DISCRETE SAMPLING METHODS
FOR
VECTOR MONTE CARLO CODES
by

Riyanarto Sarno

TR92-072 August 1892

This is an unaltered version of the authot's
Ph.D.{CS}) Thesis

Faculty of Computer Science
University of New Brunswick
P.O. Box 4400
Fredericton, N.B. E3B 5A3

Phone: (506) 453-4566
Fax: (506) 453-3566

DISCRETE SAMPLING METHODS FOR VECTOR MONTE
CARLO CODES

by

Riyanarto Sarno
Ir(Electrical Eng.)-Bandung Institute of Technology—1983
Drs(Economics)-University of Padjadjaran-1985
MSc(Computer Science)-University of New Brunswick-1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy |
in the '

Faculty of Computer Science

This thesis is accepted.

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK
August, 1992
(© Riyanarto Sarno, 1992

Abstract

Sampling from an arbitrary discrete distribution in Monte Carlo calculations often
requires a considerable amount of computing time on sequential computers as it in-
volves table lookup computation. The vectorization of some existing discrete sampling
methods is investigated, in an attempt to speed them up. These methods are applied
to various problems including a large sparse system of linear equations and neutron
transport problems. The codes are written in VS Fortran and implemented on the
IBM 3090-180VF. Their performance for scalar and vector processing is evaluated
based on both statistical and computational criteria.

'To overcome the computational drawbacks of these sampling methods, this thesis
proposes a discrete sampling method, named the weighted sampling method, which
is especially suited for vector processing. This method utilizes a uniform distribution
to construct samples from a probability table. Each sample is subsequently adjusted
so that unbiased estimates are obtained. The proposed method enhances the vec-
torizability of the vector Monte Carlo codes, and achieves better performance for
the scalar a.é well as vector processing in comparison to those of the other sa,mpl.ing
methods for the examined problems.

Four variants of the weighted sampling method are also developed. These va.riaﬁts
involve stretching of a probability table, sampling from known nonuniform distribu-
tions and the combination of two sampling methods. For this purpose, the study of
vectorizing the random number generation from binomial and geometric distributions
is carried out. It is demonstrated that these variants signiﬁcaﬁtiy increase the effi-
ciency of Monte Carlo solutions by reducing the sample variance and decreasing the

processing time through vectorization.

i

Contents

Abstract

List of Tables

List of Figures
Acknowledgements .
Nomenclature

1 Imtroduction

1.1 Introduction

1.2 Motivation and Approach

1.3 Thesis OQutline.

2 Existing Sampling Methods

2.1 Iatroduction
2.2 Preliminaries
2.3 The Inverse Method . . .
2.4 The Equiprobable Method
2:5 The Alias Method
2.6 Brown’s Method
2.7 Performance Criteria . . .

.........................
........................

........................

........................
........................
........................
........................
........................
........................

........................

iii

ii

ix

xvit

XX

xxii

e

w SOy D

2.8.1 Estimation of Distribution Mean and Variance 22
2.8.2 Processing Time | .. 24
283 Speedup e e e 26
2.84 Effictency e e e e 28 |
2.9 Concluding Remarks e e 31
Weighted Sampling Method 33
3.1 Imtroduction e e 33
3.2 The Weighted Sampling Method, 34
3.2.1 The Computer Codes 36
3.2.2 Complexities of Scalar Codes e 39
3.3 Statistical Analysis e e e e 40
34 ProblemI 42
3.4.1 Estimation of Distribution Mean and Variance 43
342 Processing Time 44
3483 Speedups e e 48
344 FEfficiency e e e e e e e e 50
345 Remarks o L. 53
35 ProblemIl............ R e 53
3.5.1 - Estimation of Distribution Mean and Variance 53
352 Processing Time 54
353 Efficiency T 55
354 Remarks e 58
386 Conclusionsc.... e e e e e - 68
Large Sparse Linear Systems ' 60
41 Introduction e 60
4.2 Background and Motivations L L Lo 61

v

4.3 Monte Carlo Solutions v v v v v e

4.3.1 Solution Using An Absorbing Markov Chain e
4.3.2 Solution Using An Ergodic Markov Chain L
4.4 The Weighted Sampling Method For State Transitions
4.5 Time Complexity Analysis
4.5.1 The State Determination
4.5.2 The Monte Carlo Algorithms
4.6 Vectorization of The Monte Carlo Algorithms
4.6.1 Solution Using An Absorbing Markov Chain
4.6.2 Solution Using An Ergodic Markov Chain c e
4,7 Sparse Data Structures,
4.8 Results and Discussion . , e e
4.8.1 Solutions for All Unknowns L
4.8.2 Solutions for Particular Unknowns
483 Processing Time e
484 Speedup e e e
4.8.5 The Efficiency e e e
£9 Conclusions .« « v v v oot
Neutron Transport Problems
51 Imtroduction e e
5.2 Neutron Transport
52.1 Definttions L L e e
5.2.2 The Boltzmann Transport Equation. e e e

5.3 The Monte Carlo Method e
5.3.1 Basic Requirements e e e e
5.3.2 Random Walk Procedure

54 The MORSE Code

54.1 Mam Moduwles e e, 119

5.4.2 Probability Tables o121

5.5 Speeding Up of MORSE Computations 123
56 TableLookup 125
57 Problem I 128"
5.7.1 Fluence Estimates 131
5.7.2 Processing Time and Speedups 137
'5.7.3 Local Speedups e 140
5.7.4 Local Vectorization Speedups 141
57.5 Efficiency e e .. 143
5.7.6 Remarks . . . o vv vt s 146

5.8 ProblemII.....................T 146
5.8.1 Fluence Estimates 152
5.8.2 Processing Time and Speedups 155
5.8.3 Local Speedups B o187
5.8.4 Local Vectorization Speedups 158
58.5 Efficiency e 160
586 Remarks 161

59 ProblemIIl 162
5.9.1 | Fluence Estimates 162
5.9.2 | Processing Time and Speedups . . e 165
593 Efficiency 167
594 Remarks e 168
5.10 Conclusions 169
Variants of The Weighted Sampling Method 171
6.1 Introduction e e e e e 171
6.2 Weighted Sampling With a Stretched Table (WSST) 172

vi

6.3
6.4
6.5
6.6

6.7

6.8

6.9

Weighted Sampling With A Nonuniform Distribution (WSNU) . .. 173
Weighted Sampling With The Inverse Methc;ds 176
Vectoriza.tion e e e e e e e e e e 178
Estimation of a Distribution Mean 180
6.6.1 Estimates of the Distribution Mean 183
6.6.2 Processing Timeo 184
6.6.3 Speedups PR 186
6.6.4 Efficiency 187
66.5 Remarks L 190
MORSE ProblemI v 191
6.7.1 Fluence Estimates 192
6.7.2 Processing Time and Speedups 194
6.7.3 Local Speedups 196
6.7.4 Local Vectorization Speedups e 197

- 6.7.5 Efficiency e 198
6.76 Remarks o e 200
MORSE Problem II o oL 201
6.8.1 Fluence Estimates J R 202
6.8.2 Processing Time and Speedups 204
6.8.3. Local Speedups e e e e e e e e e e e 205
6.8.4 | Local Vectorization Speedups 206
6.85 Efficiency e 207
6.86 Remarks, 209
MORSE Problem IIT e e 210
6.9.1 Fluence Estimates 210
6.9.2 Processing Time and Speedﬁps D e .. 212
6.9.3 Efficiency e e 214
6.94 Remarks 216

vii

6.10 Conclusions v v v v v v v v v P 217
7 <Conclusion : 219
Tl SUMMATY . v v o o v e v e e e e e e e e e e e e e 219
7.2 Future Work o o e e e e e e e e e 223
References 225
Appendices
I The IBM 3090-180VF | 234

viil

List of Tables

2.1 An example 6f aprobabilitytable.. 7
2.2 The generation table of the inverse method. 9
2.3 The generation table of the equiprobable method. DI 13
2.4 The generation table of the aliasmethod. 15
2.5 The generation table of Brown’s method. R 17
2.6 The probability table used in computation. e e e 22
2.7 Mean estimates and their percentage FSDs. 22
2.8 Variance estimates and their percentage FSDs. e 23
2.9 Scalar processing time for n = 10, in milliseconds. 24
2.10 Scalar processing time for n = 200, in milliseconds. 24
2.11 Vector processing time for n = 10, in milliseconds. 25
'2.12 Vector processing time for n = 200, in milliseconds.25
2.13 Minimum vectorization speedups (Vipin) forn=10. 27
2.14 Maximum vectorization speedups (Vipoz) forn=10. 27
2.15 Minimum vectorization speedups (Vi) for n = 200., 27
2.16 Maximum vectorization speedups (Ve) forn=200. 28
2.17 Efficiencies of different scalar codes relative to that of scalar INVER
forn=10. e 29
2.18 Efficiencies of different scalar codes relative to that of scalar INVER
forn=200. P e ... 80

ix

2.19 Efficiencies of different vector codes relative to that of vector INVR1

forn=10., 30
2.20 Efficiencies of different vector codes relative to that of vector INVRI1

form=200.3
3.1 The generation table of the weighted sampling method. 36
3.2 Complexities of scalar samplingcodes., R 3¢
3.3 Mean estimates and their percentage FSDs. - 44
3.4 Variance estimates and their percentage FSDs. e e e e 45
3.5 Scalar processing time for n = 10 ,. in milliseconds. L. . 46
3.6 Scalar processing time for n == 200 , in milliseconds. 47
3.7 Vector processing time for n = 10, in milliseconds. 47
3.8 Vector processing time for n = 200, in milliseconds. 47
3.9 Minimum vectorization speedups (Vi) for n = 10..‘ 48
3.10 Maximum vectorization speedups (Vyee) forn=10. 48
3.11 Minimum vectorization speedups (Vinin) for n = 200. 49
3.12 Maximum vectorization speedups (Viper) forn =200 49

3.13 Efficiencies of scalar codes relative to those _of scalar INVER, for n=10. 50
3.14 Efficiencies of scalar codes relative to those of scalar INVER, forn = 200. 50
3.15 Efficiencies of vector codes relative to those of vector INVRI, forn = 10. 51
3.16 Efﬁciéucies of vector codes relative to those of vector INVRI, for n = 200. 51

3.17 Maximum efficiencies (Tmasz) of vector codes relative to efficiencies of

scalar ALIAS, forn=10. 52
3.18 Maximum efficiencies (7.) of vector codes relative to efficiencies of

scalar INVER, forn=200. e e e e . 52
3.19 The probability table used in Problem IL. 353
3.20 Mean estimates and their percentage FSDs. 54
3.21 Variance estimates and their percentage FSDs. 54

3.22 Efficiencies of scalar codes relative to those of scalar INVER, for n = 10. 55

13.23
3.24
3.25
3.26

3.97

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

8.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9

Efficiencies of scalar codes relative to those of scalar INVER, for n = 200. 55
Efficiencies of vector codes relative to those of vector INVRI, for n = 10. 56
Efficiencies of vector codes relative to those of vector INVR1 ,forn =200. 56

Maximum efficiencies (fmaz) of vector codes relative to efficiencies of

scalar ALIAS,forn=10. 57
Maximum efficiencies (mq.) of vector codes relative to efficiencies of

scalar INVER,forn=200. 58
The average values of solutions for all unknowns and their errors. . . 84
Processing time for estimating all unknowns. 99
Processing time for estimating particular unknowns. 100
Processing time for different number of unknowns. ceo. 101
Vectorization speedup for each method estimating all unknowns. . . . 102
Vectorization speedup for particular unknowns. 103
Vectorization speedups for different number of unknowns. 103

Efficiencies of different scalar codes relative to those of scalar ABSIN, 104
Efficiencies of different vector codes relative to those of vector ABSIN. 104

Maximum relative efficiencies (7.) of different vector codes relative

to those of scalar ABSIN. e e e e 105
A neutron cross section matrix. oL L. 111
An ill...ustra.tion _of a scattering cumulative probability matrix. 126
The séa,ttering probability matrix of air for Problem I. 130

Some scattering angles and their corresponding cumulative probabili-

tiesof air for Problem L. oL oL oo 130
Uncollided fluence of Problem I. R 132
Total fluence crossing Shell 1 (30 m in radius) of Problem I. 134
Total fluence crossing Shell 2 (200 m in radius) of Problem L. 135
Total fluence crossing Shell 3 (450 m in radius) of Problem L. 135

Scalar processing time of MORSE simulation for Problem I. 138

xi

5.10 Number of collisions in MORSE simulation for Problem I. 139
5.11 Speedups of different sgalar MORSE codes relative to scalar INVER
for Problem L e ... 139
5.12 Scalar processing time of sampling methods in COLISN routine for
Problem I. 140
5.13 Vector processing time of sampling methods in COLISN routine for
Problem I.. o i e 141
5.14 Speedups of the vectorized sampling methods relative to the scalar

inverse method for Problem L. oo, 142

5.15 Efficiencies of different MORSE codes relative to those of INVER, for
Shell 1of Problem I. 143

5.16 Efficiencies of different MORSE codes relative to those of INVER, for
Shell 2of Problem Lo v v vt n. . 144

5.17 Efficiencies of different MORSE codes relative to those of INVER, for
‘Shell3ofProblemI........_........; 145

5.18 Efficiencies of diﬁ'erent MORSE codes relative to those of INVER, for
about 5§ B FSDofProblem I. 145
5.19 The scattering probability matrix of air for Problem II. 149
5.20 The scattering probability matrix of water for Problem II. 150
5.21 Partial angular scattering probability tables of air for Problem II. . . 151
5.22 Partial angular scattering probability tables of water for Problem II. . 151
5.23 The response of Detector 1 for Problem ILI. 152
5.24 The response of Deteﬁtor 2forProblem IL. 153
5.25 Scalar processing time of MORSE simulation for Problem IL 155
5.26 Number of collisions in MORSE simulation for Problem II. 156

5.27 Speedups of different scalar MORSE codes relative to scalar INVER

for Problem I1. e e e 157

Xl

5.28 Scalar processing time of different sampling methods in COLISN rou-
tine for Problem IL. 157
5.29 Vector processing time of different sampling methods in COLISN rou-
tinefor Problem IL. oo o 159

5.30 Speedups of the vectorized sampling methods relative to the scalar

inverse code for Problem II. 159
5.31 Efficiencies of different MORSE codes relative to those of INVER, for
Detector 1 of Problem II. 160
5.32 Efficiencies of different MORSE codes relative to those of INVER, for
. Detector 2 of Problem IL 160
5.33 Efficiencies of different MORSE codes relative to those of INVER, for
about 5 % FSD of Problem II. I 161
5.34 The response of Detector 1 for Problem IIL. 164
5.35 The response of Detector 2 for Problem IIL. 164
5.36 Scalar processing time of MORSE simulation for Problem IIL. 165
5.37 Number of collisions in MORSE simulation for Problem ITI. 165
5.38 Speedups of different scalar MORSE codes relative to scalar INVER
for Problem IIL. i 166
5.39 Efficiencies of different MORSE codes relative to those of INVER, for. _
Detector 1 of Problem HL\ o v oeneeenen . 167
5.40 Efficiencies of different MORSE codes relative to those of INVER, for
Detector 2 of Problem ITL. 168
5.41 Efficiencies of different MORSE codes relative to those of INVER, for
about 5 % FSD of Problem ITL T 168
6.1 An example of a probability table.. e 173
8.2 The generation table of the WSST., 173
6.3 Generation table for WSST. 183
6.4 Mean estimates and their %FSDs.o L 184

xiil

6.5 Scalar processing time of various codes to sample from Table 2.6, in
milliseconds.. 0 0. e e e 185

6.6 Vector processing time of various codes to sample from Table 2..6, in
milliseconds..o e 185

6.7 Minimum vectorization speedups (Vuir) of vector codes relative to the '

scalar WSST. o o 186
6.8 Maximum vectorization speedups (Vinez) of vector codes relative to

the scalar WSNU. o oo 186
6.9 Efficiencies of scalar codes relative to those of scalar INVER. 188
6.10 Efficiencies of vector codes relative to those of vector INVR2.. 189

6.11 Minimum relative efficiencies (9mi» } of vector codes relative to the

éfﬁciency ofscalar WSNU. v e 190
6.12 Maxiﬁmm relative efficiencies (mar) of vector codes relative to the

efficiency of scalar WGHTSL. 190
6.13 Fluence of neutrons crossing Shell 1 (30 m in ra,d.ius) of Problem I. . . 192
6.14 Fluence of neutrons crossing Shell 2 (200 m in radius) of Problem I. . 193
6.15 Fluence of neutrons crossing Shell 3 (450 m in radius} of Problem I. . 193
6.16 Scalar processing time of MORSE simulation for Problem I. 194
6.17 Number of collisions in MORSE simulation for Problem I. 195
6.18 Speeciups of scalar MORSE codes relative to scalar INVER for Problem 1.195
6.19 Scalar processing time of sampling methods in COLISN routine for

Problem L e e 196
6.20 Vector processing time of sampling methods in COLISN routine for

Problem I.. e 197
6.21 Speedups of the vectorized sampling methods relative to scalar INVER

for Problem L. 197
6.22 Efficiencies of MORSE codes relative to those of INVER, for Shell 1 of

Problem I.. e e e e e e e e 198

xiv

6.23 Efficiencies of MORSE codes relative to those of INVER, for Shell 2 of

Problem L. e e e e e e e 199
6.24 Efficiencies of MORSE codes relative to those of INVER, for Sheﬂ 3of

Problem L.0 . oo e 199
6.25 Efficiencies of MORSE codes relative to those of INVER, for about 5

% FSDof Problem L. 200
6.26 Response of Detector 1 for Problem IL. 203
6.27 Response of Detector 2 for Problem IL. 203
6.28 Scalar processiﬁg time of MORSE simulation for Problem II. 204
6.29 Number of collisions in MORSE simulation for Problem IL 204
6.30 Speedups of scalar MORSE codes relative to scalar INVER for Prob-

lemIL . . . e 205
6.31 Scalar processing time of sampling methods in CéLISN routine for

ProblemIL 205
6.32 Vector processing time of sampling methods in‘ COLISN routine for

Problem II. e 206
6.33 Speedups of the vectorized sampling methods relative to scalar INVER

for Problem I, 207
6.34 Efficiencies of MORSE codes relative to those of INVER, for Detector

Lof Problem IL . . oo oo oo oo 208
6.35 Efﬁciéncies of MORSE codes relative to those of INVER, for Detector

2of Problem IL. I TS 208
6.36 Efficiencies of MORSE codes relative to those of INVER, for about 5

% FSD of Problem IL. e 209
6.37 Response of Detector 1 for Problem III. 211
6.38 Résponse of Detector 2 for Problem III. 211
6.39 Scalar processing time of MORSE simulation for Problem HI. 212

6.40 Number of collisions in MORSE simulation for Problem ITI.. 213

XV

6.41 Speedups of scalar MORSE codes relative to scalar INVER for Prob-

lemIIL. e e 213
-6.42 Efficiencies of MORSE codes relative to those of INVER, for Detector

Tof ProblemIIL\t 214
6.43 Efficiencies of MORSE codes relative to those of INVER, for Detector

20f Problem IILI. o i e 214
6.44 Efficiencies of MORSE codes relative to thoée of INVER, for about 5

