetr = 0;
char *temp;

temp = strzave(line);
for (i=0;i«strlen(temp);i++)}

if{ cemp(i] == *'.' }
{
temp[i] = * *;
pointctr++;
}
if { pointctr == 1)

strcat (temp,* 0");
sscanf (temp, "2d %4 34", &chapter, §ion, &subsection);
*chpt = chapter;
*sec¢t = section;
*subsect = subsection;
free(temp); :
} /* getsect {line,chpt,sect, subsect) */

114

/* put a node that holds subsectiondetails in linked list */
vold addteosectlist{fsect,lsect,sectno, head,details,where)

sectptr “*fgect;

sectptr *lsect;

int sectno;

char headl];
. ¢char details(];

flag where;

{

extern sectptr sectalloc{); /* in this file */

gsectplr ptLr;

ptr = sectalloc();
ptr-»sectnum = secthno;
ptr->header = head;
ptr-»gectdetails = details;
if {*lsect == NULL}

*fgsect = *lgsect = ptr;
else if {where == FRONTQ}

{ .

ptr->»nextsect = *fgect;

*fsect = ptr;

H
elsge
{
{(*lgsect}->nextsect = ptr;
*lsect = ptr;
}
} /* addtosectlist{fzect,lsect, subsect, head,details,where) */

/* put a node that helds step details in linked list */
veld addtosteplist{firststep,lastzstep,stepno,details)

sgtepptr *firststep, *laststep;
int stepno;

char *details;

{

extern stepptr stepalloc{);
stepptr ptr; .

ptr = stepalloc{};
pLr-»gstepnum = stepno;
ptr->gtepdetails = details;
if (*laststep == NULL}
*firststep = *laststep = ptr;

elge
{
{(*laststep)->nextstep = ptr;
*laststep = ptr;
}
} /* addtosteplist (firststep, laststep, stepno,details} */

/* save string s somewhere */
¢har *gtrsave(s}

char *sg;

115

{
char *p;

if {{p = malloc(strien{s)+1}} != NULL)
{
strepy {p,s);
returnip};
H
} /* *strgave(g} */

/* f£ind number of contiguous newline characters in string */
int findnlchars(str)

char *str;

{
if {index{str,*:\n'} != NULI)
return { {(rindexi{str,'\n'}y - indexistr,'\n')}) + 1 }:
else : :
return 0;
} /* findnlchar{str) */

/* open a file or print error message */
FILE *efopen(file,mode)
char *file, *mode;

{

FILE *fp, *fopen():

extern char *progname;

if {{fp = fopen{file,mode}) != NULL)

return fp;
fprintf (stderr, "%s: can't open file %s mode
%c\n*,progname, file, mode) ;
Texit{l); :
} /* *efopen{file,moda) */

116

gy gy g e .

*

* Module: equiputilities.lib.c

* System:

. .

* Purpese: Functions for collecting equipment item details.

*

* Programmer: Joozar Vasi

* Date: 24 March 19%2
* Detail:

*

B o o A A Ak s M TR T R YR A AR R ML M L . A e ¥ A o r MR A MR A e A At L A W A o o o T o = = —— */
f* mmmemeccm e e e Include Filegs ----------—-—-——-——-——-— */
tinclude <stdio.h>»

#include <malloc.h>

#include *header.h*

F R it Module Definitiong -----------------—-- */
/* none */

F it Imported Variables -------------—----- */
/* none */

e e Imported Functions ----------—-—-—----- */

extern char *strsavel); /* from utilities.lib.c */

extern FILE “*efopen(); /* from utilities.lib.c */

/¥ e e Local Typedefs -wvmu-momcmmm e */
/% nene */

JF e e e Local Global Variables --------------- */
/* none */

/¥ m e Local FPunctions --------—==---—-=-——-———- */
/* allocate a equipment node somewhere */
static :
equipptr elistalloc(}
{
equipptry ptr;
ptr={equipptrimalloc{sizeof {equipnode});
ptr->newncde=0;
ptr->eguipname=NULL;
ptr-»equipattribute=NULL;
ptr-requipoperator=NULL;
ptr->equipvalue=NULL;
ptr->next=NULL; -
return{ptr);
} /* elistalloc{} */

I mm e Exported Functions -------—---------—---- */

117

/* read equipment details from tempZ and store in linked list */
equipptr getequiplist ()

{
"FILE *ft;

int equipctr;
char

ename [EQUIPLEN] ,eattribute [EQUIPLIN] , eoperator [EQUIPLEN], evaluel[EQ
UIPLEN}];

equipptr frontptr, backptr;

extern void addtoeguiplist(};

frontptr = backptr = NULL;
ft = efopen{"temp2*,*r");
while{fscanf(ft,"%d %s %s 3=
¥s*, &equipctr,ename,eattribute, eoperator,evalue} != EOF}

addtoequiplist (&frontptr, &#backptr, ename) ;
backptr-»egquipname = gtrsave{ename};
backptr-requipattribute = strsave{eattribute};
backptr-requipoperator = strsave{eoperator);
backptr-requipvalue = strzave(evalue)};
}

foclose(ft);

return frontptr;

