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Abstract

Monte Carlo (MC) methods for solving a system of linear equations exhibit high par-
allelism. The vectorization and incorporation of various sampling methods into the
MC methods are investigated to speed up the computations. The weighted sampling
method and an alias-like method are found to reduce the order of the time complexity
of the MC methods from n®, when using the inverse method, to n? for estimating
unknowns. This results into faster solutions with scalar as well as vector processing as
demonstrated with computational studies on an IBM 3090-180 computer with a vector
facility. The MC methods are shown to be attractive when the number of unknowns is
very large and the estimation of only a very small number of unknowns is required.
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Carlo methods even more attractive.

In this paper, we investigate the effect of different sampling methods incorporated
into the Monte Carlo methods for solving linear equations, We propose the use of
vector processing to reduce the computing time and examine the vectorization of the
Monte Carlo codes. For the computational studies we consider a Laplace’s equation
and develop scalar and the corresponding vectorized codes. The implementation of
these codes is carried out on an IBM-3090 with a vector facility, and the numerical and

processing time performance is analyzed.

2. Monte Carlo Solutions. Let us begin by considering a nonsingular system of

equations defined by

> A, x,=b,, wherer € {1,2,.-+,n}, (1)

s=1
which can also be written in the matrix equation Ax=b. This equation has a unique
solution given by x = A~'b. By introducing H = I— A, whereI is an identity matrix,

Equation (1) can be rewritten as
x = Hx + b. (2)

When the spectral radius of H is less than one (p(H) < 1), the Neumann series expan- -
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(I-H)'b

= I+H+H*’+---+H™+--)b

= Y H" )
=90
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is absolutely convergent and the Monte Carlo solutions can be obtained based on this
equation (Halton, 1970).

2.1. Solution Using An Absorbing Markov Chain . The Monte Carlo method,
suggested in (Forsythe and Leibler, 1950), employs an absorbing Markov chain to solve
a system of linear equations. In a Markov chain, the random walks are governed by a
probability matrix. The indices of the matrix are called states. An absorbing Markov
chain has an absorbing state, at which a random walk is terminated. The procedure for
obtaining the estimate of an unknown is as follows. A set of random walks is defined

on the augmented index set, S = {0,1,...,n}, where index 0 represents the absorbing
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state. Let P denote a (n +1) X (n 41} transition probability matrix, and P;; denote

the probability of transition from state ¢ to state y , with P;; £ 0 unless H;; = 0. Then, -

corresponding to each random walk I' = {r,sq,- -, 8,0}, with r,sy,--+, 8, 7# 0, the

primary estimator for an unknown X, is given as
Xr (P) = ersl Zsl »32 e Zsm—l ,szsm,o (4)

where for j # 0, Z;; = H;;/P;; and for j =0, Z;o = b;/Py0.
The secondary estimator for x, is then expressed by the arithmetic mean of k

primary estimates as follows
1 & |
Y, = £ ST )
i=1

The Y, — %, as & — oo.

Note that the Monte Carlo estimate of each of the unknowns in Equation (3) can
be obtained independently of the remaining unknowns. Therefore, the computations of
each of the unknowns can be carried out in parallel. Further, the computations of the
k primary estimates are also independent of each other and consequently they can be

performed in parallel.

2.2. Solution Using An Ergodic Markov Chain . An applicationof an ergodic

Markov chain for solving a system of linear equations was proposed in {Wasow, 1952).
The random walks in an ergodic Markov chain are not terminated by an absorbing
state, but theyz are predetermined.

In this method, scoring for the primary estimator of an unknown is performed
at every random walk step. For each random walk from an ergodic Markov chain

A={r,81," +,8m-1,8n}, the primary estimator of an unknown x, is given by

XT(A) = br + b31 Zr,31 + b.sz Zr,sl Zsl ,852 + - ..
+bsm Zr.Slzsmz te Zsm—nsm (6)

where Z;; = H;;/P;;. Wasow has proved that the variance of this estimator is smaller
than that of the estimator given in Equations (4) when the absorption probabilities in
the transition probability matrix of an absorbing Markov chain (Pj for:=1,2,---,n)
are relatively small. Further comparison of the variances is discussed in (Edmundson,
1952).