% FSDof Problem IIL. 215
6.45 The probability of collisions produced by INWSST in MORSE Problem

Mand HL e 215

xvi

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

3.1

3.2
3.3
3.4

4.1

4.2

4.3
4.4

4.5

Scalar code of the inversemethod. 9
Vector code for the inverse method (Version1). 10
Vector code for the inverse method {Version2). 12
Scalar code of the equiprobable method., . 13
Vector code of the equiprobablemethod. 14
Scalar code of the aliasmethod. e 16
Vector code of the aliasmethod. 16
Scalar code of Brown’s method. e e e e 19
Vector code of Brown’smethod. 20
Scalar code of the weighted sampling method using technique I. . .. 37

Vector code of the weighted sampling method using technique I. . . . 37
Scalar code of the weighted sampling method using technique II. . . . 38
Vector code of the weighted sampling method using technique II. . . . - 38
An algorithm for the state determination using the inverse method. . 64
A sequential Monte Carlo algorithm employing an absorbing Markov

chain. e e e 65
A sequential Monte Carlo algorithm enﬁp]oying an ergodic Markov chain. 66
An algorithm for the state determination using the weighted sampling

method. e 69
A vectorized Monte Carlo algorithm employing é.n absorbing Markov

chain and the weighted sampling. e 76

xvii

4.6 A vectorized Monte Carlo algorithm employing an ergodic Markov

chain and the weightedsampling. 78
4.7 Solution obtained using the iterative method (SEIDEL). 85
4.8 Solution obtained by ERGWS, sample size=1000, random walk length=50. 86
4.9 Solution obtained by ERGWS, sample size=1000, random walk length=125. 87

4.10 Solution obtained using ABSIN, sample size=1000, maximum random

walk length=100. L . 88
4.11 Solution obtained using ABSDS, sample size=1000, maximum random

walklength=100. 89
4.12 Solution obtained using ABSWS, sample size=1000, maximum random

walk length=100. e 90

4.13 Solution of the Laplace equation at the boundary point, ERGIN, ERGDS

and ERGWS use random walk lengths=10, ABSIN, ABSDS and AB-

SWS utilize maximum random walk lengths=125. 93
4.14 Standard deviations of Monte Carlo solutions given in Figure 4.13.. . 94
4.15 Solution of the Laplace equation at the intermediate point, ERGIN,

ERGDS and ERGWS use random walk lengths=80, ABSIN, ABSDS

and ABSWS utilize maximum random walk lengths=125.. 95
4.16 Standard deviations of Monte Carlo solutions shown in Figure 4.15. . 96
4.17 Solution of the Laplace equation at the centre point, ERGIN, ERGDS

and ERGWS use random walk lengths=120, ABSIN, ABSDS and AB-

SWS utilize maximum random walk lengths=125. 97
4.18 Standard deviations of Monte Carlo solutions depicted in Figure 4.17. 98
51 MORSEcodemodules. 120

3.2 An illustration of MORSE Problem I: A point source is éurrounded by
concentric spherical shells. The radii of Shell 1, Shell 2 and Shell 3 are
30, 200 and 450 meters, respectively. L. 129
5.3 An illustration of MORSE Problem IL., 148

xviii

6.1
6.2
6.3
6.4
6.5
6.6

Scalar code of WSNU employing a binomial distribution. 175

Scalar code of WSNU employing a geometric distribution. 175
Scalar code of INWS method. 176
Vector code of WSNU employing a binomial distribution. 178
Vector code of WSNU employing a geometric distribution. 181
Vector code of INWS method. 182

Xix

Acknowledgements

I gratefully acknowledge my thesis supervisors Dr. V.C. Bhavsar (Faculty of Com-
puter Science) and Dr. E.M.A. Hussein (Department of Mechanical Engineering) for
. their continuous guidance, advice and constructive criticism during the course of this
research work. I also acknowledge Dr. P.K. Banerjee from Department of Statistics
& Mathematics for many helpful discussions.

I wish to thank the Government of Indonesia for giving me the opportunity to
study as well as the financial support, and to World University Service of Canada for
administering the program. I am also grateful to the Faculty of Computer Science,
University of New Brunswick, for awarding me the Graduate Teaching Assistantship,
and to Dr. V.C. Bhavsar and Dr. E.M.A. Hussein for giving me the Graduate Re- |
search Assistantship through their Natural Sciences and Engineering Research Coun-
cil of Canada operating grants.

My deepes_t thanks go to my dearest wife Winta, who always encouraged me with
great enthusiasm and determination, and to my beloved children Cisya, Candia and
Atrasina, who refreshed the situation in the difficult time.

Finally, I would like to express my sincere feeling of gratitude to my late father
Sarno, my mother Riyati, and my parents-in-law Ismanoe and Dé,rmi Susanti for their

wholehearted moral support during my study.

XX

Dedica,tion

In the name of God (Allah), Most Gracious, Most .Mercz'fulk
Praise be to God, the Cherisher and Sustainer of the worlds,
who teaches mankind new knowledge at every Qa’ven moment,
This thesis is dedicated to God for
all the favours He has bestowed upon me;
in creating and bringing me to this world.
I pray to God to make this effort sincere for His sake,

in agreement with His wish, and useful for His people.

xXi

Nomenclature

DISCS

E[X]

EQUIP

FSD

a matrix

t-th row and j-th column element of matrix A
code incorporating the alias method

a column vector

i-th element of vector b

cumulative probability matrix corresponding P -
code incorporating Brown’s method

expectation of random variable X

code incorporating the equiprobable method
fractional standard deviation, defined on page 18
probability density function

cumulative probability distribution function

binomial coefficient, defined by ﬁ

fundamental matrix corresponding P, defined on page 72

xxii

I identity matrix
INVER code incorporating the inverse method
INWS code incorporating the weighted sampling with the inverse method

INWSST code incorporating the weighted sampling using a stretched table

with the inverse method
k number of samples
log,n logarithm of n to the base 2
n the length of a probability table
n X n the size of a square matrix
P transition probability matrix
p(-) probability mass function
Q substochastic matrix of P, defined on page 72
8% sample variance
O(f(n)) computational complexity is exactly f(n) function
Var[X] variance of random va,ria,ble X
Vinaz ~ maximum Vgctorization speedup, see page 26
Vimin minimum vectorization speedup, see page 26 °
X sample mean
z(.}) mass points of ra.ndom variable X

Dmee maximum relative efficiency, see page 19

xxiil

Nmin

WGHTS

WSNU

WSST
(]
Ed

k

minimum relative efficiency, see page 19
belonging to a set

mean of a probability distribution

spectrél radius of matrix A

standard deviation of a probability distribution
variance of a probability distribution

code incorporating the weighted sampling method

code incorporating the weighted sampling with a nonuniform dis-

tribution

code incorporating the weighted sa,mp_ling with a stretched table
ceiiing of z |

flooring of z

a random number uniformly distributed in the interval (0,1)
end of proof

end of example

Notations for the computer codes have the same symbols as the mathematical

ones, however, their font types are different. Some notations are as follows.

denotes k

Xxiv

denotes n
denotes p

denotes z

denotes w

XXV

Chapter 1

Introduction

1.1 Introduction

The Monte Carlo method is generally.deﬁned as representing the solution of a problem
by a statistical parameter of a hypothetical distribution, gnd obtaining the estimate
of the parameter by drawing random samples from the distribution [32]. This method

~ is used extensively in many scientific and engineering applications {8,17,32,59,77,85].
However, a large computing time is required to obtain estimates within a reasonable |
statistical confidence interval.

Random sampling is at the core of a Monte Carlo method. The samples may
be constructed from continuous or discrete distributions. Sampling from discrete
distributions is called discrete sampling [11]. Most of the distributions provided by
experimental data are arbitrary discrete distributions, which cannot be described us-
ing closed forms of mathematical expressions. A probability table is then used to .
digitally represent this distribution as a set of mass points with associated proba-
bilities. Therefore, sampling from an arbitrary discrete distribution often requires a
considerable amount of computing time on sequential computers as it involves table
lookup computation. |

Nowadays, many high performance computers use vector processing to speed up

computation [25,61,63,83,93]. These computers have up to thousands of vector pro-
cessors. In a vector processor, a functional unit, such as an adder or a multipler, is
segmented into a sequence of nearly independent subtasks which are then executed
concurrently in a pipelined manner. In such a processor, a high computation rate
is achieved by executing identical operations on vectors. This can be done if there
are no vectorization inhibitors, such as conditional statements involving indirect ad-
dressing and recurrences [45]. In general, the efficiency of vector processing increases
as the vector length increases. Thus, these computers can only achieve their best
performance when the programs utilize their architectural features.

In view of the availability of vector processors, this thesis carries out the study of
the discrete sampling methods for arbitrary discrete distributions and their suitability

for vector processing.

1.2 Motivation and Approach

Several methods are presently used to construct samples from arbitrary discrete dis-
tributions {11,54,56,60,99]. These sampling methods have computational drawbacks, -
such as the involvement of step-by-step table searching, the requirement of a large
storage, and the complicated procedure to set up the tables for constructing sam-
ples. Moreove:r, these methods do not aim at reducing the sample variances of their
solutions. '

. Many Monte Carlo methods involve random walks, such as Monte Carlo solutions
of linear equations [77], particle transport [17,59], statistical physics [8], and opera-
tions research {32]. The scalar Monte Carlo codes (the codes developed for sequential
cémputers) are usually ill suited for vector processing [10,90]. Therefore, global and
local restructuring of the scalar code is required in order to achieve high vectorizabil-
ity. This code is referred to as a vector Monte Carlo code, in which the attributes

of random walks are stored as vectors and many random walks are then carried out

concurrently [14,79]. In a vector Monte Carlo code, the existing sampling methods
do not enhance the vectorizability of the code since they contain vectorization in-
hibitors, such as a loop contdining a go to-st.ateme.nt, and conditional statements
with indirect addressing. Some of the existing methods {11,60] are suited for vector
processing, they require however a large storage or a relatively complex procedure,
The performance of these existing sampling methods has not been fully evaluated.
That is, at least to our knowledge, no extensive study has been done on discrete
sampling methods and their vectorizability.

- In this context, this thesis investigates some of the existing discrete sampling
-methods for sampling from probability tables and asseses their potential for vector
processing. We also dévelop new methods for sampling frbm probability tables, which
are especially suited for vector processing.

First, the above various sampling methods are applied tol ‘problems involving one-

dimensional probability tables. These methods are i.n.lplemented in V8 Fortran on
- the IBM 3090-180 with a Vector Facility of the Universi;cy of New Brunswick. The
Monte Carlo efficiency is used as a measure, which combines both the statistical and
computational performance.

As an application to problems involving two-dimensional prébability tables [17,
32,33,59,77], we consider the Monte Carlo solutions of a large sparse system of linear
equations. This particular application is chosen due to the existence of numerical
solutions and the tractability of their time complexities. Moreover, similar methods
are applicable to solving partial differential equations and integral equations. The
discrete sampling methods are applied and their performance is evaluated based on
the scalar as well as vector processing time and the efficiency.

The sampling methods are incorporated into the MORSE (Multigroup Gak Ridge
Stochastic Experiment) code for solving three neutron transport problems [66]. This
thesis examines whether the incorporation of different sampling methods can speed

up the computation.

We also develop four variants of the weighted sampling method to enhance the
efficiencies of the Monte Carlo solutions, and apply them to problems involving one-

dimensional probability tables and applications of the MORSE code.

1.3 Thesis Outline

The next chapter examines the existing methods for sampling from prdbability tables,
and investigates their suitability to scalar as well as vector processing. These methods
are used to sample from a one-dimensional probability table. It is shown that the.
existing sampling methods have some disadvantages when implemented on scalar and
vector processors.

A new sampling method, named the weighted sampling method, is proposed in
Chapter 3. It is proved that this method is statistically unbiased. Further, based
on applications to one-dimensional tables, we demonstrate that it requires simpler
coding and shorter execution time on both scalar and vector processors compared
with the existing methods.

In Chapter 4, the Monte Carlo methods employing absorbing and ergedic Markov
chains for solving a large sparse system of linear equations are investigated. The
weighted sampling method and other sampling methods are incorporated into these
Monte Carlo .‘m_ethods, and their time complexity is analyzed. Their performance for
scalar as well as vector processing is evaluated.

Chapter 5 examines the applications of Monte Carlo methods for solving neutron
transport problems using the MORSE code. The weighted sampling method and
two other sampling methods are incorporated into this code and their performance is
analyzed. |

In Chapter 6, four variants of the weighted sampling method are proposed to
improve the performance by reducing the sample variance and utilizing vector pro-

cessing. These variants are used to reexamine the problems discussed in Chapters 3

and 5 for which the weighted sampling method resulted in low efficiencies. It is

demonstrated that the use of these variants can improve the efficiencies of the Monte
Carlo solutions. '
Finally, the contributions of this thesis are summarized in Chapter 7, and some

suggestions for future work are given.

Chapter 2

Existing Sampling Methods

2.1 Introduction

This chapter!' reviews some of the exié_ting methods for sampling from arbitrary dis-
crete distributions, which are represented as probability tables. The procedures of
such sampling methods are examined. Their codes are investigated for the suitability
in scalar as well as vector processing. For this purpose a 6ne-dimensional probability
table is used to demonstrate the statistical results and the processing time of the sam-
pling methods. Further, the codes are implemented on an IBM 3090-180 computer
with a vector facility using VS FORTRAN. Some features of this computer are given
in Appendix 1. Finally, some concluding remarks of this chapter is given in the last

section. We will first start by briefly reviewing some definitions in probability theory.

2.2 Preliminaries

A random variable 1s a rule of correspondence between each possible outcome of an
experiment and a numerical value assigned to it [72]. According to the sample space,

a random variable is further classified into discrete and continuous random variables.

1 An earlier version of this chapter is published in [82].

A random variable X is said to be discrete if it assigns values to at most a countable
number of outcomes [56, p. 137]. The probability that the discrete random variable

X takes on the outcome z; is given as

P(X = z;) = p(x;), for j=1,2,--- (2.1)
and
> pi=1 (2.2)
i=1

The probability mass function of a discrete random variable X is defined as a func-
tion f(z) which describes the probabilities for all outcomes. Further, the cumulative
probabilities of the outcomes are described by the cumulative distribution function of
X, de_signa.ted as F(z). Similar to the probability mass function for a discrete ran-
dom variable, the probt;cbility density function is associated with a continuous random
variable. |

An arbitrary discrete distribution can be represented by a probability table. The
probability table digitally stores the distribution as a set of mass points with asso-
ciated probabilities. In order to elaborate the procedures of the existing.sampling _

methods, we use Table 2.1 as an example of the probability table.

Table 2.1: An example of a probability table.

Mass points {(x) | 10 | 20 | 30 | 40 | 50
Probabilities (p) | 0.40 | 0.20 | 0.30 | 0.68 | 0.02

The objective of sampling from a probability table, which is also called table
lookup sampling, is to randomly select mass points, z; , according to the associated
probabilities, p;, for j=1,2,--,n, with 37, p; = 1. Several methods exist for

such sampling and some of these methods are reviewed in the ensuing sections.

2.3 The Inverse Method

The inverse transform method [56] is the most common method used for .'genera.ting
samples from a discrete distribution as well as a continuous distribution [54]. Let
X be a random variable with cumulative distribution function F(z). The method
evaluates X = F~1(£), where ¢ is a uniform random number in the interval [0, 1],
to generate samples. 1t is obvious why this method is called the inverse method since
it evaluates the inverse function of the cumulative distribution function.

For the discrete distribution, the inverse method selects X = z; if F~1({) = z;;
_that is, X = z; is generated iff So g < € < YL, pi. Therefore, in the discrete
case, the inverse method involves searching for the interval in wﬁich the uniformly
distributed vatiable U is located.

The speed of the inverse method depends on the speed of the search, which is
affected by two factors: the length of the table (n) and the search procedure. Since
the length of the table affects the number of comparisoné in the searching, the speed
of the inverse method decreases as the value of n increases. In addition, the search
procedure can significantly affect the speed. The commonly used procedures for
this purpose are the linear search and the binary search. For example, for n mass
points distributed uniformly, the average number of comparisons in a linear search is-
(n 4+ 1)/2, whereas, the binary search requires only log, n comparisons [86].

There are two techniques for implementing the inverse method. In the first tech-
nique, the probability table is processed before generating samples. Such a processed
table is called a generation table, which consists of a set of arrays, and is used for gen-
erating samples. The procedure for deriving the generation table from a probability
table depends on the sampling method. For the inverse method, the generation table
is constructed by calculating the cumulative probability distribution. The second

technique consists of calculation of the cumulative probability distribution from the

probability table while search is being done for generating a sample.

The first technique is more efficient since the cumulative distribution probability
is calculated only once; whereas, the second technique calculates the cumulative prob-
ability distribution k¥ times, where k¥ is the number of samples. Nevertheless, the
second technique is still being used in a large code employing large two-dimensional
probability tables because it can utilize the original probability tables, as discussed -

‘in Chapter 5.

Table 2.2: The generation table of the inverse method.

xi{ 10 | 20 |} 30 | 40 | 50
¢ [0.40{0.60 { 0.90 | 0.98 | 1.00

In this chapter, the first technique was chosen. The generation table for sampling
from Table 2.1 using the inverse method is given in Table 2.2. This table is constructed
by calculating the cumulative probability and storing it into array c. Array x contains

the mass points.

do 10 i = 1,k
r1 = RNUNF()
do 20 j = 1,n
if(c(j) .ge. rl) then

rv(i) = x(j)
go to 10
endif
20 continue
10 continue

Figure 2.1: Scalar code of the inverse method.

The scalar code of the inverse method, shown in Figure 2.1, generat.es. k samples
from a probability table of length n and stores the samples into array rv. The

RNUNF function used in this code is an IMSL [46] routine, which generates uniform

random numbers in the interval {0,1). -
It should be noted that the notations for the computer codes have the same sym-

bols as the mathematical ones, however, their font types are different. For example

k and p are the codes for k and p.

call SURAND(seedil,k,rni1)
do 10 i = 1,k
de 20 j = 1,n
if(c(j) .ge. rni(i)) then

rv(i) = x(3)
go to 10
endif
20 ~ continue
10 continue

{(a) Version 1: the inner loop is vectorizable.

call SURAND(seedl,k,rnl)

UNAN do 10 1 = 1,k
VECT +------- do 20 j = 1,n
' if(c{(j) .ge. rni(i)) then
10 continue

(b) The vector compiler report.

Figure 2.2: Vector code for the inverse method {Version 1).

The inverse method can be implemented in two versions of vector codes, as shown
in Figure 2.2 (a) and Figure 2.3 (a). |

Under VS FORTRAN Version 2 Release 3 [44] and its eariier releases, the vector
code shown in Figure 2.2 (a) was not vectorized due to the presence of the go to-
statement in the inner loop. However using VS FORTRAN Version 2 Release 4 [43],

the inner loop gets vectorized, as shown in Figure 2.2 (b). In the vector compiler

10

report, UNAN means that the associated loop .cannot be vectorized since it contains
an unanalyzable exit branch. VECT denotes that the associated loop is vectorized.