} /* geteguiplist({} */

/* add to linked list of eguipment details a new node */
volid addtoeguiplist{frontptr,backptr,equip}

eguipptr *frontptr,*backptr;
char ‘*equip;

{
equipptr ptr;

ptr = elistallec();
ptr-requipname = strsave{equip);
if (*frontptr == NULL}

*frontptr = *backptr = ptr;

else
- {)
(*backptr)}-»next = ptr;
*backptr = ptr;
3
} /* addtoequiplist {frontptr,backptr,equip} */

. /* update all new eguipment detail nodes by current attribute,
operateor, and state */ .
void addinfoteoequiplist (ptr,attribute,operator,value)

equipptr pLr;

char *attribute;
char *operator;
char *value;
{
while (ptr)
{ .
if {ptr->newnode == 0}

ptr-»newncde = 1;

118

ptr->equipattribute = strgave{attribute);
ptr->equipoperator = gtrsave(operalor};
ptr-requipvalue = strsave{value);

ptr=ptr->next;
}
} /* addinfotoequiplist{ptr,attribute, operator,value} */

/* print eguipment requirement details from linked list to file

*/
veld printregtefile{ptr}

equipptr ptr;
{
int egquipctr;

equipctr=0;

while{ptr}
{
equipctr++;
printf {"3d",equipctr};
printf{" %s",ptr->eguipname};
printf(* %s*,ptr-»equipattribute};
printf (" %=",ptr-=equipoperator);
printf(* %s\n",ptr-»equipvalue};
ptr=ptr->next;
}

} /* printregtofile(ptr) */

119

Appendix 14. Driver programs for GENT

/* o e et e e e e e e e e et

*

* File: main.c

* system: The liquid zone control manual parsing system

*

* Purpose: Call yyparse() and output files for translated text and
diagnostic

* messages from yylex(}

* Programmer: Joozar Vasi

* Date: 13 April 1%%2

* Detail:

*

K e e e e e e e e e e e e e i A o o e o o o o m m m m m m m m m m —— i . */
I e - Include Fileg wv---omommmmo - */

f¥ mmmmmmmm e Imported Functions ------------—------- */
extern int vyparse(); /*from v.tab.c */

extern FILE “*efopen(); /*from lexutilitiesz.lib.c*/

/¥ e - Exported Varibleg w-wae——oooomomm - */
FILE *fp: /* a file for writing Lex messages */

FILE *fpi; - /* a file for writing translation */

char “*progname; /* program name */

D e it Local Typedefs --------------- R */

main(argce, argv)

int argce;
char *argv(l];
{

120

extern FILE *fp;
extern FILE *fpl;
extern char *progname;

progname = argv([0];

fp = efopen{"lexoutput", *w"};
fpl = efopen({*artoutput”,"w");
yyparse(};

fclose(fp);

fclose(fpl);

}
/* ___

*

* Module: mainl.c

* System: The liquid zone control manual parsing system

*

* Purpose: Call yylex() and open ocutput files for equipparse

*

* Programmer: Joozar Vasi

* Date: 13 April 19%2

* Detail:

*

B e e A e */
F I e e T e Include Files -----i-mmmmmmmm e */
include <«stdioc.h>
I e e Module Definitions --------=c--c———- */

/* none */
J* mm e Imported Variables ---—-—-—-——-———————— */
/* none */
/¥ Imported Functions --------~v-evreeo—-o */
extern int yylex(); /*from lex.yy.c */
extern FTILE “*efopen(); /*from utilities.lib.¢c */
/¥ mrmm e S Exported Varibles -----smvommmeem oo */
char *progname; /* program name */
FILE *fp; /* for diagnostic messages from yylex{}) */ -
[* mm - "Local Typedefs ---------mmmeccimnen */)
/* none */ ' '
F e e e e T T Local Global variables -------------w- */
/* none */
fF e Local Functiong ----—----ecemeeumo—mooonn */
/* none */
S ¥ emee e - Local Functions -------=-w--me—ecmmoo—o */

121

main{argec,argv)

int argc;
char *argvl(];

{

progname = argv([(];

fp = efopen{*lexcutpucl®,"w");
yylex{)};

fclose(fp);

}

122

Candidate's full name:

Place and date of birth:

Permanent address:

Schools Attended:

Universities attended:

Publications:

VITA
Joozar Khozem Vasi

Surat, Gujarat, India
October 26, 1962

42, Himgiri
Peddar Road
Bombay 26, India

Campion School, Bombay, Maharashtra, India
January 1969 - December 1977

K. C. College, Bombay, Maharashtra, India

May 1978 - May 19384

' Northwest Technical College, Archbold, Ohio, U.S.A.

September 1984 - Febuary 1985

Stevens Institute of Techonology, Hoboken, N.J., US. A
August 1986 - May 1988

University of New Brunswick, Fredericton, N.B., Canada

September 1988 - August 1992

B. G. Nickerson, K. Ward and J. K. Vasi, "Semi-automated
Knowledge Acquisition From Plant Operating Procedures”,
Final Report for AECL Research, Chalk River, Ontario,
December 3, 1991, 59 pages.

J. K. Vasi and K. Ward, "Literature search for computer-

‘assisted operating manuals and representation languages”,

Contract Report for AECL Research, Chalk River, Ontario,
December 2, 1991, 20 pages '