3. Sampling For State Transitions. The state transitions during random walks

are determined by sampling from the transition probability matrix. The inverse method
(Law and Kelton, 1982) is usually used for this sampling process. The scalar code of
this method is given in Fig. 1. On calling this subroutine, the argument i contains a
current state. On return, it contains the next state. Array ¢ denotes a matrix for the
cumulative distribution of the transition probability matrix. The RNUNF function is an
IMSL (IMSL, 1989) routine, which generates uniform random numbers in the interval
(0,1). This subroutine involves sequential searching to locate the interval in which
a generated random number lies. Therefore, the performance of the inverse method
depends on the size of the matrix.

Brown (Brown et al., 1981) proposed a sampling method, which is similar to the
alias method (Kronmal and Peterson, 1979}. In both methods, the original distribution
with n mass points is transformed into an equiprobable mixture of n distributions.
Each distribution has two mass points. The scalar code of Brown’s method is shown
in Fig. 2. Two random numbers are required to generate a sample. The first random
number is used to select the distribution, and the second.is used to choose the mass
point. Array id stores the mass points of the n distributions, and array £ stores the

probabilities of the first mass points of the n distributions. Brown’s method contains

neither do-loops nor if-statements. However, n two-point distributions are required to

représent each row of the transition probability matrix. Therefore, it is not attractive
for large matrices.

We incorporate the weighted sampling method (Sarno et al., 1990) to speed up the
determination of states. This method is an importance sarpling method (Rubinstein,
1981) which samples from an assigned discrete distribution, different from that of the
original problem. The new distribution is chosen here not only to reduce the sample
variance, but also to speed up the computation. In this paper, a uniform distribution is
utilized for the weighted sampling method, since it is vectorizable and requires smaller
execution time both in scalar and vector processing.

Since the sampling for determining states is not carried out based on the original
transition probability matrix, the estimator is multiplied by an adjustment factor in
order to obtain an unbiased solution. The procedure for weighted sampling using a
uniform distribution is explained as follows. Assume that s; is a current state, and

it is located in the i-th row of the transition probability matrix. The probabilities are



{P:, 7 =1,2,---,1;}, wherel; is the number of nonzero probabilities in the :-th row.
Then, we use the weighted sampling method to select the next state, sz, according to a

discrete uniform distribution in the interval [1,L;]. Subsequently, the primary estimator

has to be multiplied by the adjustment factor P;; x l;, where j is the selected state

number.

In the Monte Carlo method employing an absorbing Markov chain, when the

weighted sampling is used to carry out each random walk " = {r,s1,-++,5m,0}, with
T, 81, ,8m # 0, the primary estimator for an unknown x, is given as
)?,.(f‘) = 21‘,81 231,32 Tt Zsm—x Sm 28m s03 (7)

for § # 0,Zi; = Zi;[Pi; x ;] and for j = 0,Z; 0 = Zi[Pyo x L;], where the quantities in
the square brackets represent the adjustment factors. _

According to Equation (4), Z;; = H;;/P;; for j #£ 0, and Z;q = b;/Py; for
7 = 0. Therefore, Z,-J.; = Hyl; for j # 0, and Z,:,{, = b;l; . for § = 0. This means
that the random walks are governed by a uniform transition probability matrix, and
the probability for each row is 1/1; for ¢ =1,2,---,n. Similarly, this applies for the
Monte Carlo method employing an ergodic Markov chain.

Thus, when the weighted sampling method is incorporated into a Monte Carlo
method for solving linear equations, we basically replace the original transition proba-
bility with the probability distribution utilized by the weighted sampling method (Sarno,
1992). That is, the state transitions are sampled uniformly since the weighted sampling

method utilizes a uniform distribution.

4. Vectorization . As stated earlier vector processing can be used to reduce the
computing time of the Monte Carlo codes. The scalar codes when modified for en-
hancing vectorization on vector computers are often called as vectorized Monte Carlo
codes (Martin et al., 1986). In this section, we discuss the vectorization of the Monte

Carlo codes based on absorbing and ergodic Markov chains.