The vector codes use a vectorized subroutine, called SURAND, to genera;te uniform
random numbers on (0,1). This routine is available in ESSL (Engineering and Sci-
entific Subroutine Library) [43], which contains highly tuned vector subroutines for
IBM 3090-180VF. SURAND(seedl ,k,rnl) uses seedl as a seed to generate & random
numbers which are stored in array rnt.

By restructuring the code, as shown in Figure 2.3 (a), the outer and inner loops
become vectorizable. Since & is usually much larger than n, the compiler chooses
the outer loop to vectorize in order to result in less processing time. Vector compiler
report, shown Figure 2.3 (b), demonstrates that the outer loop is vectorized, while
the inner loop is eligible for vectorization (designated by ELIG). This inner loop
is not vectorized since the compiler can only choose one Iopi), which results in less
processing time. In vector code Version 2 however, some extra time is required since
each sample requires n iterations of the inner loop rega.fdless of the location of an
interval in the cumulative distribution in which a random number lies.

Since the searching process in the inverse method is time consuming many efforts
have been made to devise alternative methods which do not involve search. Such

methods are discussed in the ensuing sections.

11

call SURAND(seedl,k,rmnl)
de 10 1 = 1,k
if(rn1(i) .le. c(1)) rv(i)=x(1)
do 20 j = 1,n-1
if(rni1(i) .gt. <(3)) rv(D=x(j+1)
20 continue
| 10 continue

(a) Version 2: the two loops are vectorizable.

: call SURAND(seedl,k,rni)
VECT +---==-- do 10 i = 1,k

| if{rni(i) .le. c(1)) rv(i)=x(1)
ELIG |+------ do 20 j = 1,n-1

[— if(rni(i) .gt. <(3)) rv(i)=x(j+1)

(b) The vector compiler report.

Figure 2.3: Vector code for the inverse method (Version 2).

12

:
]
j
!
!

2.4 The Equiprobable Method

Marsaglia [60] has propesed an alternative method which does not require searching.
We refer to this method as the equiprobable method since the generation table is con-
structed by expanding the probabilities into a larger set of probabilities having equal
values. For example, if the smallest probability requires a 3-digit decimal number to
represent it then each p; can be expressed by 0.001 m;, where m; is an integer and
m; € {0,1,...,1000}. In order to expand all probabilities, p; for j = 1,2,-+-,n,

the generation table requires 3>}, m; storage locations. The maximum value of this
“summation is 1000. In general, if the smallest probability is of the form a b-digit deci-
mal, the inverse method réquires 10° extra storage locations to set up. the generation

table.

Table 2.3: The generation table of the equiprobéble method.

x| 10(20x) | 20(10x) | 30(i5x) | 40(4x) | 50(1x)
p | 0.02(20x) | 0.02(10x) | 0.02(15x) | 0.02(d¢x) | 0.02(1x)

The generation table of the equiprobable method is shown in Table 2.3. This table
is constructed by expanding the probabilities in Table 2.1 into a larger set of equal

probabilities. In Table 2.3, (m X)-term denotes that the value is repeated m fimes.

do 101 =1,k
©rl = RNUNF()
j = int(rl * n) + 1
rv(i)=x(j)
10 continue

Figure 2.4: Scalar code of the equiprobable method.

The scalar and vector codes of the equiprobable method are depicted in Fig-
ures 2.4 and 2.5 (a), respectively. Figure 2.5 (b) shows the vector compiler report,

which demonstrates that the vector code is fully vectorized.

13

call SURAND(seedl,k,rnl)
do 10 i = 1,k

j = int(rni1{i) * n) + 1
rv(i) = x(j§)
10 continue
(a) The vector code.
call SURAND(seedt,k,rnl)
VECT +------- do 10 1 = 1,k
| j = int(rni(i) * n) + 1
rv(i) = x(j)

(b) The vector compiler report.

Figure 2.5: Vector code of the equiprobable method.

14

2.5 The Alias Method

The alias method, proposed by Walker [99], does not require searching and requires
only one comparison regardless of the number of the mass points. The algorithm
for generating tables of cutoffs and aliases is given in Kronmal [54], and the Fortran
code is given by Walker [99]. The alias method requires 2n extra storage locations
to store the cutoff and alias tables. The correctness of the alias method is based on
the following theorem [54] "Any discrete distribution with a finite number (n) of mass
points can be represented as an equiprobable mizture of n distributions, each of them

having two mass poinis.”

Table 2.4: The generation table of the alias method.

x| 10 [20} 30 | 40 | 50
all1l0 |20 }10] 30| 10
£(00!00109(04|0.1

The generation table of the alias method for Table 2.1 is depicted in Table 2.4.
The transformation from the probability table to the generation table is carried out
systematically according to the above theorem. Array x stores the mass points of the
first elements of the five two-point distributions, while array f stores the associated
probabilities. -Array a stores the mass points of the second elements of the five two-

point distributions.

The scalar and vector codes of the alias method are shown respectively in Fig-
ure 2.6 and Figure 2.7 (a). The if-statement in the vector code is not vectorizable
since array a is used in conditionally executed code and has non-inductive subscript
expressions (indirect addressing). Thus, the vector codes are not fully vectorized
as demounstrated by the vector compiler report in Figure 2.7 (b). UNSP denotes
that the associated code is linked to some unsupportable staiements through mutual

dependencies.

15

10

10

do 10 i = 1,k

ri = BRNUNF()
r2 = RNUNF()
j = int(rl * n) + 1

rv{(i)= x(3j)
if(r2 .gt. £(3)) rv(i) = a(j)
continue

Figure 2.6: Scalar code of the alias method.

call SURAND(seedil,k,rni)
call SURAND(seed2,k,rn2)
do 10 1 = 1,k :
j{i) = int(rn1(i) * n) + 1
rv(i) = x(j(i)) _
if(rn2(i) .gt. £(3{1))) rv(i) = a(3(i))
continue

(a) The vector code.

call SURAND(seedl,k,rnl)
call SURAND(seed2,k,rn2)

-——- de 10 i = 1,k

j(i) = int(rnl(i) * n) + 1
rv{i) = x(3({i))

———— : do 10 i = 1,k :
if(rn2(i) .gt. £(5(i))) rv(i) = a(j(i))

(b) The vector compiler report.

Figure 2.7: Vector code of the alias method.

16

2.6 Brow_n’s Method

The discrete sampling method proposed by Brown et al. [11] refers to the same
theorem as the alias method; the difference is in the procedure for setting up the

tables of n two-point distributions.

Table 2.5: The generation table of Brown’s method.

y | 10 | 30 | 10 | 10 | 20
b | 50 | 40 | 30 | 10 | 20
£(09]06]0.1]0.0]0.0

[d7]10 50 [30 401030 [10] 102020

Table 2.5 shows the generation table for Brown’s methoc{ derived from Table 2.1,
The construction of the generation table employs the same approach as the alias
method; however, the procedure is di_fférent. This generat;ion table requires 3n extra
storage locations to store the probability tables of n two-point distributions. Array
y stores the mass points of the first elements of the five two-point distributions, while -
array f stores the associated proba.bilities; Array b stores the mass points of the
second elements of the five two-point distributions. In order to avoid the use of if-
statements, aé in the case of the alias method, the generation of samples uses array d
which combines arrays y and b. The first elements of y and b arrays are stored into
the first and second elements of array d. The second elements of y and b are stored
into the third and fourth elements of array d, and so on.

The scalar and vector codes of Brown’s method are shown in Figure 2.8 and
Figure 2.9 (a), respectively. Figure 2.9 (b) shows the vector compiler report, which
demonstrates that the vector code is vectorized entirely.

Brown’s method requires two random numbers. In order to reduce the compu-

tation time, only one random number is generated by a random number generator.

17

Subsequently, the second random number can be obtained from the first one (see the
scalar or vector codes). Since this technique relies on the randomness of the lower
order digits of the first random number, it is not recommended for a la.rgé number of

mass points (see reference [24, page 108]).

2.7 Performance Criteria

In this thesis, 1t 1s important to identify specific aspects of a Monte Carlo simulation in
order td measure its performance. These aspects include the solution and its variance,
. the processing time, the scalar and vector speedup, and the efficiency in obtaining
the solution. ‘

To measure the variation of a solution we use a fractional standard deviation

(FSD) [66], which is defined as

s

FSD = , with R (2.3)
§ = L3 (X-X)%and

: = k_1£=1 i s &

3 Zf:le:-

X = ==

where k is a sample size; X and S? denote the estimators of the distribution mean
and variance, respectively. They are commonly called sample mean and sample vari-
ance, respectively [56, p. 145]. Note that we also use these terms in this thesis. The
FSD is used since it contains information about the true parameter of the distribu-
tion [56, p. 178].

In a Monte Carlo simulation, a respectably high efficiency in olbta,ining the solution
is one of the performance criteria. Hammersley and Ha.ﬁdscomb [33] have proposed
that the efficiency of a Monte Carlo simulation be defined as a constant inversely
proportional to the product of the variance of X (which is 52/k) and the processing

time required in obtaining an estimated value {an estimate} of the distribution mean.

18

This definition is referred to in discussing efficiency in this thesis. In order to increase
the efficiency of a Monte Carlo simulation the sample variance (5?) as well as the
processing time (T') should be reduced. Thus, the efficiency combines the measure
of statistical and computational performance. The efficiency of Method A relative to

Method B is given by
Sg X TB
"= 51 xT,
A A

Based on Equation (2.4), we further define the maximum relative efficiency (fmaz) if

(2.4)

Method B achieves the highest efficiency among those of the other methods. Also,

the minimum relative efficiency (i) if Method B results in the lowest efficiency.

do 10 i = 1,k
ri = RNUNF()
r =r]l *n+ 1.0
ir = int(y)
j = ir + r - £(ir)

rv(i)= a(j)
10 continue

Figure 2.8: Scalar code of Brown’s method.

19

1

call SURAND(seedl,k,rni1)

do 10 1
r -
ir

hj
rv{i)=

0 continue

[

1,k
rni{i) * n + 1.0
int(r)

ir + r - £({ir)
d(j)

{a) The vector code.

call SURAND(seedl,k,rnl)
de 10 i = 1,k

r = rnl{i) * n + 1.0
ir = int(r) -

j = ir + r - £{ir)
rv(i)= d(j)

(b) The vector compiler report.

Figure 2.9: Vector code of Brown’s method.

20

2.8 Results and Discussion

The inverse method, the equiprobable method, the alias method, and Brown’s method
have been implemented on the IBM 3090-180 Vector Facility computer of the Univer-

sity of New Brunswick to sample from a simple probability table. We also examine a

scalar routine supported by IMSL, named RNGDA, which applies the alias method.

These methods are used to estimate the mean and variance of the distribution.

VS FORTRAN Version 2 Release 4 was used to code the methods. The programs

were compiled using optimization OPTION(3), the highest optimization option for
scalar and vector processing. Besides reporting the statistical results, this section also
demonstrates the processing time, the vectorization speedups, and the efficiencies of
the sampling methods examined. '

Notations for the scalar codes are as follows,

1. INVER: scalar code of the inverse method,

2. EQUIP: scalar code of the equiprobable method,
3. ALIAS: scalar code of the alias method,
4. DISCS: scalar code of Brown’s methoci, and

5. IMSL: employs the IMSL routine RNGDA, in which the alias method is imple-

mented, .
The following notations are for the vector codes.

1. INVRI1: vector code of the inverse method, shown in Figure 2.2,
2. INVR2: vector code of the inverse method, shown in Figuré 2.3,
3. EQUIP: vector code of the equiprobable method,

4, ALIAS: vector code of the alias metho&, and

5. DISCS: vector code of Brown’s method.

21

2.8.1 Estimation of Distribution Mean and Variance

This subsection reports the estimated values for the distribution mean, obtained by
different sampling methods. The probability table used for sampling is shown in
Table 2.6. The distribution mean of this table is 87.431. This probability table was
chosen as it results in a relatively large sample variance; which enables verification of

the validity of the estimators.

Table 2.6: The probability table used in computation.

90 | 70 50 1 20 15 10 5 2 1
.200 | .100 | .030 ¢ .025 | .016 | .013 | .010 | .005 | .00L

1 = 87.431, o2 = 555.99

100
.600

Mass points
Probabilities

Note that the scalar and vector codes produce the sa.rﬁe results; therefore, we
use only the scalar code notations to report the results. The estimates of the dis-
tribution mean together with the associated FSDs obtained using different codes are
summarized in Table 2.7. The percentage FSD (%FSD) is the product of FSD and
100.

Table 2.7: Mean estimates and their percentage FSDs.

Sample INVER EQUIP ALIAS DISCS IMSL

size | X(%FSD) | X(%FSD) | X(%F3D) | X(%FSD) | X(%FSD)
20,000 | 87.44(0.19) | §7.44(0.19) | 87.40(0.19) | 87.40(0.19) | 87.39{0.19)
10,000 | 87.42(0.14) | 87.42(0.14) | 87.58(0.13) | 87.58(0.13) | 87.57(0.13)
60,000 | 87.41(0.11) | 87.41(0.11) | 87.56(0.11) | 87.56(0.11) | 87.56(0.11)
80,000 | 87.39(0.10) | 87.39(0.10) | 87.57(0.10) 87.57(0.09) | 87.55(0.09)
100,000 | 87.43(0.09) | 87.43(0.09) | 87.50(0.09) | 87.50(0.08) | 87.50(0.08)

It is found, as shown in Table 2.7, that all of the estimated values for the distri-
bution mean obtained using various methods are unbiased, i.e. they estimate a value

- - of the mean almost equal to that of the distribution mean. The FSDs of the existing

22

methods are relatively equal. For these sample sizes, the estimates of X and S? are
close to ¢ and o2, respectively. Therefore, for each sample size the F5D is almost
equal to ¢/{xvk). It should be noted that the equiprobable method results in the

same estimates as the inverse method. This is due to the fact that the equiprobable

method is essentially another version of the inverse transform method.

Table 2.8: Variance estimates and their percentage FSDs.

Sample | INVER | EQUIP ALIAS DISCS IMSL
size | SUHEFSD) | S2HHEFSD) | SH%EFSD) | S2(%FSD) | S (%FSD)
20,000 | 557.9(1.8) | 557.9(1.8) | 550.8(1.8) | 550.1(1.8) | 549.6(1.8)
40,000 | 559.8(1.3) | 559.8(1.3) | 543.4(1.3) | 539.9(1.3) | 539.8(1.3)
60,000 | 558.0(1.0) | 558.0(1.0) | 547.4(1.0) | 541.1(1.0) | 541.0{1.0)
80,000 | 558.9(0.9) | 558.9{0.9) | 548.9(0.9) | 541.1(0.9) | 540.9(0.9)
100,000 | 557.1(0.8) | 557.1(0.8) | 552.4(0.8) | 543.8(0.8) | 543.8(0.8) |

The distribution variance of the probability table shown in Table 2.6 is 555.99.
Table 2.8 summarizes the estimated values of the distribution variance obtained us-
ing different methods. As Table 2.8 shows, all sample variances evaluated by the _
different methods are almost equal to the distribution variance. The estimates of the

distribution variance are therefore unbiased.

23

2.8.2 Processing Time

In order to examine the effects of a probability table’s length on the sampling time,
we utilize two probability tables with different length. Probability tables of length
10 and 200 (n =10 and n = 200) are used for evaluating the processing time of
scalar and vector codes. The distribution of table with length 200 is uniform. The

sample size ranges from 20,000 to 100,000.

Table 2.9: Scalar processing time for n = 10, in milliseconds.

Samples [INVER | EQUIP | ALIAS | DISCS | IMSL
20,000 [100.58 | 83.28 | 159.33| 98.28 | 94.55
40,000 | 201.25} 166.51 | 318.64 | 196.55 | 188.41
60,000 | 302.24 1 249.97 | 478.46 | 294.98 | 282.85
80,000 | 402.52 | 333.11| 637.26 | 392.81 | 378.37

100,000} 504.30 | 416.58 | 796.89 | 491.25] 471.45

Table 2.9 shows the processing time of the scalar codes for n = 10. In this table,
the least processing time is for the EQUIP code, followed by the IMSL code; then
the processing time increases respectively for the DISCS, INVER, and ALIAS codes. -
The inverse method (INVER) needs less processing time than the alias method, since

INVER requires relatively few comparisons.

Table 2.10: Scalar processing time for n = 200, in milliseconds.

Samples | INVER | EQUIP | ALIAS | DISCS | IMSL
20,000 | 382.25 | 83.35| 159.94| 97.90 | 94.42
40,000 [766.99 | 166.80 ! 320.13 | 195.93 | 189.40
60,000 | 1151.52 | 250.45 | 479.60 | 294.13 | 283.49
80,060 | 1538.74 | 333.99 1 640.09 | 392.59 | 378.68

100,000 | 1920.76 | 416.79 [798.24 | 490.12 | 473.07

Table 2.10 demonstrates the processing time of the scalar codes for n = 200. It

shows that the least processing time is still for the EQUIP code, followed by the IMSL,

24

DISCS, and ALIAS codes. The INVER code here requires the largest processing time,
stnce it needs a relatively large number of comparisons. The INVER code does not
perform well in the long probability table. The processing time of the EQUIP, IMSL,
DISCS and ALIAS codes for n = 10 and n = 200 are almost equal; whereas, the
processing time of the INVER code depends on the value of n.

Table 2.11: Vector processing time for n = 10, in milliseconds.

Samples | INVR1 | INVR2 | EQUIP | ALIAS | DISCS
20,000 | 34.77| 18.23 7.02| 20.83| 10.98
40,000 69.63 36.38 1393 | 41.65| 21.83
60,000 | 104.49| 54.72 2090 | 62.461 32.74
80,000 | 139.17 | 72.75| 27.89| 83.28; 43.65

100,000 [174.38 | 90.94 | 34.80 | 104.40 | 54.53

The processing times of the vector codes for n = 10 is shown in Table 2.11. It
shows that the least processing time is for the EQUIP code, followed by the DISCS
code; then the processing time increases respectively for the INVR2, ALIAS and
INVRI1 codes. The INVR2 requires less processing time than INVR1, since the outer
loop of the INVR2 code gets vectorized and the extra time spent by the inner loop |
is relatively small. The inner loop of the INVR1 code is vectorizable, but it was not

vectorized since the maximum number of loops is only 10.

Table 2.12: Vector processing time for n = 200 , in milliseconds.

Samples | INVR1 | INVR2 | EQUIP | ALIAS | DISCS
20,000 | 190.68 | 283.67 7161 21.06; 11.00
40,000 [381.60 | 566.98 14.27 1 42.03{ 21.93
60,000 [573.15| 850.28 | 21.41}{ 62.95! 32.89
80,000 | 763.00} 113260 28.34| 83.87] 43.91

100,000 | 955.29 1 1418.00 | 35.41 | 104.99 1 54.77

- Table 2.12 exhibits the processing times of the vector codes for n = 200. In this
table, the least processing time is still for the EQUIP code, followed by the DISCS and

25

ALIAS codes. The EQUIP codes are about 1.6 times faster than the DISCS codes
for both 7 = 10 and n = 200. The inverse methods (INVRI1 and INVR2) consume
much larger processing time than the other codes, since the number of cémpa.risons
required is large and the benefit of vector processing still cannot compensate it.

Moreover, the INVR1 code requires less processing time than the INVR2 code. It
is due to the fact that for n = 200 the inner loop of the INVRI code gets vectorized.
Also, the overhead for the INVR2 code is larger than the benefit of the vectorization
of its outer loop. INVR2 involves an overhead processing time, because the inner loop
is always iterated n times regardless of the location of an interval in the cumulative
distribution in which a random number lies.

These processing time tables show that in vector processing, as the case in scalar
processing, the equiprobable method, the alias and Brown’s methods are not affected

by the length of the probability table.

2.8.3 Speedup

This subsection presents minimum and mazimum vectorization speedups. The mini-

mum speedup (Vinin) is obtained according to processing time of vector codes relative
to the smallest processing time of a scalar code, while the maximum speedup is (Vin,z)
calculated relative to the largest scalar execution time. The advantage of these results
is to demonstrate a possible speedup one can achieve for a given sampling method

through vectorization.

Table 2.13 demonstrates the minimum speedups of the vecﬁor codes relative to the
scalar EQUIP code, which requires the smallest scalar processing time. The speedups
of the ALIAS, DISCS and the EQUIP codes are about 4, 7.6 and 12, respeétively.
The speedup of the INVR1 is about 2.4, while INVR2 is about 4.6.

The maximum speedups of the vector codes (shown in Table 2.14) are calculated

relative to the processing time of the scalar INVER code, which exhibits the largest

26

Table 2.13: Minimum vectorization speedups (V,,;,) for n = 10.

Samples | INVR1 | INVR2 | EQUIP | ALIAS | DISCS
20,000 | 2.395| 4.568 | 11.863 | 3.998! 7.585
40,000 [2391 4.577 | 11.953 | 3.998 | 7.628
60,000 [2.392| 4.568 | 11.960 4.002} 7.635
80,000 | 2.394| 4.579| 11.944 | 4000} 7.631

100,000 | 2.383| 4581 11.971| 3.990; 7.639

Table 2.14: Maximum vectorization speedups (V.. } for n = 10.

Samples | INVR1 | INVR2 | EQUIP | ALIAS | DISCS
20,000 | 4.582 | 8.740| 22.697(7.649 | 14.511
40,000 | 4.576 | 8.759 | 22874 7.650 1| 14.596
60,000 | 4.579| 8.744 | 22.893| 7.660 | 14.614
80,000 | 4.579 | 8.760| 22.849 | 7.652 | 14.599

100,000 | 4.570 . 8.763 | 22.899 | 7.633] 14.614

scalar execution time. The maximum speedups here are about twice of the corre-

sponding minimum speedups.

Table 2.15: Minimum vectorization speedups (Vi.in) for n = 200.

“Samples | INVRI | INVR2 | EQUIP | ALIAS | DISCS
30,000 | 0.437 | 0.394 | 11.641 | 3.958 | 7.577
40,000 | 0.437 | 0.294 | 11.689 | 3.969 7.606
60,000 | 0.437| 0.295| 11.698| 3.079| 7.615
80,000 | 0.438 | 0.295| 11.785| 3.082] 7.606
100,000 | 0.436| 0294 | 11.770| 3.970] 7.610

For n = 200, the minimum and maximum vectorization spéedups are shown in
Tables 2.15 and 2.16, respectively. The minimum speedup of the INVRI is about 0.4,
while INVR2 is about 0.3. Note that the speedups of the INVR1 and INVR2 codes
are about the same when n = 100; the speedup is about 0.6.

The minimum speedups of EQUIP, ALIAS and DISCS for different probability

27

Table 2.16: Maximum vectorization speedups {Viq,) for n = 200.

Samples | INVR1 | INVR2 | EQUIP | ALIAS | DISCS
20,0001 2.005(1.348 | 53.387 | 18.151 | 34.750
40,000f 2.010 | 1.353 | 53.748 | 18.249 | 34.974
60,000 { 2.009 | 1.354 | 53.784 | 18.293 | 35.011
80,000 2.017} 1.359| 54.296 | 18.347 | 35.043

100,000 | 2.011 | 1.355 | 54.243 | 18.295 | 35.070

table length (n = 10 and n = 200) are relatively equal. It is due to the fact that
the scalar smallest execution time, produced by EQUIP, is not affected by the table
length.

The maximum speedups for this table are about 4.6 times of the corresponding
minimum speedups; it is not the case in n = 10. The maximum speedups are much
higher than the minimum énes, since the largest scalar tirﬁe produced by INVER"

code increases drastically.

2.8.4 Efficiency

This subsection reports the efficiencies of different scalar codes relative to the scalar
INVER code, and those of different vector codes relative to the vector INVRI code.
The inverse method is used as a reference in calculating the relative efficiency, because
it is the most common method used in the applications; such as in Monte Carlo
solutions of a system of linear equations (discussed in Chapter 4), and in Monte

Carlo solutions of particle transport problems (presented in Chapter 5).

As discussed in Section 2.7, the relative efficiency of two sampling methods com-
pares their processing time and sample variances. Moreover, the efficiencies demon-
strated. here can also be interpreted as the speedups of different codes relative to
the code for the inverse method in the same processing mode, because their sample

variances are relatively equal. For example: in the scalar processing, the efliciencies

28

also repi-esents the scalar speedups of different scalar codes over the INVER code.
Similarly, in the vector processing, the efliciencies demonstrate the speedups of dif-
ferent vector codes relative to the INVR1 code. Therefore, the results presented here
support the discussion about speedups in Subsection 2.8.3.

Tables 2.17 and 2.18 demonstrate the efliciencies of different scalar codes relative
to the corresponding scalar INVER code for n = 10 and n = 200, respectively.
Since their FSDs are almost equal, these tables also exhibit the scalar speedups of
different sampling methods relative to the inverse method for n = 10 and n = 200,
respectively.

Tables 2.19 and 2.20 show the efficiencies of different vector codes relative to the
corresponding vector INVR1 code for n = 10 and n = 200, respecfively. Note
that these tables also demonstrate the vector speedups of different sampling methods

relative to the inverse method for n = 10 and n = 200, respectively.

Table 2.17: Efficiencies of different scalar codes relative to that of scalar IN-
- VER for n = 10.

Samples | EQUIP | ALIAS | DISCS | IMSL
20,000 1.208 | 0.632| 1.024 | 1.065
40,000 1.209 | 0.730 | 1.183| 1.235

60,000 1.209 | 0.630 | 1.021 | 1.065
80,000 1.2081 0.629| 1.260| 1.309

100,000 1.211; 0.632| 1.297| 1.352

29

Table 2.18: Efficiencies of different scalar codes relative to that of scalar IN-
VER for n = 200.

Samples | EQUIP | ALIAS | DISCS | IMSL
20,000 | 4.586 | 2.392| 3.908 | 4.053
40,000 4.598 | 2.768 | 4.523 | 4.680
60,000] 4.598} 2.393(3.902 | 4.048
80,000 4.607 | 2394 | 4.819(4.998

100,000 | 4.608 2.402| 4.952] 5.130

Table 2.19: Efficiencies of different vector codes relative to that of vector
INVRI1 for n = 10.

Samples | INVR2 | EQUIP | ALIAS | DISCS
20,600 1.909 49531 1.671| 3.170
40,000 [2.212 9.383 | 1.932| 3.687
60,000 | 1.903 5.000| 1.667| 3.181
80,000 | 1.905 4990 2.055| 3.922

100,000 [1.914 5,011 2.111| 4.041

30

Table 2.20: Efficiencies of different vector codes relative to that of vector
INVRI for n = 200,

Samples | INVR2 | EQUIP { ALIAS | DISCS
20,000 0.673| 26.631| 9.062| 17.354
40,000 0.778 | 28.798 | 10.491 | 20.112
60,000 0.672| 26.770| 9.074| 17.367
80,000 0.671| 26.923{ 11.185| 21.374

100,000 | 0.673 | 26.978{ 11.497 | 22.040

2.9 Concluding Remarks

In this chapter, we have examined the existing methods for sampling from a probabil-
ity table. The investigation was carried out by measuring several aspects, including
processing time, speedup and efficiency.

All of the existing methods result in unbiased estimates. Their estimated values for
the distribution mean aré almost equal, and as the case for their estimated values of
the distribution variance. The inverse method is time consuming when the probability -
table is long, since the number of comparisons is large. This method is not suited for
vectorization either as it usually involves sequential step-by-step searching,.

The equiprobable method requires the least processing time in scalar as well as in
vector processing, compared to the other methods. If the smallest probability is of
the form a b-digit decimal, this method requires 10° extra storage locations to set up'
tables for generating samples. The equiprobable method, therefore, requires a huge
amount of storage when a very small probability exists in the probability table.

The alias method requires two uniform random numbers and one comparison to
generate a random variable regardless the length of a probability table. However, the
alias method is not fully vectorizable since it requires if-statement involving indirect

addressing.

31

Brown’s method is based on the same theory as the alias method. This method
can reduce the processing time by eliminating the comparison and calling a random
number generator only once for each sample, since the second random number is
formed by utilizing the lower order digits of the first one. Therefore, Brown’s method
is more suitable for vectorization since it avoids the use of if-statement. However,
Brown’s method, as the case of the alias method, requires a relatively complicated
procedures to construct the generation tables for sampling. The generation table of
Brown’s method as well as the alias method requires extra storage of size three times
the probability table’s size. ‘

Thus, these existing sampling methods have some disadvantages, and ounly the
-equiproba,ble and Brown’s methods are suited for vectorization. Moreover, all the
existing sampling methods do not aim at reducing the sample variances of their
solutions. These facts necessitate the investigation of neW's.a‘meling methods, which
are suited for vector processing and reduce sample variances. For this reason, we

propose a new sampling method in Chapter 3.

32

Chapter 3

Weighted Sampling Method

3.1 Introduction

The existing sampling methods were reviewed and their suitability for vector process-
ing was investigated in the previous section. It was found that the existing sampling
methods have some disadvantages in utilizing vector processing facility and in prepro-
cessing the tables for generating samples. Since Monte Carlo methods often require
sampling from probability tables, in this chapter therefore, we introduce a vectoriz- |
able sampling method, called weighted sampling method. It is for constructing samples
from arbitrary discrete distributions, which are represented as probability tables.

In this chapter, two probability tables having different characteristics are inves-
tigated, It is demonstrated that this method requir.es simpler coding and shorter
execution time for both scalar and vector processing, when compared with the exist-
ing methods. The vectorization speedups of the proposed method are demonstrated
on an IBM 3090-180 machine with a vector facility. Further,.we also exhibit the
relative efficiencies of different scalar and vector codes.

This chapter* will start by introducing the concept of the weighted sampling

method and examining its scalar and vector codes. Subsequently, the statistical

L An abridged version of this chapter is published in [83].

33

analysis of this method is demonstrated in Section 3.3, Sections 3.4 and 3.5 examine
two probability tables with different characteristics. In these sections, we discuss some
performance criteria inc.ludin'g the solutions and their fractional standard deviations,
the processing time, the speedups, and the efficiencies of the sami)ling methods.

Finally, some concluding remarks of this chapter are given in Section 3.6.

3.2 The Weighted Sampling Method

This method is based on the concept of importance sampling [77], which is often
used in Mounte Carlo simulations to minimize the sample variance associated with the
estimated quantity. This is achieved by altering the original distribution such that
an unbiased estimate of the quantity of interest is obtained with minimum sample
variance. Thus, the objective here is solely for variance redu.(‘:tion.

In a similar way, the proposed method alters the given distribution by employing
a uniform distribution, which requires a smaller execution time both with scalar and
vector processing. However, the main objectfve of the weighted sampling method is
to increase the efficiencies of Monte Carlo solutions by speeding up the generation of
samples and reducing the sample variance. This method may not preserve the mass
points of the original distribution. It results in, however, unbiased estimated values
for the mean :;.nd vartance of the original distribution.

There are Ba.sica.lly two different techniques for implementing the weighted sam-
piing method. First, samples are selected directly from the probability table, and
subsequently multiplied by the corresponding adjustment factor. Second, the gener-
ation table is constructed by multiplying every mass point with the corresponding
adjustment factor. Then, samples are taken from this generation table. It should be
noted here that both techniques result in the same estimates.

Let us consider an arbitrary discrete distribution, which is represented by the

probability table as follows. The mass points are &;, for j = 1,2,.--,n, while

34

:
3
4
:

M T T R A AT I L

the associated probabilities are p;, for j = 1,2,---,n, where 3% ;p; = 1. In the
first technique, the procedure for generating ¥ samples from this probability is the |
following. For the ¢-th Sample, the mass point z; , where z; € {z;,7 = 1, é, e,nl, ds
selected from the probability table according to uniform distribution in the interval
[1,n]. Subsequently, the sampled mass point is multiplied by an adjustment factor,
which is defined as the product of the table length (n) and the probability of the
selected mass point (p;), where p; € {p;,7 = 1,2,---,n}. Thus, the random samples
generated are equal to z;p;yn, fori =1,2,---, k. Thus, the total operations required
to generé,te k samples is 2k fetch operations and 2k multiplications.

In the second technique, the generation table is a new discrete distribution, which
has mass points: :rjpj:n, for j =1,2,--- n, and the associated probability for ev-
ery mass point: 1/n. Thus, the mass points in this generation table are distributed
untformly. Therefore, samples can be fetched directly from the generation table ac-
cording .to uniform distribution in the interval [1,n]. To construct the generation
table, every mass point requires two multiplication operafions. The advantage of this
technique is that only one fetch operation is required for generating a sample. The
number of operations required to construct the generation table from a probability
table of length n is 2n fetch operations dnd 2n multiplications, while the number
of operations needed to generate k samples is only k fetch operations.

The semﬁd technique generally requires less processing time than the first one,
since k 1is us.ua,lly much larger than n. However, it is much easier to incorporate
the first technique into a large developed code since the original probability table
can be utilized directly. In this chapter, we implement both techniques in order to
demonstrate their processing time required for sampling.

For the second technique, the generation table of the weighted sampling is shown
in Table 3.1. It is constructed from a probability table demonstrated in Table 2.1. In
constructing the generation table, zero probabilities are excluded and the table length

is accordingly adjusted. The mass points are multiplied by the adjustment factors:

35

Czipin, for 3 = 1,2,..-,5, and subsequently stored into an array w, as shown in
Table 3.1. The new mass points in array w are distributed uniformly; therefore, the
probabilities are not really needed to store in array p. |

Note that the method produces the random samples 5, 16, 20 and 45, which are
not mass points of the original distribution; whereas the original mass points 10, 20,
30, 40 and 50 will never be generated. However, the method preserves the mean
and variance of the original distribution (as shown in Section 3.3) which are the only

important quantities in many Monte Carlo simulations.

Table 3.1: The generation table of the weighted sampling method.

w|20]20 45|16 5
p|02]02]02]02]02

3.2.1 The Computer Codes

This subsection discusses the scalar and vector codes of the weighted sampling method
implementing both techniqﬁes. The scalar codes of the weighted sampling method
implementing techniques I and II are shown in Figures 3.1 and .3.3, respectively. The
code generates k& samples form a probability table of length n, and stores them into
variable rv. The RNUNF function [46] generates uniform random numbers in the
interval (0,1).. -

The vector code of the weighted sampling method implementing technique I is
depicted by Figure 3.2 (a), while its vector compiler report is shown in Figure 3.2 (b).
In this code, The SURAND(seedl,k,rnl1) subroutine [43] uses seedt as a seed to
generate k random numbers which are stored in array rni.

For the weighted sampling method using technique II, the vector code and its

compiler report are presented in Figures 3.4 (a) and (b), respectively.

36

do 10 i = 1,k
ri = RNUNF()
3 = int(rl * n) + 1
rv(i)=x(j)*p(j)*n
10 continue

Figure 3.1: Scalar code of the weighted sampling method using technique L.

call SURAND(seedl,k,rnl)
do 10 i = 1,k

j = int(rni1(i) * n) + 1
rv(i)=x(§)*p(j)*n
10 continue

(a) The vector code.

call SURAND(seedl,k,rnl)
VECT +----——- do 10 i = 1,k
! j int(rni1(i) * n) + t
e rv{i) = x(3)*p(j)*n

{b) The vector compiler report.

Figure 3.2: Vector code of the weighted sampling method using technique I.

37

do 10 i = 1,k
rl = RNUNF()
j = dnt(rt *n) + 1
rv(i)=w(j)
10 continue

Figure 3.3: Scalar code of the weighted sampling method using technique II.

call SURAND(seed1,k,rnl)
do 10 1 = 1.,k

h| = int(rn1(i) * n) + 1
. rv(i) = w(j)
10 continue

(a) The vector code.

call SURAND(seedl,k,rnt)

VECT +-------) do 10 i = 1,k
I h) = int(rnl(i) * n) + 1
e rv{i) = w(j)

{(b) The vector compiler report.

Figure 3.4: Vector code of the weighted sampling method using technique II.

The vectorization of the weighted sampling method implementing both techniques
is straightforward since they contain no logical if-statements, and no data depen-

dency which inhibits vectorization. The vector reports, depicted in Figures 3.2 and

3.4, demonstrate that the loop is vectorized since there are no data dependencies in

the fetch operations.

38

3.2.2 Complexities of Scalar Codes

In this subsection, the complexities of different scalar codes are analyzed. The com-
plexities of the vector codes are not examined, since they are similar to those of the
scalar codes.

Table 3.2 summarizes the complexities of scalar codes for different sampling meth-

ods. Notations for the scalar codes are;

[

. INVER: code of the inverse method (Figure 2.1),

2. EQUIP: code of the equiprobable method (Figure 2.4),
3. ALIAS: code of the alias method (Figure 2.6),

4. DISCS: code of Broﬁrn’s method (Figure 2.8),

5. WGHTS1: code of the weighted sampling implementing techniqué I (Figure 3.1),

and

6. WGHTS2: code of the weighted. sampling implementing technique II. (Fig-

ure 3.3).
Table 3.2: Complexities of scalar sampling codes.
Operations _ INVER [EQUIP | ALIAS | DISCS | WGHTSI | WGHTS2
Fetch nf2 1 3 2 2 1
Addition 0 1 1 2 1 1
Subtraction 0 0 0 1 0 0
Multiplication 0 1 1 1 3 1
Comparison n/2 0 1 0 0 0
Random number 1 1 2 1 1 1

39

3.3 Statistical Analysis

This section proves that the weighted sarhpling method provides unbiased estimators
of the distribution mean and variance. Unbiased estimators for higher order moments
can also be developed in a similar fashion. The subscript w is used for the weighted
sampling estimators in order to distinguish them from the corresponding estimators
which employ the original distribution. The esfimators of mean and variance sam-
pled directly from the original distribution are X and S? , respectively; while, the
weighted sampling method provides X,andS? . The notations for mass points and

_the associated probabilities respectively are z;, and p;, for 7 = 1,2,---,n, where
?:1 = L.
THEOREM 1 The estimator X,, = %ELI pinz; ts an unbiesed estimator of the

disirtbution mean p whenever the latter exists, where p; € {ps,d = 1,2,---,n},

z; € {&;,7=1,2,---,n} and k is the sample size.

Proof.