4.1. Absorbing Markov Chain Code. In the scalar Monte Carlo algorithm,
random walks are performed one at a time. The chain is tracked from birth to absorp-
tion. In a vectorized Monte Carlo algorithm, however, a set of random walks are carried
out concurrently. For this purpose, a stack (a set of vectors) is utilized to hold the at-
tribute values of random walks (Mastin et al., 1986). Since the random walk length

is a random variable, the stack may contain absorbed and nonabsorbed walks. When
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the stack contains relatively many absorbed walks, the utilization of vector processing
hardware decreases. Therefore, it is required to remove absorbed walks and gather the
nonabsorbed walks. The gather process should be done in such a way that the trade
off between the vector processing efficiency and the overhead time is optimal.

A vectorized Monte Carlo algorithm using an absorbing Markov chain is given in
Fig. 3. Line 1 is the loop for estimating n unknowns. Initially, v = k. Line 6 shows the
loop for random walks, and limits their length to at most m. For each random walk,
lines 8-13 show that v number of samples are carried out concurrently in vector pro-
cessing. Line 9 shows that the weighted sampling method is used for determining state
transitions. The if-statements are used in lines 10-11 to select particular walks for
the primary estimate calculation. The secondary estimate calculation of the absorbed
walks is done in lines 14-16. Then, the gather process is carried out in lines 18-23.
Line 24 shows that the value of v is updated; i.e. the stack contains only nonabsorbed

walks. This algorithm carries out the gather process in every transition of random walk

since it results in minimum processing time. Finally, in line 26 the average value of the

secondary estimate is calculated according to the number of absorbed walks (k — v);
1.e. all random walks of & samples do not necessarily reach the absorbing state due to

the truncation of random walk length.

When the inverse method is used in the Monte Carlo code, the innermost loop

will be the loop for implementing the inverse method; this loop replaces the weighted
sampling method given in line 9. This innermost loop is vectorizable. However, the
larger loop (lines 8-13) is not vectorizable since the innermost loop contains a go to-
statement.

Brown’s method requires four lines of code (see Fig. 2} to replace line 9. These
lines contain neither loops nor vectorization inhibitors. Therefore, using the weighted
sampling method or Brown’s method the vectorization will be achieved for the larger
segment/loop of the program (lines 8-13). Since k is usually much larger than n, the
vectorization of the larger loop results in less processing time than that of the innermost
loop. Thus, the weighted sampling method enhances the vecforizability of the code, and

reduces the processing time.

4.2. Ergodic Markov Chain Code. Similar to the vectorized algorithm of the
solution using an absorbing Markov chain, the vectorized algorithm here also utilizes

the stack processing. The vectorized Monte Carlo algorithm using an ergodic Markov

6



chain and incorporating the weighted sampling method is shown in Fig. 4. In this

algorithm, the random walk length is predetermined; i.e. all random walks of & samples
have the same length. This fact eliminates the use of if-statements in the primary
and secondary estimate calculation, see lines 8-13 and and lines 14-16, respectively.
Since the termination of random walks is the same for all samples, the gather process
is not required. Note that the average value of the secondary estimate is calculated
according to k samples (see line 18), since all random walks reach termination. Thus, the
vectorization of this algorithm is more eflicient than that of the Monte Carlo algorithm

using an absorbing Markov chain.

5. Time Complexity Analysis. This section analyzes the time complexities of
the Monte Carlo algorithms for solving a system of linear equations. The complexities
are expressed in terms of the number of comparisons and the number of state transitions
for obtaining a primary estimator. The analysis is done in two steps. First, we obtain
the number of comparisons required to determine a next state for each state transition.
Second, we estimate the random walk length; i.e. the number of state transitions in a
random walk required for obtaining a primary estimator. Then, the complexity of the

Monte Carlo algorithm is calculated by multiplying the two results.
5.1. State Determination.

5.1.1. The Inverse Method. When the inverse method is used to determine the
state transitions (see Fig. 1), the algorithm complexity is as follows.