The expected value of X,, can be expressed as

P = 5| b

k
>y Elpina]
Leiz=t ZURTT 1
iipns (3.1)
Since the samples are generated uniformly and 2,7 = 1,2, ,k, are independent

and identically distributed then for every i, the expected value of p;nz; can be

expressed as

Elpinzs] = g %(pjmj)
. (3.2)
The expected value of X,, then is as follows.
B[R = L
. (3.3)

40

Thus, the expected value of X, is equal to the distribution mean, and X, is therefore

an unbiased estimatorof g. O

THEOREM 2 The estimator SZ = %H'E:F:l pin(z; — X)? is an unbiased estima-

2

tor of the distribution variance 0° whenever the latter exists, where p; € {p;,j =

1,2,---,n}, ;€ {z;,j =1,2,---,n} andk is the sample size.

Proof.

S2 can be expressed as

1

- k+12p, - 2Xz;+ X))
- kil (Zp,nx —2kX%+§p,nX)
_ kil (Zp, na? —2kXXw+§p,nX) (34)

The expected value of S, is as follows
1 5 —r L
Bl = B[y (L nmel -2k + X
' k+1\i5 i=1

= kLH (; Elpma?] — 2k E[X|E[X.,] + kE[?]) : (3.5)

As the samples are generated uniformly,

Elpm(z:i — p)?] = D pile; — p)?
=1
= o* (3.6)
By expé,nding the left hand side we obtain
E[p,n:vf] - ZpE[p,'n&?,'] + E[pgan] = g2, (37)

41

Alternatively,
Blpina?] — 244 + ? = o?. 38)
Therefore, |
E[pinz?] = p* 4+ o2 (3.9)
The expected value of X~ is given by [95, page 474]

o2
*‘é".
Substituting Equations (3.9) and (3.10) into Equation (3.5) the expected value of 52

EX"] = u* + (3.10)

can be expressed as

1 ol
BISY = (B0 + o)~ 2k 4 k7 4 D)
—_ . 1 2 2 |
= 71 (ka +o) ..
= ok (3.11)

Thus, the expected value of 52 is equal to the given distribution variance. Hence, 52

ur

is an unbiased estimator of 2. O

3.4 ProblemI

In this section, we report the results of the weighted sampling method using techniques
. T and II, iniplemented on the IBM 3090-180 Vector Facility computer, This method
is used to estimate the mean and variance of a probability table shown in Table 2.6
from Chapter 2. |

The codes were written using VS FORTRAN Version 2 Release 4. The programs
were compiled using optimization OPTION(3), which exhibits t-he highest optimiza-
tion option for scalar and vector processing.

Since the objective of this discussion is to compare the results produced by the
weighted sampling method and the existing sampling methods, in this séction there-

fore, some results from Chapter 2 will be shown again.

42

3.4.1 Estimation of Distribution Mean and Variance

This subsection exhibits the estimated values for the distribution mean obtained
by the weighted sampling method. The results are then compared with those from
Chapter 2. Table 2.6 was chosen since it gives poor results for the weighted sampling
method; i.e. it results in large fractional standard deviations (FSDs) for the weighted
sampling.

Notations for the scalar codes are as follows,
1. INVER: code of the inverse method,

2. ALIAS: code of the alias method,

3. DISCS: code of Brown’s method,

4. IMSL: employs the IMSL routine RNGDA, in which the alias method is ifnple-

mented, and
5. WGHTS: code of the weighted sampling method.

Note that the weighted sampling method implementing both techniques produce the
same statistical results; therefore, we use only one code notation to exhibit the es-
timated values for the distribution mean and variance. Also, we do not show the
results produced by the vector codes since they are the same as those obtained by
the scalar codés. |

The equiprobable method is not included here since its statistical results are the
same as those of the inverse method. This is due to the same operations involved in
their codes. - -

Table 3.3 summarizes the estimates of the distribution mean together with the
associated FSDs evaluated using the different codes. This table shows tha,t all of the
mean estimates computed using various methods are unbiased, i.e. they estimmate a

value, which is almost equal to the distribution mean.

43

For this problem, the weighted sampling method (WGHTS) produces the largest

FSD, which means that its sample variance is the largest.

In general, the sample variance of the weighted sampling method may be smaller or
larger than the other methods, depending on the distribution. The weighted sampling
results in relatively large FSD when the trend of the mass point values and the
associated probabilities are same; i.e. when mass point values decreases and the
associated probabilities also decreases, or both of them increase. In Table 2.6 used
for this sampling, the values of mass points and the associated probabilities decrease.
Thus, we can predict that the weighted sampling will result in poor statistics.

Table 3.4 summarizes the estimated values (estimdtes) for the distribution vari-
ance, obtained using different sampling methods. As this table shows, all sample
variances evaluated by the different methods are almost eq_‘ua.l to the distribution
variance, which is 555.99. The estimates of the distribution variance are therefore

unbiased. It should be noted that WGHTS results in the _smallest %FSD.

3.4.2 Processing Time

We use two probability tables with different length (n = 10 and n = 200) for
evaluating the processing time of scalar and vector codes. Note that the distribution
of table with length 200 is uniform. The sample size ranges from 20,000 to 100,000.

Notations for the scalar codes are as follows.

Table 3.3: Mean estimates and their percentage FSDs.

Sample INVER ALIAS DISCS IMSL WGHTS

size | X(%FSD) | X(%FSD) | X(%FSD) | X(%FSD) | X (%FSD)
20,000 | 87.44(0.19) | 87.40{0.19) | 87.40(0.19) | 87.39(0.19) | 87.76(1.44)
40,000 | 87.42(0.14) | 87.58(0.13) | 87.58(0.13) | 87.57(0.13) | 87.36(1.02)
60,000 | 87.41(0.11) | 87.56(0.11) | 87.56(0.11) | 87.56(0.11) | 87.54(0.84)
80,000 } 87.39(0.10) | 87.57(0.10) | 87.57(0.09) | 87.55(0.09) | 87.47(0.73)
100,000 | 87.43(0.09) | 87.50(0.09) | 87.50(0.08) | 87.50{0.08) | §7.49(0.65)

44

6.

Table 3.4: Variance estimates and their percentage FSDs.

Sample | INVER ALIAS DISCS TMSE WGHIS
size | 5°(%F3D) | 5°(%FSD) | S2(%FSD) | S5 (%FSD) | 52 (%FSD)
20,000 | 557.9(1.8) | 550.8(1.8) | 550.1(1.8) | 549.6(1.8) | 554.3(0.46)
40,000 | 559.8(1.3) | 543.4(1.3) | 539.9(1.3) | 539.8(1.3) | 555.5(0.32)
60,000 | 558.0(1.0) | 547.4(1.0) | 541.1(1.0) | 541.0(1.0) | 556.6(0.26)
80,000 | 558.9(0.9) | 548.9(0.9) | 541.1{0.9) | 540.9(0.9) | 556.5(0.23)
100,000 | 557.1(0.8) | 552.4(0.8) | 543.8(0.8) | 543.8(0.8) | 556.6(0.20)

. INVER: code of the inverse method,

ALIAS: code of the alias method,

DISCS: code of Brown’s method,

. IMSL: employs the IMSL routine RNGDA, in which the alias method is imple-

mented,
WGHTS1: code of the weighted sampling implementing technique I, and

WGHTS2: code of the weighted sampling implementing technique I1.

Note that since the processing time of the equiprobable method is the same as

WGHTS2, the equiprobable method is not included.

“The following notations are for the vector codes.

1.

2.

INVRI: code of the inverse method, shown in Figure 2.2,

INVR2: code of the inverse method, shown in Figure 2.3,

. ALIAS: code of the alias method,

DISCS: code of Brown’s method,

. WGHTS1: code of the weighted sampling implementing technique I, and

. WGHTS2: code of the weighted sampling implementing techniqué 1L

45

The processing time of the scalar codes for n = 10 is depicted in Table 3.5.
It shows that the least processing time is for the WGHTS2 code, followed by the
WGHTSI1 code; then the processing time increases respectively for the IMS.L, DISCS,
INVER, and ALIAS codes. The processing time of WGHTS1 is slightly higher than
that of WGHTS2, but it is still lower than the others. '

Table 3.6 shows the processing time of the scalar codes for n = 200. In this table,
the least processing time is still for WGHTS2 code, followed by those of WGHTSI,
IMSL, DISCS, and ALIAS codes. The processing time of WGHTS1, WGHTS2, IMSL,
DISCS and ALIAS codes for n = 10 and » = 200 are almost equal.

Table 3.7 describes the processing times of the vector codes for n = 10. The
least processing time is for WGHTS?2 code, followed by the WGHTS1 code; then the
‘processing time increases respectively for DISCS, INVR2, ALTAS and INVRI codes.

Table 3.8 demonstrates the processing times of the vector codes for n = 200, The
least processing time is for WGHTS2 code, followed by those of WGHTSI1, DISCS,
ALIAS, INVRI and INVR2 codes.

Table 3.5: Scalar processing time for » = 10, in milliseconds.

Samples | INVER | ALIAS { DISCS | IMSL | WGHTS1 | WGHTS2
20,000 100.58 ¢ 159.33 | 98.28 | 94.55 85.19 83.28
40,000 [201.25 | 318.64 [196.55 | 188.41 170.12 166.51
60,000 | 302.24 | 478.46 | 294,98 | 282.85 255.12 249.97
80,000 | 402.52 | 637.26 | 392.81 | 378.37 340.02 333.11

- 100,000 | 504.30 | 796.89 | 491.25 | 471.45 425.39 416.58

46

Table 3.6: Scalar processing time for n = 200, in milliseconds.

Samples | INVER | ALIAS | DISCS | IMSL | WGHTS1 | WGHTS2
20,000 | 382.25| 159.94 | 97.901 94.42 85.30 83.35
40,000 | 766.99 | 320.13 | 195.93 | 189.40 170.34 166.80
60,000 | 1151.52 | 479.60 | 294.13 | 283.49 255.46 - 250.45
80,000 | 1538.74 | 640.09 |} 392.59 | 378.68 340.47 333.99

100,000 { 1920.76 | 798.24 | 490.12 | 473.07 425.93 416.79

Table 3.7: Vector processing time for n = 10, in milliseconds.

WGHTS1

Samples | INVR1 | INVR2 | ALTIAS | DISCS WGHTS2
20,000 34.77(18.23(20.83| 10.98 8.42 7.02
40,000 69.63 | 36.38(41.65| 21.83 16.81 13.93
60,000 | 104.49 | 54.72| 6246 | 32.74 25.28 20.90
80,000 | 139.17 72.75(83.28) 43.65 33.53 27.89

100,000 | 174.38 | 90.94 | 104.40| 54.53 42.07 34.80

Table 3.8: Vector processing time for n = 200, in milliseconds.

Samples | INVR1 | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,000 | 190.68 | 283.67| 21.06| 11.00 8.53 7.16
40,000 | 381.60 | 566.98 | 42.03} 21.93 17.03 14.27
60,000 | 573.15| 850.28 | 62.95| 32.89 25.60 2141
80,000} 763.00 | 1132.60 | 83.87] 43.91 33.95 28.34

100,000 ; 955.29 | 1418.00 | 104.99 | 54.77 42.58 35.41

47

3.4.3 Speedups

In this subsection, the minimum and maximum vectorization speedups of different
vector codes are investigated. The objective is to examine the range of possible
speedups, which can be achieved by different vector codes and the vector code of the
weighted sampling method especially. The speedup of a vector code obtained relative
to the scalar code having the least processing time is referred to as the minimum vec-
torization speedup, denoted by V,.;». On the other hand, the maximum vectorization

speedup (Vmaz) is obtained relative to the scalar code having the largest processing

time.

Table 3.9: Minimum vectorization speedups (Vi } for n = 10.

WGITS

Table 3.9 shows the minimum speedups of the vector codes relative to the scalar

WGHTS2 code, which requires the smallest scalar processing time. The WGHTS2

attains higher speedups than WGHTSI, as we have predicted.

Samples | INVRI | INVR2 | ALIAS | DISCS WGHTS2
20,000 | 2.395| 4.568! 3.998 7.585 9.891 11.863
40,000 | 2.391 | 4.577{ 3.998| 7.628 9.905 11.953
60,000 2.392| 4.568{ 4.002| 7.635 - 9.888 11.960
80,000 2.394 4.579 4,000 | 7.631 8.935 11.944

100,000 | 2.389| 4.581| 3.990| 7.639 9.902 11.971

Table 3.10: Maximum vectorization speedups { Ve) for n = 10.

Samples | INVR1 { INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,000 | 4.5821 8.740| 7.649] 14.511 18.923 22.697
40,000 | 4.576| 8.759 ! 7.650 | 14.596 18.955 22.874
60,0001 4.579 | 8.744 7.660 | 14.614 18.926 22.893
80,0007 4.579(8.760 | 7.652| 14.599 18.006 22.849

100,000 | 4.570| 8.763 | 7.633 | 14.614 18.942 22.899

The maximum speedups of the vector codes (shown in Table 3.10) are obtained

48

relative to the processing time of the scalar ALIAS code, which exhibits the largest
.scalar execution time. Note that the maximum speedups are about twice of the
corresponding minimum speedups since the scalar ALIAS’s processing time is about

twice of the scalar WGHTS2’s processing time,

Table 3.11: Minimum vectorization speedups (V,uin) for n = 200.

Samples | INVR1 | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,000 0437 0294 3.958| T7.577 9.771 11.641
40,000 | 0437 0.294 | 3.969| 7.606 9.794 11.689
60,000 | 0.437| 0.295| 3.979| 7.615 9.783] 11.698
80,000 | 0438 0.295(3.982]| 7.606 - 9.838 11.785

100,000 | 04361 0.294| 3.970| 7.610 9.788 11.770

Table 3.12: Maximum vectorization speedups (Vi,ar) for n = 200.

‘Samples | INVR1 | INVR2 | ALIAS [DISCS | WGHTS1 | WGHTS2
20,000 | 2.005(1.348 | 18.151 | 34.750 44.812 53.387
40,000 | 2.010 | 1.353(18.249| 34.974 45.038 53.748
60,000 | 2.009 | 1.354 | 18.293 | 35.011 44.981 53.784
80,000 [2.017| 1.359 | 18.347 | 35.043 45.324 54.296

100,000 | 2.011 | 1.355| 18.295 | 35.070 45.109 54.243

For n = 200, the minimum and maximum vectorization speedups are shown in
Tables 3.11 and 3.12, respectively. The minimum speedups are obtained relative to
the scalar WGHTS2’s processing time, while the maximum speedups are relative to

the scalar INVER’s processing time.

49

3.4.4 Efficiency

In this subsection, we exhibit the efficiencies of different scalar codes relative to the
scalar INVER code, and those of different vector codes relative to the vector INVR1

code. The efficiency calculation uses the sample variances, which can be obtained

from the %FSDs shown in Table 3.3.

Table 3.13: Efficiencies of scalar codes relative to those of scalar INVER, for

n=10.

Samples | ALIAS | DISCS | IMSL | WGHTS1 | WGHTS2
20,000 | 0.632 | 1.0241 1.065 0.020 0.021
40,000 0.730| 1.183| 1.235 0.022 0.023
60,000 [0.630 | 1.021| 1.065 (.020 0.021
80,000 | 0.629] 1.260(1.309 0.022 0.023

100,0001 0.632] 1.297(1.352 0.023- 0.023

Table 3.14: Efficiencies of scalar codes relative to those of scalar INVER, for

n = 200.

Samples | ALIAS | DISCS | IMSL | WGHTS1 | WGHTS?2
20,000] 2.392(3.908 | 4.053 0.077 0.079
40,000 [2.768 | 4.523 | 4.680 0.085 0.087
60,000 [2.393 | 3.902 | 4.048 0.077 0.079
80,000 [2.394 ! 4.819| 4.998 0.085 0.086

100,000 | 2.402¢ 4.952| 5.130 0.086 0.088

This subsection also reports mazimum relative efficiencies (mqz) of different vec-
tor codes, which are obtained relative to the smallest efficiency of the scalar code.
They demonstrate the possible maximum relative efficiencies one can achieve through

vectorization and an appropriate sampling method.

Tables 3.13 and 3.14 show the efficiencies of different scalar codes relative to the
~scalar INVER code for n = 10 and n = 200, respectively. In this tables, the relative
efficiencies of WGHTS1 and WGHTS2 are smaller than one. Thi_s means that the

50

Table 3.15: Efficiencies of vector codes relative to those of vector INVRI, for

n = 10.

Samples | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS?2
20,000 1.909(1.671{ 3.170 0.071 0.086
40,600 2.212 1.932 3.687 0.078 0.094
60,000 1.903 | 1.667| 3.181 0.071 0.085
80,000 1.905| 2.055| 3.922 0.078 0.093

100,000 1.914 2,111 4.041 0.079 0.096

speedups attained by the weighted sampling codes cannot compensate the increase

in the sample variances of their mean estimates.

Table 3.16: Efficiencies of vector codes relative to those of vector INVRI, for

n = 200.

Samples | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,600 | 0.673| 9.062| 17.354 0.386 0.460
40,000 | 0.778] 10.491 | 20.112 0.423 0.504
60,000 | 0.672; 9.074| 17.367 0.383 0.458
80,000 | 0.671; 11.185| 21.374 0.421 0.504

100,000 | 0.673 | 11.497| 22.040 0.430 0.517

Tables 3.15 and 3.16 demonstrate the efficiencies of different vector codes relative
to the vector INVR1 code for n = 10 and n = 200, respectively. Table 3.15
concludes that the speedups attained by WGHTS! and WGHTS2 cannot compensate

the increase in the sample variances of their mean estimates.

For n = 10, the maximum relative efficiencies of different vector codes are ob-
tained relative to the corresponding efficiencies of scalar ALIAS code. Similarly, the
maximum relative efficiencies of different vector codes are calculated relative to the

corresponding efficiencies of scalar INVER code for n = 200.

51

Table 3.17: Maximum efficiencies (fmqez) of vector codes relative to efficiencies
of scalar ALIAS, for n = 10.

Samples | INVR1 | INVR2 | ALIAS | DISCS { WGHTS1 | WGHTS2
20,000 | 2.803 | 5.522| 4.833| 9.171 0.206 0.248
40,000 | 2.890 | 6.392(5.583 | 10.655 0.226 0.273
60,000 [2.893 ;7 5.504 | 4.822| 11.200 0.204 6.247
80,000] 2.892 | 5.5310] 5.943 | 11.343 0.225 0.270

100,000 2.892| 5.537! 6.104 [11.686 0.229 0.277

Table 3.18: Maximum efficiencies (fmqs) 0f vector codes relative to efficiencies
“of scalar INVER, for n = 200.

Samples | INVR1 | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,000 | 2.005} 1.349 | 18.167 | 34.790 0.774 0.923
40,000] 2.010| 1.563{ 21.087 | 40.423 0.850 1.014
60,000 | 2.008| 1.350 | 18.230| 34.881| - 0.769 0.920
80,000 | 2.017 | 1.353(22.557 | 43.105 0.849 1.017

100,000 | 2.011 1.352 | 23.117 | 44.314 0.864 1.039

52

3.4.5 Remarks

In this problem, the weighted sampling results in the least processing time for scalar
as well as vector processing. It results in the largest %FSD for the mean estimate,
but it attains the smallest %FSD for the variance estimate. Further, the weighted
sampling entails the lowest efficiencies since the speedups achieved by the weighted

sampling are lower than the increase in sample variances of its solutions.