Let V;, denote a random variable representing the number of comparisons required
to determine the next state 83 from a current state s;. We assume that the number of
nonzero probabilities for each row of matrix P is n; ie. Iy =n, for¢i=1,2,---,n.
With this assumption, the results are overestimated since l; < n is the case for a sparse
system of linear equations. The expected number of comparisons and its variance
can be calculated based on the following probability theory. The expected number of
comparisons (E[V;,] ) is given by

n+1
E[Vsi] = E ?:PSh(i-l}: (8)
i=1
while the variance is given by
n-1 2
VarlVa,l = 3Py 6oy (i - E[V,,])". (9)
i=1
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Equation (9) can be simplified as

n41
VarlV,,] = 3 %Py, i1y — B[V, ]2 (10)

i=1

Thus, the inverse method requires ©(n) number of comparisons to détermine a

next state. For example, consider that P, ;,7 =0,1,.--,n, are uniformly distributed;
ie. Py ; = nlﬁ for y = 0,1,---,n. Then the expected number of comparisons is
E[V,,] = 282, and the associated variance is Var[V,,] = ﬂ’%lﬁ, see (Sarno, 1992) for

the details. Thus, it is seen that the expected number of comparisons and the associated

variance depend on the value of n.

5.1.2. The weighted sampling method. When the weighted sampling method

is used for the state determination, it does not require any comparisons and therefore
it requires only a constant time. Thus, the time complexity of the sampling process is
independent of the matrix size. _

As the case of the weighted sampling method, Brown’s method also does not require

any comparisons. This method therefore does not depend on the matrix size.

5.2. The Monte Carlo Algorithms. This subsection discusses the time com-
plexities of the Monte Carlo algorithms for solving linear equations by employing ergodic

and absorbing Markov chains.

5.2.1. Algorithm Using An Ergodic Markov Chain. In the algorithm using
an ergodic Markov chain, the random walk length for each sample is predetermined and
is the same, i.e. the value of 5,, in Equation (6) is given to be the same for all samples.
For solving n number of tinear equations, if we carry out & number of samples for
each of the unknowns, then the total number of state transitions is equal to ks,n. If
we determine s, = n, the total number of state transitions equals kn?2.

When the inverse method is used for determining state transitions, each state tran-
sition requires ®(n) number of comparisons. Thus, the time complexity of the Monte
Carlo algorithm is ©(n3). '

However, when the weighted sampling method is used to determine state transi-
tions, no comparisons are required. Consequently, the time complexity of the Monte

Carlo algorithm reduces to ©(n?).

5.2.2. Algorithm Using An Absorbing Markov Chain. In this case, the ran-

dom walk length (number of state transitions) for each sample is a random variable.
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The expectation of this random variable is found out as follows.
The substochastic matrix Q, corresponding to the transition probability matrix

P, is given as (Kemeny and Snell, 1960)

Q=P¢'j’ 3:3750! (11)
and the fundamental matrix F is given by

F=(1-Q)™, (12)

where I is the identity matrix.
For each sample utilized in estimating an unknown z;, the length of random walks
from state ¢ to the absorbing state 0 is a discrete random variable with the mean given
by (Kemeny and Snell, 1960)

pi =3 Fi. . (13)
i=1

Note that an element F;; of the fundamental matrix F describes the total number
of walks visiting state j, if the chain started from state 7, untilit reaches an absorbing
state.

In order to estimate n unknowns, the expectation of the total number of state .
transitions 1s expressed by

n
EW])=k 2 i (14)
where k is the number of samples for each unknown. This equation implies that the time
complexity for estimating n unknowns is ©(n?). For a transition probability matrix of
size (n+1) X (n+1) wherein the nonzero probabilities in a row are equal, the expected
number of state transitions for estimating n unknowns will be E[W] = kn(n + 1).

When the inverse method is used for determining state transitions, each state tran-
sition requires ©(n) number of comparisons. Thus, the time complexity of the Monte
Carlo algorithm is ©(n3).

In contrast with the inverse method, the weighted sampling method does not require
any comparisons for determining state transitions. Thus, the time complexity of the
Monte Carlo algorithm is only @(n?).

Since Brown’s method does not need any comparisons and requires a constant time

for determining state transitions, the time complexity of the Monte Carlo algorithms
9




incorporating Brown’s method is the same as that of Monte Carlo algorithms imple-

menting the weighted sampling method. Note that Gauss elimination method (a direct

inversion method) has a time complexity of ©(n®) (Kronsjo, 1987), while that of the:

Gauss-Seidel iteration method is ©(n?) (Varga, 1962).