3.5 Problem II

In this section, we examine the performance of different sampling methods. These
methods are used to estimate the mean and variance of a probability distribution
represented by Table 3.19. In Problem I, it was demonstrated that the weighted
sampling resulted in large FSDs. In this problem however; the weighted sampling
entails smaller %FSDs than the other methods.

Table 3.19: The probability table used in Problem II.

Mass points 7 10 i1 19 | 31 52 86 | 144 | 240 | 400
Probabilities | .400 | .240 | .144 | .086 | .052 | .031 | .019 | .011 .010 | .007

1 = 20.26, o = 1888.082

3.5.1 Estimation of Distribution Mean and Variance

Table 3.20 demonstrates that the mean estimates computed using various methods
are unbiased, i.e. their values converge to the value of the distri.bution mean, which
is equal to 20.06. Note that the weighted sampling results in the closest estimates
and the smallest %FSDs.

In contrast with Problem I, the weighted sampling in this problem results in the

smallest FSDs. The characteristics of Table 3.19 is different with Table 2.6, Table 3.19

33

Table 3.20: Mean estimates and their percentage FSDs.

shows that the trend of the probabilities from left to right is decreasing while the trend

for the mass point values is increasing.

Sample | - INVER ALIAS DISCS IMSE WGHTS

size | X(%FSD) | X(%FSD) | X(%FSD) | X(%FSD) | X (%FSD)
20,000 | 20.26(1.55) | 19.67(1.52) | 19.67(1.67) | 19.68(1.52) | 20.08(0.18)
40,000 | 20.23(1.09) | 19.57(1.07) | 19.57(1.18) | 19.56(1.07) | 20.06(0.13)
60,000 | 20.09(0.88) | 19.82(0.88) | 19.82(0.97) | 19.81{0.88) | 20.06(0.10)
80,000 | 20.11(0.76) | 19.79(0.76) | 19.79(0.84) | 19.78(0.76) | 20.06(0.09)
100,000 | 20.11(0.69) | 19.78(0.68) | 19.78(0.75) | 19.78(0.68) | 20.06{0.08)

Table 3.21: Variance estimates and their percentage FSDs.

—ALIAS

Sample | INVER DISCS TMSL WGHTS
site | S2(RFSD) | S*(%FSD) | S2(%ESD) | S(%¥FSD) | SZ(%FSD)
20,000 | 1972.41(4.81) | 1786.62(5.02) | 1786.62(5.02) | 1782.70(5.02) | 1889.84(1.15)
40,000 | 1947.02(3.41) | 1763.48(3.54) | 1763.48(3.64) | 1758.33(3.54) | 1886.43(0.81)
60,000 | 1888.18(2.81) | 1829.04(2.34) | 1829.04(2.84) | 1823.35(2.85) | 1889.60(0.66)
80,000 | 1893.32(2.43) | 1828.79(2.47) | 1828.70(2.47) | 1892.72(2.47) | 1892.53(0.57)

100,000 | 1907.095(2.18) | 1806.76(2.21) | 1806.76(2.21) | 1801.96(2.21)

1886.47(0.51)

Table 3.21 demonstrates the estimates for the distribution variance obtained using
the different sampling methods. This table shows that the weighted sampling method
results in the best estimate; i.e. the estimated values are close to the value of the

distribution variance, which is equal to 1888.082.

3.5.2 Processing Time

- The number of comparisons required by the inverse method is affected by the proba-
bility distribution. Nevertheless, the other methods are not affected by the probability
distribution. Therefore, the processing time required for sampling in Problem II is
the same as those in Problem I, except the inverse method requires slightly higher

time. Since the difference is of the order of microseconds which will not be seen in

54

milliseconds, there is no further need to show the processing time. For the same

reason, the vectorization speedups are not discussed here.

3.5.3 Efficiency

This subsection demonstrates the efficiencies of different scalar codes relative to the
scalar INVER code, and those of different vector codes relative to the vector INVR1
code. We report also the maximum relative efficiencies of different vector codes,

obtained relative to the smallest efficiency of the scalar code.

Table 3.22: Efficiencies of scalar codes relative to those of scalar INVER, for
n= 10.

Samples | ALIAS | DISCS | IMSL | WGHTS1 | WGHTS2
20,000 | 0.696] 0.935| 1.172 89.124 { 91.168
40,000 | 0.700} 0.934| 1.186 84.582 86.416
60,000 ! 0.649; 0.866 | 1.099 92.018 93.913
80,000 { 0.652| 0.866 1.100 84.837 86.597 |

100,000 | 0.674 | 0.898) 1.138 88.630 90.505

Table 3.23: Efficiencies of scalar codes relative to those of scalar INVER, for
n = 200. '

Samples | ALIAS | DISCS | IMSL | WGHTS1 | WGHTS2
20,000 | 2.637 | 3.568 | 4.462 338.274 346.188
40,000 | 2.657 ; 3.569 | 4.495 321.936 328.768
60,000} 2.467; 3.311| 4.178 348.751 357.120
80,000 | 2.482| 3.313 | 4.200 323.885 330.169

100,000 | 2.561 | 3.429 ! 4.321 337.144 344.537

85

The efficiencies of different scalar codes relative to the scalar INVER code for
- n =10 and n = 200 are shown in Tables 3.22 and 3.23, respectively. These tables
demonstrate that the relative efficiencies of WGHTS1 and WGHTS2 are much larger
than one. This is due to the scalar speedups and the smaller sample variance resulted

by the weighted sampling.

Table 3.24: Efficiencies of vector codes relative to those of vector INVRI, for

n = 10.

Samples | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,000] 2.104 | 1.526| 3.490 311.718 373.884
40,000 21221 1.524| 3.541 206.159 357.389
60,000 1.962] 1.415| 3.282 321.041 388.322
80,000 19751 1.413| 3.296 207.452 357.603

100,000 { 2.041 1.461 | 3.403 309.888 | 374.626

Table 3.25: Efficiencies of vector codes relative to those of vector IN VRI, for

n = 200.

Samples | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,000 0.742] 8.275| 19.104{ 1687.431| 2010.305
40,000 | 0.746] 8.278 | 19.316 | 1602.101| 1911.968
60,000 0.693: 7.699| 17.922 | 1738968 | 2079.290
80,000 (0.696 | 7.690| 17.961 | 1610.606 | 1929.431

100,000 | 0.717] 7.960 | 18.563 | 1677.297| 2016.925

56

Tables 3.24 and 3.25 demonstrate the efficiencies of different vector codes relative
to the vector INVR1 code for n = 10 and n = 200, respectively. The high efficiencies
achieved by the WGHTS1 and WGHTS2 are due to their vector speedups and small

sample variances.

Table 3.26: Maximum efficiencies (fmqs) of vector codes relative to efficiencies

of scalar ALIAS, for n = 10.

Samples | INVR1 | INVR2 | ALIAS | DISCS | WGHTS1 | WGHTS2
20,000y 2.893| 6.087| 4.413 | 10.095 901.715 | 1081.544
40,000 | 2890 | 6.134| 4.406 | 10.233 855.981 | 1032.954
60,000 | 2893 5.675(4.092] 9.494 928.620 | 1123.231
80,000 | 2.892| 5.713| 4.086] 9.532 860.317 | 1034.293

100,000 | 2.8927 5.902 | 4.226 | 9.842 896.184 | 1083.403

For n = 10, the maximum relative efficiencies of different vector codes are ob-
tained relative to the efficiencies of scalar ALIAS code. The maximum relative efficien-
cies of WGHTS1 and WGHTS?2 are at most 928.6 and 1123.2 respectively. Similarly
for n = 200, the maximum relative efficiencies of different vector codes are calculated
relative to the corresp'onding efficiencies of scalar INVER. Table 3.27 reports that the

weighted sampling methods attain excellent relative efficiencies up to 4177.5.

87

Table 3.27: Maximum efficiencies (9,5) of vector codes relative to efficiencies
of scalar INVER, for n = 200.

Samples | INVR1 | INVR2 | ALIAS | DISCS | WGHTSI | WGHTS2
20,000 { 2.005(1.487 | 16.588 | 38.297 | 3382.738 4029.993
40,000 | 2.010 | 1.500| 16.639 | 38.823 | 3220.114 | 3842.925
60,000 | 2.009 1.391 | 15469 36.008 | 3493.775 | 4177.517
80,000 | 2.017(1.403 | 15.508] 36.222 | 3248.104 | 3891.077

100,000 | 2.011 | 1.442) 16.006 | 37.323 | 3372.469 4055.344 ||

3.5.4 Remarks

The weighted sampling results in the smallest %FSDs for both distribution mean and
variance estimates. In contrast with the previous problem, the weighted sampling
codes result in the highest efficiencies in Problem II, due to the vectorization speedup

achieved and the decrease in sample variance of the solution.

3.6 Conclusions

In this chapter, we have proposed the weighted sampling method for generating sam-
ples from arbitrary discrete distributions, which are represented by probability tables.
The proposed method has been examined for several aspects, including mean and
variace estimators, processing time, speedup, efficiency.

The weighted sampling method can be implemented in two different techniques.
The weighted sampling method implementing the first techﬁique can make direct use
of the original probability tables without any alterations, While- that implementing
the second teéhnique requires a generation table for constructing samples. Therefore,
the first approach can be incorporated easily into large simulation codes, while the

second approach is faster since fewer calculations are required.

o3

rI“he scalar and vector codes of the proposed weighted sampling method (imple-
mented in both ways) are simpler than those of the other methods. The weighted
sampling method requires the least processing time in scalar as well as in vector
processing, compared to other methods. Moreover, this sampling method is also
amenable to vectorization without special effort since there is no form of data .depen~
dency, which inhibits vectorization of the code.

This method ma.y result in larger or smaller fractional standard deviation of the es-
timated value for the distribution mean than those of the other methods. In Problem
I the weighted sampling results in larger I'SDs, while in Problem II it entails smaller
- FSDs of the mean estimate. However, it should be emphasized that this method en-
tails the smallest FSDs of the estimated values for the distribution variances in both
problems.

The weighted sampling method therefore satisfies the criteria for a good sampling
method, as stated by Devroye {24, page 8], namely speed, length of the compiled
code, portability, simplicity, and readability. |

59

Chapter 4

Large Sparse Linear Systems

4.1 Introduction

In this chapter!, we examine the applications of Monte Ca.rlo methods for solving
large sparse linear equations using absorbing and er.godic Ma.rkov chains, The inverse
method, Brown’s and the weighted sampling methods are implemented for determin-
ing the state transitions in Markov chains. It is shown that Brown’s method and
the weighted sampling method can reduce the time complexities of the Monte Carlo
methods from ©(n®) to ©(n?) for solving a system of n linear equationé. Further,
the weighted sampling results in simpler code and faster execution on scalar as well
as vector machines compared to the other sampling methods, as demonstrated with
computational results on IBM 3090-180 machine with a vector facility.

This chapter is organized as follows. Section 4.2 describes the background and
motivations for this chapter. Monte Carlo methods for solving a system of linear
equations are briefly reviewed in Section 4.4. Section 4.4 discusses the applications of
the the weighted sampling method for determining state transitions in these Monte
Carlo methods. The time complexity analyses of Monte Carlo solutions are carried

out in Section 4.5, while the vectorization of Monte Carlo solutions is elaborated in

! An earlier version of this chapter is published in [84].

60

Section 4.6. Sections 4.7 presents the sparse data structures for Monte Carlo solutions.
Computational results are discussed in Sections 4.8. Finally, concluding remarks are

given in Section 4.9,

4.2 Background and Motivations

Von Neumann and Ulam proposed a fundamental Monte Carlo method for inver-
sion of a matrix (this method was published by Forsythe and Leibler [28]). Later,
Wasow [101] also proposed a different method for the inversion and subsequently
compared its efficiency with the former method. Obviously, these methods can be
used to solve a system of linear equa.tioﬁs. Similar methods can also be used to solve
a large system of integral and/or differential equations (see [32]}, which cannot be
solved efficiently by the classical numerical analysis [77].

The principal advantage of the Monte Carlo method for solving a system of linear
equations is that, unlike the direct or iterative numerical methods, the solution of
a variable can be estimated independently of the solutions of other variables. This
fact becomes very relevant when the number of variables is large and the estimates of
only a small number of variables are required, and when implementations on vector
and parallel computers are considered. Further, it necessitates simple data structure
and nonzero elements can be taken care of easily. Consequently, the computation
occupies only relatively small memory. Thus, the Monte Carlo method is attractive
for sparse matrices since the direct and iterative numerical methods for such matrices
require complicated data structures, which often result into inefficient algorithms for
vector and/or parallel processing.

The Monte Carlo method for solving a system of linear equations possesses large
intrinsic parallelism (see [6]). Moreover, the use of novel sampling methods, such as
the one proposed in Chapter 3 can further reduce the computing time on vector and

parallel computers. Consequently, the Monte Carlo solutions are suitable for vector

61

and parallel processing.

There are two Monte Carlo methods for solving a system of linear equations.
The first method simulates a discrete-time absorbing Markov chain, while the second
method simulates a discrete-time ergodic Markov chain [77]. In these methods, the
determination of state transitions during random walks can be viewed as generation
of samples from a transition probability matrix, which is a two-dimensional proba-
bility table. For this purpose, the inverse method, discussed in Chapter 2, is often
used [5]. Obviously, the sampling method affects the time complexity of the Monte
Carlo solutions, and the complexity turns out to be ©(n3) [5]. ©(f(n)) means that
the time complexity can be expressed using a function f(r) bounded by constant
 factors both above and below [89].

In this context, we incorporate the weighted sampling method, discussed in Chap-
ter 3, into the two Monte Carlo methods for solving a sparéé system of linear equa-
tions. It is demonstrated that the Monte Carlo solutions using this sampling method
require simpler scalar as well as vector codes, and entail valid results. Further, we
show that the time complexities of the Monte Carlo methods are reduced from ©(n?)

to ©(n?) and we obtain faster execution on scalar as well as vector computers.

4.3 Monte Carlo Solutions

Let us begin by considering a nonsingular system of equations defined by?
n .
> A.x,=b,, wherer € {1,2,---,n}, (4.1)
s=1
which can also be written in the matrix equation Ax=Db. This equation has a unique
solution given by x = A~'b. By introducing H = I - A, where I is an identity

matrix, Equation (4.1) can be rewritten as

x = Hx + b. (4.2)

2The mathematical exposition in this section is based on Halton [32].

62

When the spectral radius of H is less than one (p(H) < 1), the Neumann series

expansion

x = (I-H)'b
= I+H+H*+..-+H™ +---)b
= Y H™b (4.3)

=}

is absolutely convergent.

4.3.1 Solution Using An Absorbing Markov Chain

The Monte Carlo method, suggested by Forsythe and Leibler [28], employs an ab-
sorbing Markov chain to solve a system of linear equations. In this method, the
procedure for obtaining the estimate-of an unknown is as follows. A set of random
walks is defined on the augmented index set, S = {0,1,..., n}, where index 0 repre-
sents the termination index for the random walk. Let P denotea (n+ 1) x (n + 1)
transition probability matrix, and P;; denote the probability of transition from index
¢ to index 7 , with P;; % 0 unless H;; = 0. Then, corresponding to random walk
I'={r,s1,"**,8m,0}, withr,81,+++,8, # 0, the primary estimator for an unknown
X, 1s given as

X (P) = Z",Sl z31 370" Zsm-—a +Sm _Zsm,Oa ' (4'4)

where for § # 0, Zy; = H;;/Py; and for j = 0, Zio = bi/Ps. Note that the
Monte Carlo estimate of each of the unknowns in Equation (4.3} can be obtained
independently of the remaining unknowns.

The determination of state transitions during random walks can be viewed as
sampling from the transition probability matrix. This probability matrix can be
considered as a set of one-dimensional probability tables; that is, each row of the
matrix is a one-dimensional probability table. The inverse method [36] is usually used

for this sampling process. An algorithm using this method is given in Figure 4.1. In

63

this algorithm, s; denotes a current state, s; the next state, and C denotes a matrix

for the cumulative distribution of the transition probability matrix.

PROCEDURE Statei(s:, s2)
BEGIN
Generate a random number ¢ uniform on (0,1)
82 = 0
WHILE (£ > C,, ,,) DO
Sg = 59 + 1
END DO
END

Figure 4.1: An algorithm for the state determination using the inverse method.

The secondary estimator for X, is then expressed by the arithmetic mean of &

primary estimates as follows

Y, = %i X(Ty). (4.5)

[E-5) .

The expected value of ¥, is X, as k — oo.

A sequential algorithm for the Monte Carlo solution employing an absorbing
Markov chain-is given in Figure 4.2. This algorithm calls procedure Statei, described
in Figure 4.1, to determine the state transitions. Note that for matrix H of size
» X n, the matrices P and C are of size (n + 1) X (n + 1) since column 0 and row

0 are added for the absorbing state.

64

BEGIN
FOR:=1TO n STEP 1 DO
Y;=0
FORj=1TO k STEP 1 DO
Z=1,8=1
WHILE s; #0 DO
CALL Statei(s;, s2)
IF (33 #0) THEN Z = Z x H,, ,/Psy s
IF (33 = 0) THEN Z = Z x b,, [Ps, 0

81 = 82
END DO
i=Y+72
END DO
Y,=Y/k
END DO
END

Figure 4.2: A sequential Monte Carlo algorithm employing an absorbing
Markov chain.

65

4.3.2 Solution Using An Ergodic Markov Chain

An application of an ergodic Markov chain for solving a system of linear equations
was proposed by Wasow [101]. Wasow introduced a different estimator and compared

its variance to that of the previous method.

BEGIN _
FORi=1TO n STEP 1 DO
Yi=0
FOR ;j =1TO &£ STEP 1 DO
Z=lLisi=0T=¥f
FOR k=1 TO m STEP 1 DO
CALL Statei(s;, s2)
Z =Z*H,, 5, /Pas

T=T+Zxb,,
81 = 82
END DO
Yi=Y+T
END DO
Y; = Yi/k
END DO
END

Figure 4.3: A sequential Monte Carlo algorithm employing an ergodic Markov
. chain.

In this method, scoring for the primary estimator of an unknown is carried out
in every random walk step. For a random walk from an ergodic Markov chain A =

{r,51, ++,8m-1,8m}, the primary estimator of an unknown x, is given by
Xr(A) = bf + bs1 Zr..n + bsg Zr,31 Zsl +52 +e 4+ bam Zr,31 Zs;,sg e Za,...._; vSm (4°6) .

where Z;; = H;;/P;;. Wasow confirmed that the variance of this estimator is smaller
than that of the estimator given in Equations (4.4) when the absorption probabilities

in the transition probability matrix of an absorbing Markov chain (P for ¢ =

66

1,2,---,n) are relatively small. Further comparison of their variances is discussed by
Edmundson [27].

The sequential algorithm for the Monte Carlo method employing an ergodic
Markov chain is shown in Figure 4.3. This algorithm calls procedure Statei, de-
scribed in Figure 4.1, to determine the state transitions. For this method, matrices

P and C have the same size as matrix H, which is (n x n).

4.4 The Weighted Sampling Method For State
Transitions

The transition probability matrix for a Markov chain is a set of one-dimensional
probability tables. In Chapter 3, the weighted sampling method has been used to
sample from a one-dimensional probability table. Here, we extend the idea and apply
the weighted sampling method to sample from a transition probability matrix for
determining state transitions in the Monte Carlo methods for solving a system of
linear equations.