6. Results and Discussion. For the computational study, we examine a Laplace’s
equation which is often used in mathematical physics and engineering (Cheney and
Kincaid, 1985). The objective is to investigate the performance of the Monte Carlo
solutions using different sampling methods on scalar and vector processing. We chose
the inverse method as a reference for comparison, since this method is commonly used.
The inverse method is expected to perform well due to only a few numbers of mass
points involved in this problem. Brown’s method is fully vectorizable and is therefore
examined here as well. Several aspects are investigated, including the solution and its
error, the processing time, the vectorization speedup, and the efficiency.

Using the cartesian coordinate system, the problem can Be defined as

2 2
% + g—; = 0. I (15)
The boundary conditions for the region 0 < 2 < 10, and 0 < y < 10 are chosen
arbitrarily as u(z,0) = u(z,10) = »(10,y) = —10 and u(0,y) = 10.

The finite difference method using the five point formula (Cheney and Kincaid,
1985, p. 444) is used to approximate the original problem. The = as well as y axis is
discretized into 33 intervals. This discretization results in 1024 internal points. Each
point represents an unknown in the linear equation. Thus, the linear system contains
1024 linear equations. The linear equations can then be solved using Gauss-Seidel
iterative method (Cheney and Kincaid, 1985, p. 450) or the Monte Carlo methods.

When the linear system is represented as matrix equation Ax=b, the resulting
matrix A is a sparse matrix with a regular nonzero structure (a band matrix). The
iterative method is known to perform well for linear equations involving band matri-
ces (Dongarra et al., 1991). Therefore, the Monte Carlo estimates are compared with
the results obtained using the iterative method. The numerical solutions are also com-
pared with the analytical solution of the Laplace’s equation obtained using some results
from reference (Berg and McGregor, 1966, p. 312).

In the ensuing subsections, we use the following names for both scalar and vector

codes of Monte Carlo algorithms:
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SEIDEL: code for the Gauss-Seidel iterative method,

ERGIN: code for the ergodic algorithm using the inverse sampling method,
ERGDS: code for the ergodic algorithm using Brown’s sampling method,
ERGWS: code for the ergodic algorithm using the weighted sampling method,
ABSIN: code for the absorbing algorithm using the inverse sampling method,
ABSDS: code for the absorbing algorithm using Brown's method, and

NS ok W

ABSWS: code for the absorbing algorithm using the weighted sampling method.

6.1. Results. This subsection reports the solutions of the Laplace’s equation for
all unknowns and a particular unknown. We use the solution of the iterative method as
a reference. Figure 5 shows the solution obtained using the iterative method (SEIDEL).
The number of iterations for the iterative method, which results in a convergent solution,
is found to be equal to 80.

For the Monte Carlo solutions employing ergodic Markov chains, the transition
probabilities are distributed uniformly. Therefore, the solutions obtained using the
inverse method, Brown’s method and the weighted sampling method are the same.
Figure 6 depicts the solutions obtained by ERGWS code With the random walk length
equals 125. Fach unknown employs 1000 samples.

In the Monte Carlo solutions employing absorbing Markov chains, the Monte Carlo.
solutions obtained using ABSIN and ABSIN are very close since their transition proba-
bility matrices are the same. In these probability matrices, the transition probabilities
are uniformly distributed on all points except for those of the boundary points. Since
the number of boundary points are much less than that of the internal points, the uni-
form distribution is more dominant than the nonuniform distribution. Consequently,
the solutions of ABSIN and ABSDS are close to that of ABSWS which utilizes uniform
distributions for all points. Figure 7 shows the solution obtained by ABSWS,

The error for all unknowns of the Monte Carlo solution is calculated relative to the

solution of the iterative method. We define this error as

Error = \l %i(ya — ¥i)?, (16)

i=1
where #; is a solution for an unknown obtained by the iterative method, while y; is
the solution for the same unknown obtained using the Monte Carlo code. The number
of unknowns is denoted by n.

The average values of the solution for all unknowns and the corresponding errors
11



are presented in Table 1. As shown in this table, the Monte Carlo codes employing
an absorbing Markov chain result in smaller errors. For each sample, the random walk

length in the ergodic Markov chain is chosen to be equal to 125, which also represents

the maximum random walk length in the absorbing Markov chain.

As shown in Table 1, the ergodic algorithms result in larger errors than the absorb-
ing ones. This is caused by the fixed lengths of the random walks for estimating the
solutions of all unknowns. When we choose a random walk of length 50, good solutions
of the boundary points are obtained, while poor solutions calculated for the central
points. However, if the random walk of length is 125, the solutions of the central points
improve, but the solutions of the boundary points become inacceptable. In conclusion,
the absorbing codes are more suitable for estimating all unknowns.

In order to investigate the convergence of the Monte Carlo solutions we examine
the solution at point (2.4242, 2.4242), which is located in the middle of the lower left
corner grid point and the centre grid point. This point is chosen, since it is between
two extreme points. Figure 8 demonstrates the solutions at this point We chose 80
as the random walk lengths for the ergodic codes, and 125 as the maximum random
walk lengths for the absorbing codes. This figure shows that all Monte Carlo solutions
converge to the SEIDEL’s solutions. Note that the Monte Carlo solutions obtained
using the ergodic codes (ERGIN, ERGDS and ERGWS) are the same, since they have

the same transition probabilities which are distributed uniformly.

6.2. Processing Time and Speedup. In this subsection the scalar and vector
processing time of the solutions for all unknowns are first discussed. Then, the increase
in processing time as a function of the number of unknowns is demonstrated.

The scalar and vector processing time of Monte Carlo solutions for all unknowns
are depicted in Table 2. Each unknown utilizes 2000 samples. In scalar processing, the
ergodic and absorbing codes incorporating the weighted sampling method (ERGWS and
ABSWS) require about 20 % less computing time than those of the codes implementing -
the inverse method (ERGiN and ABSIN). The ergodic and absorbing codes implement-
ing Brown’s method (ERGDS and ABSDS) require larger processing time than those
incorporating the inverse method. The performance of the inverse method is compai-
atively good since the maximum number of compé.risons is only four. In the vector
processing, Table 2 shows that ERGIN requires 3.5 times more computing time than

that of ERGWS. This means that the weighted sampling can enhance the vectorization
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of the ergodic algorithm; however, it is less successful in the absorbing algorithm. The
maximum speedup is achieved by using the vector ERGWS over the scalar one. The
ERGWS can achieve the best speedup, because the uniform sampling contains no loop
and the random walk length is predetermined.

We now compare the processing time for all unknowns required by the iterative
method (SEIDEL) and the Monte Carlo method (which requires the least processing
time). For this purpose we choose a sample size of 2000, in which the solutions obtained
by SEIDEL and ERGWS are relatively equal. Table 2 demonstrates that ERGWS
requires the smallest processing time in the scalar and vector processors. These times
are 485.23 and 86.03 seconds respectively. The scalar and vector processing of SEIDEL
require 616 milliseconds and 456 milliseconds, respectively, to complete.

Therefore, the scalar ERGWS requires about 788 times longer processing.time
than SEIDEL; whereas, the vector ERGWS requires about 188 times longer processing
time than the vector SEIDEL. Assuming that the errors are relatively equal, the scalar
ERGWS is beneficial if it computes less than 0.13 % of the total unknowns. Moreover,
the vector ERGWS still gives benefit when it estimates less than 0.53 % of the total
unknowns. Thus, for the estimation of a single unknown, the speedup of the vector
ERGWS over the scalar SEIDEL is 7.1.

Table 3 demonstrates that the scalar and vector processing time of the iterative
method increase by a factor of about 8. Thié is caused by the increase in problem size
by a factor of 4 and the increase in maximum iteration by a factor of 2.

The time complexity of the Monte Caxlo solution for solving n unknowns is O(n?).
If the problem size increases by a factor of 4, the processing time should increase 16
times. However, Table 3 shows that the scalar and vector processing time of Monte
Carlo solutions increase by a factor of about 8. This is caused by the increase in
problem size by a factor of 4 and the increase in random walk length by a factor of 2.
We only increased the random walk length twice, since the number of nonzero elements
for each row remains the same with the increase in problem size. The number of samples
for each unknown utilized by the Monte Carlo codes is 2000.