Assume that s; is a current state, and it is located in the ¢-th row of the transi-
tion probability matrix. The probabilities are {P;;,7 = 1,2,--+,1;}, where I; is the
nunﬁber of nonzero probabilities in the ¢-th row. Then, we use the weighted sampling
method to select the next state, s3, according to a discrete uniférm distribution in
the interval {1,1;]. Similar to the case of a one-dimensional probability table (dis-
cussed in Chapter 3), the primary estimator has to be subsequently multiplied by the
adjustment factor P;; x l;, where j is the selected state number.

" TFor the Monte Carlo method employing an absorbing Markov chain, we modify

the primary estimator in Equation (4.4) to the one in the following theorem.

THEOREM 3 In the Monte Carlo method employing an absorbing Markov chain,

when the weighted sampling is used to carry out random walk = {r, 81,00+, 8m, 0}, _

67

with 1,81, , 8, # 0, the primary estimator for an unknown x, is given as

Xr(f‘) =Z,, 231 o2 T Z Z-’?m,ﬁ) (4-7)

Im—1rFm

for j #0,Zy; = Zi;[Ps; x 1] and for j = 0,Z;0 = Zio[Pio x 1;], where the quantities

in the square brackets represent the adjustment factors.

Proof.

According to Equation (4.4), Z:; = H;;/P;; for j #0, and Z;¢ = b;/Pyp for j =0,
Therefore, Z,-j'= H;l; forj #0, and Zi,g = b;l; for j = 0. This means that .
the random walks are carried out based on a uniformn transition probability matrix,
and the probability for each row is 1/l; for ¢ = 1,2,..-,n. Thus, the estimator is

unbiased. 0O

Similarly, for the Monte Carlo method employing an eréodic Markov chain the

primary estimator is modified as follows. .

- THEOREM 4 [n the Monte Carlo method employing an ergodic Markov chain,
when the weighted sampling is used to carry out random walk A = {r,s1, -+, 8m_1,5m},

the primary estimator for an unknoun X, s given as

X,- (ﬁ-) = Br + b-SI Zr,sl + bsz Zr,sl 231,32 + -+ bsm Zr;sl 281,82 et Zsm_1 Wdm (4“8)
where Z,‘j = Zg_,;[P,'J; X lg]

Proof.

Equation {4.6) shows that Z;; = H;;/P;;. Therefore, 2,-3' = H;;l;. It means that
the random walks are carried out based on a uniform transition probability matrix,
and the probability for each row is 1/1,» for ¢ = 1,2,---,n. Thus, the estimator is

unbiased. O

68

PROCEDURE Statew(s:, s3)
BEGIN

Generate a random number £ uniform on (0,1)

s2= £ x (L, +1)]
END

Figure 4.4: An algorithm for the state determination using the weighted sam-
pling method.

The modified estimators described by Equations (4.7) and (4.8) can be easily
incorporated into the Monte Carlo algorithms shown in Figures 4.2 and 4.3, respec-
tively. Figure 4.4 gives the algorithm for determining the next state (s;) based on

the weighted sampling method.

4.5 Time Complexity Analysis

This section analyzes the time complexities of the Monte Carlo algorithms for solving
a system of linear equations®. The complexities here are expressed in terms of the
number of comparisons and the number of state transitions for obtaining a primary

estimator. The analysis is carried out in two steps. First, we obtain the number of
comparisons required to determine a next state for each state transition. Second, we
estimate the number of state transitions in a random walk required for obtaining a
primary estimator (in the next discussion, this is referred to as fandom walk length).
Then, the complexity of the Monte Carlo algorithm can be calculated by multiplying

the two results.

3The discussion in this section is based on that given in Bhavsar [5, pp. 98-1 13].

69

4.5.1 The State Determination
The Inverse Method

When the inverse method is used to determine the state transitions (see Figure 4.1),
the algorithm complexity is as follows.

Let V,, denote a random variablerepresenting the number of compa..risons required
to determine the next state s, from a current state s;. We assume that the number
of nonzero probabilities for each row of matrix P isn; ie. ; =n, fori=1,2,---,n.
With this assumption, the results are overestimated since I; < n is the case for a
sparse system of linear equations. The expectation and the variance of the number
of comparisons can be calculated based on the following probability theory. The

expected number of comparisons (E[V,]) is given by

AR SL W (49)
while the variance is given by
Var(V,] = i P..c1 (i — BV,)Y (4.10)
Equation (4.10) can be simplified as
Var[V,,] = ’%—:lizP‘,,1 G-y — E[Va,)% (4.11)
i=1

Thus, the inverse method requires ©@(n) number of comparisons to determine a
next state. The dependence of the above equations on n is not clear. The following
example illustrates the dependence of the expected value and its variance on n.

Ezxample: Consider that P, ;,7 = 0,1,--.,n, are uniformly distributed; i.e.

P, ;= ;}3 for j = 0,1,---,n. Then the expected number of comparisons is given by
1 ni1
E ‘/31 == .s
. V] n+1 ; !
- ’”2'2, (4.12)
(4.13)

70

and the associated variance is |

1 n+1) n + 2 2
Var[Vsl] = m 2 — (5) . (4].4)
=1

Since ' 2 = 22 (n + 3)(n + 2) (see [51, p. 55]), the Equation (4.14) can be

simplified as

ot = (e) - (5
_ w o (4.15)

Thus, it is seen that the expected number of comparisons and the associated variance

depend on n.

The Weighted Sampling Method

When the weighted sampling method is used for the state determination (see Fig-
ure 4.4}, it does not require any comparisons and therefore it requires only a constant

time. Thus, in this case the time complexity is independent of the matrix size.

4.5.2 The Monte Carlo Algorithms

This subsection discusses the time complexities of the Monte Carlo algorithms for

solving linear equations by employing ergodic and absorbing Markov chains.

Algorithm Using An Ergodic Markov Chain

In the algorithm using an ergodic Markov chain, the random walk length for each
sample is predetermined. The random walks for all samples are given to be the same.
For solving n number of linear equations using & number of samples for each of
the unknowns, if we determine that the random walk length is equal to n, the total

number of state transitions equals kn?.

71

When the inverse method is used for determining state transitions, each state
transition requires ©(rn) number of comparisons. Thus, the time complexity of the
Monte Carlo algorithm is ©(n).

However, when the weighted sampling method is used to determine state transi-
tions, no comparisons are required. Consequently, the time complexity of the Monte

Carlo algorithm reduces to ©(n?).

Algorithm Using An Absorbing Markov Chain

In this case, the random walk length (number of state tra.ns.itions) for each sample is
~a random variable. The expectation of this random variable is found out as follows.
The substochastic matrix Q, ~corresponding to the transition probability matrix
P, is given as [51] |

Q=P ,j#0, (4.16)

and the fundamental matrix F is given by

F=({I-Q)7, (4.17)

where I is the identity matrix,
In estimating an unknown z;, for each sample the length of random walks from

state 1 to absorption is a discrete random variable with the mean is given as [51]
pi=> Fi. (4.18)

Note that an element F;; of the fundamental matrix F describes the total number
of walks visiting state j, if the chain started from state ¢, until it reaches an absorbing
state, |

In order to estimate » unknowns, the expectation of the total number of state

transitions is expressed by

E[W] = ki e, (4.19)

72

where k is the number of samples for each unknown. This equation is ©(rn?). Since
the dependence of Equation (4.19) on n is not clear, we use the following example
to clarify it.

Ezample: Consider the transition probability matrix P with size (n+1)x (n+1)

as follows,
(100 ... 0)
¢a ¢ a . . . a
a ¢a a . . . a
P= (4.20)
\e¢ a a .. . a }
where a = -

n41*
The substochastic matrix Q of size (n x n) is given by the lower partition of

matrix P. According to Equation (4.17), the fundamental matrix F will be

a

F=1+
1 —na

E, - (4.21)

where E is a (n X n} matrix with all the elements equal to 1.
When the walk is started from state ¢, the expected number of state transitions,
calculated using Equation (4.18), is given by

1

P =

n
1 ‘a+l

= n+l (4.22)

Acéording to Equation (4.19), the expected number of state transitions for esti-

mating n unknowns will be
EW]l=kn(n+1). © (4.23)

It is seen that the expected number of state transitions depends on n.

73

When the inverse method is used for determining state transitions, each state
transition requires ®(n) number of comparisons. Thus, the time complexity of the
Monte Carlo algorithm is ©(n?®).

In contrast with the inverse method, the weighted sampling method does not
require any comparisons for determining state transitions. Thus, the time complexity
of the Monte Carlo algorithm is only @(n?).

In conclusion, we have shown that by incorporating the weighted sampling method
for determining the state transitions, the time complexity of the Monte Carlo algo-
rithms can be reduced from @(n?) to ©(n?). Since Brown’s method does not need
any comparisons and requires a constant time for determining state transitions, the
time complexity of the Monte Carlo algorithms incorporating Brown’s method is the
same as that of Monte Carlo algorithms implementing the weighted sampling.

Note that Gauss elimination method (a direct method) Hé.s the time complexity

of @(n3) [55], while that of the Gauss-Seidel iteration method is ©(n?) [98].

4.6 Vectorization of The Monte Carlo Algorithms

4.6.1 Solution Using An Absorbing Markov Chain

In the scalar Monte Carlo algorithm as shown in Figure 4.2, a random walk is carried
out at a time. The chain is tracked from birth to absorption. In the vectorized Monte
Carlo algorithm, however, a set of random walks are carried out concurrently. For this
purpose, a stack {(a set of vectors) is utilized to hold the attribute values of random
walks [80]. Since the random walk length is a random variable, the stack may contain
absorbed and nonabsorbed walks. When the stack contains relatively many absorbed
walks, then the utilization of vector processing hardware decreases. Therefore, a

gather process is required to remove absorbed walks and gather the nonabsorbed

74

walks. The gather process should be done in such a way that the tradeoff between
the vector processing efliciency and thé overhead time is optimal. |

The description of Figure 4.5 is as follows. Line 1 is the loop for estimating n
unknowns. Initially, » = k. Line 6 shows the loop for random walks, and limits
their length to at most m. For ea,ch random walk, lines 8-13 show that v number
of samples are carried out concurrently in vector processing. Line 9 shows that the
weighted sampling is used fbr determining state transitions. The if-statements are
used in lines 10-11 to select particular walks for the primary estimate calculation.
The secondary estimate calculation of the absorbed walks is done in iines 14-16.

- Then, the gather process is carried out in lines 18-23. Line 24 shows that the value of
v is updated; i.e. the stack contains only nonabsorbed walks. This algorithm carries '
out the gather process in every transition of random walk since it results in minimum
processing time. Finally, line 26 describes that the averagé value of the secondary
estimate is calculated according to the number of absorbed walks (k¥ — »); i.e. all
random walks of k samples do not necessarily reach thela.bsorbing state due to the
limitation of random walk length.

When the inverse method is used in the Monte Carlo code, the innermost loop
will be the loop for implementing the inverﬁe method; this loop replaces the weighted
sampling given in line 9. With the existence of this loop, the larger loop (lines 8-13)
is not vectorizable due to the go to-éta.tement in the innermost loop.

Brown’s method requires three lines of codes (see Figure 2.9 (a)) to replace line 9.
These codes do not contain a loop. .Therefore, using the weighted sampling method or
Brown’s method the vectorization will be achieved for the larger segment /loop of the
program. Since k is usually much larger than n, the vectorization of the larger loop
results in less processing time than that of the innermost loop. Thus, the weighted
sampling method enhances the vectorizability of the code, and reduces the processing

time.

75

BEGIN

FOR ¢ =1 TO n STEP 1 DO /* Estimate n unknowns */

1.
2. Y=06v=Fk
3. FOR j =1 TO v STEP 1 DQ
4, Zj =1; 81; =1 [* Initialization */
5. END DO '
6. FOR r =1 TO m STEP 1 DO /* Random walk loop */
7. Generate v random numbers §;, j = 1,.--,»
8. FOR j =1TO v STEP 1 DO /* Carry out v samples */
9, 39, = |&5 X ly;,] +1 [* The weighted sampling */
10. IF (s2; # 0) THEN Z; = Z; * H,, s, * 15y, /™ Scoring */
11. IF (s3;, = 0) THEN Z; = Z; % by, *l, /* Scoring */
12. 81; = 83, :
13. END DO -
14. FOR j =1TO v STEP 1 DO /* Calculate the secondary estimate */
15. IF (32, =0) THEN Y; = Y, + Z;
16. END DO
17. A=0
18. FORj=1TO » STEP 1 DO
19. IF (s, # 0) THEN /* Gather nonabsorbed walks */
20. A=A+1
21. Zy = ZS%.
22. END IF
23. .END DO
24, v=2A
25. END DO
6. Yi=Yi/(k-0)
27. END DO
END

Figure 4.5: A vectorized Monte Carlo algorithm employing an absorbing
Markov chain and the weighted sampling.

76

4.6.2 Solution Using An Ergodic Markov Chain

Similar to the vectorized algorithm of the solution using an absorbing Markov chain,
the vectorized algorithm here also utilizes the stack processing. In this algorithm,
the random walk length is predetermined; i.e. all random walks of & samples have
the same length. This fact eliminates the use of if-statements in the primary and
secondary estimate calculation, see lines 8-13 and and lines 14-16, respectively. Since
the termination of random walks is the same for all samples, the gather process is
not required. Note that the average value of the secondary estimate is calculated
according to k samples (see line 18), since all random walks reach termination.
Thus, the vectorization of this algorithm is more efficient than that of the Monte
Carlo algorithm using an absorbing Markov chain. The vectorized Monte Carlo al-
gorithm using an ergodic Markov chain and incorporating the weighted sampling is

shown in Figure 4.6.

4.7 Sparse Data Structures

In this section, we describe the data structures for handling the sparse matrices in
the Monte Carlo solutions of linear equations. These data structures basically uatilize
indirect addressing of arrays, which are similar to those described in [73]. They are
suitable for handling sparse matrices with regular or irregular pattern of nonzero
locations, and do not inhibit the vectorization of the Monte Carlo codesa.

A sparse vector may be stored in a full length vector. It is often used because of its
simplicity even though it results into wastage of storage space. In order to economize
the space, we can use a real valued array to hold only the nonzero elements of a sparse

vector, and an integer array to store the indices of these elements.

77

BEGIN

1. FORi=1TOnSTEP 1 DO /* Estimate n unknowns */
2. ;=0
3. FORjy=1TO %k STEP 1 DO
4. Z; = 1; 81; = ¢; T; = b; /* Initialization */
5. END DO
6. FOR7=1TO m STEP 1 DO /* Random walk loop */
7. Generate & random numbers &;, j =1,---,k .
8. FOR j =1TO k STEP 1 DO /* Carry out & samples */
9. sy; = | x 1,,,] + 1 /* The weighted sampling */
10. Zj = Zj*xH,, 5, %1, [* Scoring */
11. Tj =T+ Z; % by, [* Scoring */
12. 813- = ng
13. END DO
14, FOR y=1TO k STEP 1 DO /* Calculate the secondary estimate */
15. ;=Y. +T;
16. END DO
17. END DO
18. Y;=Yi/k
19. END DO
END

Figure 4.6: A vectorized Monte Carlo algorithm employing an ergodic Markov
chain and the weighted sampling.

78

Further, a sparse matrix can be regarded as a collection of sparse vectors wherein
each row of the matrix is considered as a sparse vector. For compressing this sparse
matrix, we use a dense matrix to hold the nonzero elements, and an integer matrix
to store the corresponding indices of locations. Let us consider the following example
to illustrate this notion.

Ezample: Consider a system of linear equations x = Hx+ b, with the coefficient

matrix H as a 5 x5 sparse matrix given by

(011 0 0 014 0.15)
0 022 023 024 0
H=| 0 0 03 0 0 (4.24)
0 0 0 044 045
\ 051 0 053 0 0 |

Since the number of nonzero elements in each row does not vary significantly, we

can use the following dense matrix (D) to store the nonzero elements

(0.11 0.14 0.15)

0.22 0.23 0.24
D=| 033 0 0 {(4.25)
0.44 045 0

\0.51 053 0 /

79

together with the following index matrix (IN)

(4.26)

1
2
N=]3
4
1

- R <1 S L
[T e N = L %A

\ /

which stores the column indices of nonzero elements in the original sparse matrix.
Note that the zero entries in the index matrix represent the zero elementsin D. <

The transition probability matrix of an absorbing Markov chain or an ergodic
Markov chain is determined according to the dense matrix. Then, we can use D and
N together to carry out the calculation of the primary estimates.

The procedure for determining state transitions based on matrix N is as follows.
Suppose the current state is 2 (represented by the second row) and the next state
selected is 3 (represented by the third column). Then, the real next state is 4, which is
the content of element N33. Corresponding to this state transition, similar procedure
1s used to carry out the calculation of the primary estimate based on matrix D.

When the number of nonzero elements in each row varies significantly, the above
approach cannot economize the storage space. Consider the following two cases.
First, if matrix H is sparse with only few rows without any zero elements. Second,
if matrix H is sparse and there are many rows containing only zero elements.

In the first case, the full rows should be handled separately, while the sparse rows
can be handled by a dense matrix. This technique can be extended to handle such a
case wherein the number of nonzero elements in each row varies significantly.

The occurrence of the second case in a large sparse matrix is rare. If such a
problem arises we can use an index matrix and an index array to identify the locations
of nonzero elements. The index matrix will be used to store the column indices of

nonzero elements, while the index array will be used to store the corresponding row

80

indices. Let us illustrate with the following example.

Example: Consider a 5 x 5 coefficient matrix H given by

(011 0 0 0 0.15)
0 0 0 0 0
H=| 0 0 0 0 0
0 0 0 0 0
\ost 00830 o

The.n, the dense matrix (D) is given as
0.11 0.15
D= ,
(0.51 0.53)
and the column indices are stored as
15
N = ,

while the corresponding row indices are stored by index array

M=@1 5. ¢

81

(4.21)

(4.28)

(4.29)

(4.30)

4.8 Results and Discussion

In this section, we consider a Laplace equation, which is one of the most important
partial differential equations in mathematical physics and engineering [20, p. 443].
The objectiveis to illustrate the application of the Monte Carlo solutions and compare
the effects of different sampling methods on the solutions. We chose the inverse
method as a comparison for the weighted sampling, since this method is usually used.
Also, the inverse method is expected to perform well due to the fact that the number
of mass points in -this problem is at most only four. Several aspects are examined,

including the solution and its error, the processing time, the vectorization speedup,

" and the efficiency.

For this purpose, the Laplace equation is applied on a bqundary value problem.
This problem was chosen since it can result in a sparse matrix with regular nonzero
structure (a band matrix). Therefore, it is expected that the Monte Cario methods
perform well for this problem. Moreover, as a comparison of the Monte Carlo solu-
tions, we use the iterative method since it is good for a sparse matrix with regular
nonzero structure [25]. |

Using a cartesian coordinate system, the problem can be defined as

The boﬁnda.ry conditions for the region 0 < 2 € 10, and 0 < y € 10 are chosen as
u(z,0) = u(z,10) = u(10,y) = —10 and u(0,y) = 10.