Table 4 shows the vectorization speedups for different number of unknowns. The
speedups for the iterative method and the ergodic codes are relatively constant. The
absorbing codes attain the highest speedups when the number of unknowns is equal to

256. It is due to the optimality of vector processing for this size.
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6.3. Efficiency. The efficiency is defined as a quantity inversely proportional to
the product of the sample variance and the processing time (Rubinstein, 1981). The
relative efficiency of a Monte Carlo method with respect to another Monte Carlo method
is given by the ratio of their efficiencies. Thus, the relative efficiency compares both
computational and statistical performance of Monte Carlo methods.

The relative efficiencies of solutions at point (2.4242, 2.4242) obtained by various
vector codes with respect to those of the scalar ABSIN are presented in Table 5. The
efficiency obtained by ABSIN was chosen as a reference, since it is often used in the
literature. It is seen that the weighted sampling method results in the highest relative
efficiencies for both ergodic and absorbing codes. The relative efficiencies are higher
than their vectorization speedups. This indicates that the weighted sampling method

entails lower variances than those of the ABSIN.

7. Conclusions. The vectorized Monte Carlo solutions of linear equations em-
ploying absorbing and ergodic Markov chains have been in{?estigated. Brown’s and
the weighted sampling methods enhance the vectorizability of the Monte Carlo codes.
Further, these sampling methods also reduce the time coﬁplexity of the Monte Carlo
algorithms from Q@(n®) to ©(n*), where n is the number of the unknowns. This
results into faster solutions with both scalar and vector processing as compared to the
solutions using the inverse sampling method.

Based on the computational studies, the Monte Carlo methods become attractive
when the estimation of at most 0.1 % and 0.5 % of the unknowns is required in scalar
and vector processing, respectively. '

We expect that the combined use of vector and parallel processing available on
recent high performance computers will make the Monte Carlo methods for solving

linear equations computationally more attractive in the near future.
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TABLE 1

The average values of solutions for all unknowns and their errors,

Monte Carlo Solutions
Average | Iterative Ergodic Absorbing
solution | ERGIN | ERGDS | ERGWS | ABSIN | ABSDS | ABSWS
Solution | -2.8664 | -2.3394 | -2.3394 | -2.3394 | -2.7563 | -2.9611 | -2.7583
Error 0.0000 | 1.3967 | 1.3967 1.3967 | 0.5505 | 0.5855 | 0.5587
TABLE 2
Processing lime and speedup for estimating all unknowns.
Ergodic codes Absorbing codes
Quantity ERGIN | ERGDS | ERGWS | ABSIN | ABSDS | ABSWS
Scalar time | 618.42 [ 621.02 485.23 | 644.35 | 778.78 601.56
Vector time | 329.25 | 141.43 §6.03 | 163.40 178.48 147.21
Speedup 1.88 4.39 5.64 3.94 4.36 4.09
Time 1s in seconds.
TaBLE 3
Processing lime for different number of unknowns.
Number | Mo Processing time in seconds Tterative
of de Ergodic Absorbing (milk-
unknowns ERGIN | ERGDS | ERGWS | ABSIN | ABSDS .| ABSWS | seconds)
64 S 9.97 10.32 7.93 7.06 7.81 6.96 7.83
v 5.49 2.04 1.35 1.77 2.24 1.61 5.72
256 S 77.02 80.63 60.54 69.05 79.86 64,81 61.49
v 42.21 16.20 10.50 15.51 18.27 13.95 44.57
1024 S 618.42 [ 621.02 48523 | 644.35 | T78.78 601.56 483.56
v 329.25 | 141.43 86.03 | 163.40  178.48 147.21 363.34

S: scalar, and V: vector.
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TABLE 4

Vectorization speedups for different number of unknowns.

Ergodic codes Absorbing codes Tterative
Unknowns | ERGIN | ERGDS | ERGWS | ABSIN | ABSDS | ABSWS | method
64 1.82 5.06 5.87 3.99 3.49 4.32 1.37
256 1.82 4.98 5.77 4.45 4.37 4.65 1.38
1024 1.88 4.39 3.64 3.94 4.36 4.09 1.33
TABLE 5

Efficiencies of different vector codes relative to those of scalar ABSIN.

Ergodic codes

Absorbing codes

ERGIN

ERGDS

ERGWS

ABSIN

ABSDS

ABSWS

2.066

3.580

8.201

4.780

0.912

5.023
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Subroutine Statei(i)
ri = RNUNF()
de 20 j = 1,n
if(C(i,j) .ge. rl) then
i=]
go to 10
endif
20 continue
10 Return
End

Fig. 1. Scelar Code of the inverse method for state determinaiton.

Subroutine Stateb(i)
- ri = RNUNFO

r =1l #n+ 1.0 _
ir = int(r) =
j = ir + r - f{ir)
i = 1d(j)

Return

End

Fi1G. 2. Scalar Code of Brown’s method for stale determination.
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BEGIN

1. FOR : =1 TO n STEP 1 DO /* Estimate n unknowns */
2. Y=0v==%F
3. FORj=1TOv STEP 1 DO
4. Z; =1; s1;, =14 [* Initialization */
5. END DO
6. FOR r =1 TO m STEP 1 DO /* Random walk loop */
7. Generate v random numbers &;, 7 =1,---,»
8. FOR y =1TO v STEP 1 DO /* Carry out » samples */
9. 82, = [ X Isy;| +1 /* The weighted sampling method */
10. IF (sg; # 0) THEN Z; = Z; * H,,, s, * 1o, /* Scoring */
11. IF (s9; = 0) THEN Z; = Z; b, * 1, /* Scoring */
12. 81; = Sg, :
13. END DO
14. FOR j =1 TO » STEP 1 DO /* Calculate the secondary estimate */
15. IF (s3, = 0) THEN ¥; = ¥} + 2
16. END DO
17. A=0
18. FOR j =1 TO v STEP 1 DO
19. IF (53, # 0) THEN /* Gather nonabsorbed walks */
20. A=A+1
21. Zy = ngj-
22. END IF
23. END DO
24. v=2A
25. END DO
26. : = Yi/(k —v)
27. END DO
END

Fie. 3. A vectorized Monte Carlo algorithm employing an absorbing Markov chain and the weighted

sampling method,

20



BEGIN

1.  FOR:=1TOn STEP 1 DO /* Estimate n unknowns */
2. ;=0
3. FORj=1TO k STEP 1 DO
4. Z; =15 s1; = t; Tj = b; [* Initialization */
3. END DO
6. FOR7=1TO m STEP 1 DO /* Random walk loop */
7. Generate ¥ random numbers §;, j =1,--<,k
8. FOR j =1TO k& STEP 1 DO /* Carry out k& samples */
9. 82, = €5 % lsljj + 1 /* The weighted sampling method */
10. Zj=2ZjxHy 5 s /* Scoring */-
11. T;=T;+Zj*b,, /* Scoring */
12, 81; = 8z,
13. END DO
14. FOR j =1TO k STEP 1 DO /* Calculate the secondary estimate */
15. Y=Y+ 7
16. END DO
17. END DO
18. Y:=Y/k
19. END DO
END

Fi6. 4. 4 vectortzed Monte Carlo algorithm employing an ergodic Markov chain and the weighted
sampling method.
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Fi1G. 5. Solution obiained using the iterative method (SEIDEL).
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F1G. 6. Solution obtained using ERGWS, sample size=1000, random walk length=125.
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Fic. 7. Solution obfained using ABSWS, sample size=1000, mazimum random walk length=100.
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SOLUTION

o O OO D O O O

HETHODS  <—=—e ABSDS s ke ABS | N L& ABSYWS e+ [RGDS
8-2-B [RGIN t—=—r [RGWS T+t SEIDEL

F1G. 8. Solution of the Laplace’s equation al point (2.4242, £.4242), ERGIN, ERGDS and ERGWS use
random walk lengths=80, ABSIN, ABSDS and ABSWS utilize mazimum random walk lengths=125.
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