Further, finite difference method using five point formula [20, p. 444] is used
to approximate the original problem. The x— and y—axes are discretized info 33
intervals. This discretization results in 1024 internal points. Each point represents
a.n- unknown in the linear equaﬁ;ion. Thus, the hnear system contains 1024 linear

equations. The linear equations can then be solved using the Gauss-Seidel iterative

method [20, p. 450} or the Monte Carlo methods.

82

In order to verify the numerical solutions, we use the analytical solution of the
Laplace equation obtained using some results from reference [4, p. 312].
In the discussion, we use the same notations for the scalar and vector codes of

Monte Carlo algorithms. The notations are given as
1. SEIDEL: code of the Gauss-Seidel iterative method,
2. ERGIN: code of the ergodic algorithm using the inverse sampling method,
3. ERGDS: code of the ergodic algorithm using Brown’s sampling method,
4. ERGWS: code of the ergodic algorithm using the weighted sampling method,
5. ABSIN: code of the absorbing algorithm using the inverse sampling method,
6. ABSDS: code of the absorbing algorithm using Brown’é method, and

7. ABSWS: code of the absorbiﬁg algorithm using the weighted sampling method.

4.8.1 Solutions for All Unknowns

This subsection reports the solutions obtained using different codes. The solutions
of all unknowns are first analyzed. Then, the convergence of the solutions for 2
particular unknown is examined. In comparing the solutions, we chose the solution
of the iterative method as a reference.

The solutions of the Laplace equation for all unknowns are shown in Figures 4.7—
4.12. Note that the Monte Carlo solutions are obtained by employing 1000 samples
for each unknown. _

Figure 4.7 shows the solution obtained using the iterative method (SEIDEL). The
number of iterations for the iterative method which results in a convergenf. solution
is found to be equal to 80.

Figures 4.8and 4.9 depict the solutions obtained by ERGWS code utilizing random
walk lengths 50 and 125, respectively.

83

It should be noted that ERGIN and ERGDS codes result in the same solutions
as shown in Figures 4.8 and 4.9, since the transition probabilities are uniformly dis-
tributed. |

Figure 4.10 demonstrates the solution obtained using ABSIN, while Figures 4.11
and 4.12 depict the solution obtained by ABSDS and ABSWS, respectively. It is
found that Figures 4.10 to 4.12 are similar to Figure 4.7. This means that ABSIN,
ABSDS and ABSWS codes result in approximately correct solutions.

Table 4.1: The average values of solutions for all unknowns and their errors.

Monte Carlo Solutions
Average | Iterative Ergodic Absorbing
solution [ERGIN | ERGDS | ERGWS | ABSIN | ABSDS | ABSWS
Solution | -2.8664 | -2.3394 | -2.3394 | -2.3394 | -2.7563 | -2.9611 | -2.7583
Error 0.0000 | 1.3967 | 1.3967 { 1.3967 | 0.5505 | 0.5855 | 0.5587

The_ error for all unknowns of the Monte Carlo solution is calculated relative to

the solution of the iterative method. We define the error as

1 n
E = ol = As' — ¥ 2;
rror \J - ;(3} Y)

where #; is a solution for an unknown obtained by the iterative method, while y;

(4.32)

is the solution. for the same unknown obtained using the Monte Carlo code. The
number of unknowns is denoted by n.

The average values of the solution for all unknowns and the corresponding errors
are presented in Table 4.1. As shown in this table, the Monte Carlo codes employing
an absorbing Markov chain result in smaller errors. For each sample, the random
walk length in the ergodic Markov chain is chosen to be equal to 125, which also
represents the maximum random walk length in the absorbing Markov chain.

As shown in Table 4.1, the ergodic algorithms result in larger errors than the
‘absorbing ones. This is caused by the fixed lengths of the random walks for estimating

the solutions of all unknowns. When we chose a random walk of length 50, good

84

solutions of the boundary points are obtained, while poor solutions result for the
central points, as shown in Figure 4.8. However, if the random walk of length is 125,
the solutions of the central points improve, but the solutions of the boundary points
become inacceptable, as shown in Figure 4.9. In conclusion, the absorbing codes are

more suitable for estimating all unknowns.

’J”

10
5
2
-2
[l 9,70
/”’
- U< 782
. b
s ////////7///// // /- [.00
Ig
=10 Vi / / / // /I’"‘ 4.08
8.70 i
7.82 AR
5.94 |/
4.06 v
X 2.8 = 0.30
0.30

Figure 4.7: Solution obtained using the iterative method (SEIDEL).

85

i e e s
LI
LTI T 7 T

J/- 3.70
[}

|J< 7,82

N

o
< w
o
F-9

)
-9 F 1T Y a06

Figure 4.8: Solution obtained by ERGWS, sample size=1000, random walk
length=>50.

- 86

10 A
. y
. A

N _ -
e e et e 7

o 7

or 77
T T T T 71T

1]
ST 1714
T T

o
il

- 970
<182
X5 44

5. 94

Figure 4.9: Solution obtained by ERGWS, sample size=1000, random walk
length=125,

87

1L 5,70

o
7.2

___,/;’7/47111111" #7

AT
LI
R

4.0

Figure 4.10: Solution obtained using ABSIN, sample size=1000, maximum ran-
dom walk length=100.

88

o i
e i el A i

AN

/
A T,

AT T T

2 1F
AT

agssagred;y
saerpirtt

dinssrii

sl
o 227 A
,pﬂ.:;-,-'/t‘,'/’ I/

PTIIIITL A,
..zagq%@ﬂzy

g ’/
al

" I’,/" 4. 06
<918
snd BN

2.18

Figure 4.11: Solution obtained using ABSDS, sample size=1000, maximum ran-

dom walk length=:100,

89

- 9.70

l"
< 7,82

angrangini

i avan,
2] /t "d"alllnlnulll'

Bl &

Figure 4.12: Solution obtained using ABSWS, sample size=1000, maximum
random walk length=100.

90

4.8.2 Solutions for Particular Unknowns

In this subsection, we examine the solutions for three different unknowns located at
the boundary, intermediate and centre points of the region. The boundary point is
located on the lower left corner. The centre point is the cross section between the
two diagonals, while the intermediate point is in between the boundary and centre
points. Their cartesian coordinates are (0.3030, 0.3030), (2.4242, 2.4242) and (4.8485,
4.8485), respectively. _

Figure 4.13 gives the solutions of the Laplace equation at point (0.3030, 0,3030)
obtained by different codes. The random walk lengths for the ergodic codes are
chosen to be equal to 10 state transitions. The maximum random walk lengths for
the absorbing codes are restricted to 125 state transitions. This figure demonstrates
that the convergence of the ergodic’s solutions (ERGIN, ERGDS and ERGWS) to
the SEIDEL’s solutions is better than those of the ABSIN, ABSDS and ABSWS.
Note that the ergodic codes usifig the inverse method (ERGIN), Brown’s method
(ERGDS) and the weighted sampiing (ERGWS) result in the same solutions, since
each row of the transition probability matrix of the ergodic Markov chain is uniformly
distributed. _

In order to demonstrate the variation of the solution we use standard deviation of

a solution (SD[solution}]}, which is defined as [56, p. 145]
g2
SDIX] = 7 _ - (4.33)

where & is a sample size; X and S? denote the estimators of the distribution mean
and variance, respectively. Note that this equation is the numerator of the equation
for the fractional standard deviation, given in Equation (2.4). We do not use FSD
here, since some of the solutions are zero.

The standard deviations of Monte Carlo solutions, given in Figure 4.13, are demon-
strated in Figure 4.14. It shows that the ergodic codes attain the lowest SDs, followed
by those of ABSDS, ABSWS and ABSIN, respectively. The ABSIN code results in

91

slightly higher SDs than ABSWS.
Figure 4.15 demonstrates the solutions at point {2.4242, 2.4242), which is the

intermediate point. We chose 80 as the random walk lengths for the ergodic codes,
and 125 as the maximum random walk lengths for the absorbing codes. This figure
shows that all solutions converge to the SEIDEL’s solutions.

Figure 4.16 shows the standard deviations of Monte Carlo solutions given in Fig-

ure 4.15. It is seen that all SDs are relatively equal for the corresponding sample size,
except those of ABSDS.

Figure 4.17 depicts the solutions at point (4.8485, 4.8485) resulted from different
_codes. The maximum random walk lengths for absorbing codes are restricted to 125
state transitions. The convergence of all solutions are good except that of ABSIN.

Figure 4.18 demonstrates the SDs of the Monte Carlo solutions shown in Fig-
ure 4.17. This figure shows that the ergodic codes attain tﬂe lowest SDs, then fol-
lowed by ABSWS, ABSDS and ABSIN, respectively. The ABSWS results in slightly
higher SDs than those of ergodic codes. |

Based on these results, we can conclude that the ergodic codes attain the closest
solutions relative to the Gauss-Seidel’s solutions. Also, they result in the smallest
standard deviations of the Monte Carlo solutions. Thus, the ergodic codes are more

suitable for estimating an unknown at a particular point.

92

0.
0.
— =0 . ‘
-
-0,
_0.15-;'1 T LR | L T T ¥
o 5 o6 9 v 1 1 2 2 2 3
¢ o0 0 2 5 8 1 4 1 0
c o 0 0 0 0 0 0 0 0
| oc- 0 0 0 0 0 0
| SAMPLE SIZE
METHODS ©—e—< ABSDS Wk ABS N &4 & ABSWS +—+—+ [RGDS
518-8 ERGIN w—e— [RGWS + + + SEiDEL

Figure 4.13: Solution of the Laplace equation at the boundary point, ERGIN,
ERGDS and ERGWS use random walk lengths=10, ABSIN, AB-
SDS and ABSWS utilize maximum random walk lengths=125.

93

- N~ O O
- ON =t D O
- O O O
- 00 O O
- U OO
- N O O
- O OO

- O DO

- M) OO OO

SAMPLE SIZE

(X1 ¥]

[T 2]
[aala
-

1%

= =
[Pl
[nmYa.d
-

$m

[Tl %)
e
[Ep] o)
[aa]ss
=T L1

|

N0

METHODS

Figure 4.14: Standard deviations of Monte Carlo solutions given in Figure 4.13.

94

SOLUTION

003 6 9 1 1 1 7 7 2 3
c-0 2 5 8 1 4 7 0
0c- 0 0 0 0 0 0 0 0
0-0 0 0 0 0 0
| SAMPLE S1ZE
S STIE TITHM TTIARE s

Figure 4.15: Solution of the Laplace equation at the intermediate point, ER-
GIN, ERGDS and ERGWS use random walk lengths=80, ABSIN,
ABSDS and ABSWS utilize maximum random walk lengths==125.

95

SOLSOLUTION]

DO O D D O O

307
297
207
197
107
097
B UL
o3 6 9 1 1 1 2 2 2 3
o0 0 2 5 8 1 4 7 90
00 0 0 0 0 0 0 0 0
c-0 0 0 0 0 0
SAMPLE SI1ZE
METHODS €90 ABSDS ==k ARS|N #-o-& ABSHS
t—+—+ [RGDS 8-8-B LRGIN w—e—= ERGWS

Figure 4.16: Standard deviations of Monte Carlo solutions shown in Fig-

ure 4.15,

96

SOLUTION

METHODS =% AB
8-8-9 [R

OO O

= ol
DD 00 — -

o Famw YNGR
DO O N

B!
—
MO D U1 —

)]
mco _—
—_D
o
ML
—

™J
i

+——+ ERGDS

me)
o
Y

—_—
=N
s %
i*

¥
i—
2
+
g
+ 0+
[¥ P-4

Figure 4.17: Solution of the Laplace equation at the centre point, ERGIN,
ERGDS and ERGWS use random walk lengths=120, ABSIN, AB-
SDS and ABSWS utilize maximum random walk lengths=125.

97

SDISOLUTION]

o O O O O D

i i ! I
[
25
0 0
0 0
MPLE S
S Epeadi i SHERSS gt

Figure 4.18: Standard deviations of Monte Carlo solutions depicted in Fig-
ure 4.17.

98

4.8.3 Processing Time

In this subsection, we report the processing time of different codes.. The scalar and
vector processing time of the solutions for all unknowns are first discussed. Then, the
scalar and vector processing of the solutions for particular unknowns are presented.
Finally, this subsection demonstrates the growth of processing time with respect to

the growth of the number of unknowns.

Table 4.2: Processing time for estimating all unknowns.

Sample | Process- Processing time in seconds

size ing Ergodic Absorbing
Mode ERGIN [ERGDS | ERGWS | ABSIN | ABSDS | ABSWS
100 | Scalar 30.80 31.09 2436 | 32307 39.28 31.99
Vector 15.62 7.10 4.46 11.56 12.98 10.62
- 500 | Scalar 154.15| 15554 121.65| 161.95] 193.87! 150.48
Vector 79.75 34.05 2032 4397 48.62 39.08
1000 | Scalar 308.45 | 310.58 | 243.64 | 32469 387.97% 300.89
‘ Vector 164.01 69.18 41.23 | 81.89 92.19 73.46
2000 | Scalar 618.42 | 621.02 485.23 | 644.35] T778.78| 601.56
Vector 329.25 | 141.43 86.03 | 163.40 | 178.48 147.21

The scalar and vector processing time of solutions for all unknowns are depicted
in Table 4.2.. In the scalar processing, the ergodic and absorbing codes incorpo-
rating the weighted sampling method (ERGWS and ABSWS) require about 20 %
less computing time than those of the codes implementing the inverse method (ER-
GIN and ABSIN). The ergodic and absorbing codes implementing Brown’s method
(ERGDS and ABSDS) require larger processing time than those incorporating the
inverse method. The performance of the inverse method is comﬁaratively good since
the maximum number of comparisons is only four.

In the vector processing, Table 4.2 shows that ERGIN requires 3.5 times larger
computing time than that of ERGWS. This means that the weighted sampling can

enthance the vectorization of the ergodic algorithm; however, it is less successful in

99

the absorbing algorithm.

We further compare the processing time for all unknowns required by the iterative
method (SEIDEL) and the Monte Carlo method, which requires the least processing
time. For this purpose, we chose sample size of 2000, since the solutions obtained
by SEIDEL and ERGWS are relatively equal. Table 4.2 demonstrates that ERGWS
requires the smallest processing time in scalar and vector processor, which are 485.23
and 86.03 seconds, respectively. The scalar and vector processing of SEIDEL require
616 milliseconds and 456 milliseconds, respectively.

Therefore, the scalar ERGWS requires about 788 times longer processing time
than SEIDEL; whereas, the vector ERGWS requires about 188 times longer processing
time than the vector SEIDEL. Assuming that the errors are relatively equal, the
scalar ERGWS is beneficial if it computes less than 0.13 % of the total unknowns
(1.30 unknowns). Moreover, the vector ERGWS still gives benefit when it estimates
less than 0.53 % of the total unknowns (5.43 unknowns).

Thus, for the estimation of a single unknown on the IBM 3090 scalar processor,
the speedup of the ERGWS over the iterative method is about 1.30; whereas, in the

vector processor, the speedup is about 5.43.

Table 4.3: Processing time for estimating particular unknowns.

Process- Processing time in milliseconds

~ Points ing Ergodic Absorbing

Mode | ERGIN | ERGDS | ERGWS | ABSIN | ABSDS | ABSWS

Boundary | Scalar 122.59 | 158.40 99.42 69.39 97.00 81.24

Vector |© 67.36 49.13 17.08 12.49 20.69 16.98

Interme- Scalar 970.55{ 1048.48 | 767.99 | 934.86 | 1151.72| 873.69

diate Vector | 545.251 314.74 137.39 | 195.56 | 236.25 176.22

Centre Scalar | 1457.69{ 1562.29! 1156.06 | 1206.35 | 1496.02 | 1119.24

Vector | 823.55] 497.98 212,901 475.82| 576.68, 42491

Table 4.3 shows the scalar and vector processing time of different unknowns at

three different points. The number of samples is 2000. The objective here is to

100

examine the range of processing time required by different unknowns at different |
points (boundary, intermediate and centre). For the absorbing codes (ABSIN and
ABSWS), the centre point requires the largest processing time since it needs the
longest random walk length. Obviously, the boundary point require less processing

time than the centre point.

Table 4.4: Processing time for different number of unknowns.

Number | Mo Processing time in seconds : Iterative
of de Ergodic Absorbing (milli-

unknowns ERGIN | ERGDS | ERGWS | ABSIN | ABSDS | ABSWS | seconds)

64 S 9.97 10.32 7.93 7.06 7.81 6.96 7.83

\Y 5.49 2.04 1.35 1.77 2.24 1.61 5.72

256 S 77.02 80.63 60.54 [69.05 79.86 64.81 61.49

\'% 4221 16.20 10.50 15.51 18.27 13.95 44.57

1024 S 618.42 621.02 485.23 | 644.35] 778.78 601.56 483.56

' v 329.25 | 141.43 86.03 [163.40 | 178.48 147.21 363.34

S: scalar, and V: vector,

For the ergodic codes (shown in Table 4.3), the processing time for estimating an
unknown at the intermediate point is about 7.8 times larger than that of the boundary
point, since the random walk length for the intermediate point was chosen to be 80
while that of the boundary point is 10. Similarly, the processing time for the centre
point is 1.5 times larger than that of the intermediate point since the random walk
length for the centre point was chosen to be 120. | |

The average random walk lengths of ABSIN for the boundary, intermediate and

‘centre points are 6, 93 and 121, respectively; whereas, those of ABSWS are 7, 93
and 120, respectively. The maximum random walk length for ABSIN, ABSDS and
ABSWS is 125, |

Table 4.4 demonstrates that the scalar and vector processing time of Monte Carlo
solutions increase by a factor of about 8, which is caused by the increase in problem
size by a factor of 4 and the increase in random walk length by a factor of 2. The

number of samples for each unknown in Monte Carlo codes is 2000. The scalar and

101

vector processing time of iterative method increase by a factor of about 8, which is
caused by the increase in problem size by a factor of 4 and the increase in maximum

iteration by a factor of 2.

4.8.4 Speedup

In this subsection, we present the vectorization speedup for each method. This
speedup is obtained as the scalar processing time divided by the corresponding vec-
tor processing time. First, the speedups of the Monte Carlo codes for estimating all

unknowns are shown. Then, we demonstrate the speedups of the Monte Carlo codes

for estimating particular unknowns.

Table 4.5: Vectorization speedup for each method estimating all unknowns.

Sample Monte Carlo codes

size Ergodic - Absorbing
ERGIN | ERGDS [ERGWS | ABSIN | ABSDS [ABSWS
100 1.97 4.38 5.46 2.79 3.03 3.01
500 1.93 4.57 5.99 3.68 3.99 3.85
1000 1.88 4.49 5.91 3.96 4.21 4.10
2600 1.88 4.39 5.64 3.94 4.36 4.09

Table 4.5 describes the vectorization speedup for each method, when it estimates
all unknowns. It is obtained from Table 4.2. The maximum speedup (about 6) is
achieved by the vector ERGWS over the scalar one. The ERGWS can achieve the
best speedup, since the weighted sampling contains no loop and the random walk
length is predetermined.

It is seen in Table 4.5 that the increase in sample size from 100 to 1000 affects

the speedups of the absorbing codes {ABSIN, ABSDS and ABSWS). In the ergodic

. codes however, the speedups are relatively constant with the increase in number of

samples.

102

Table 4.6: Vectorization speedup for particular unknowns.

_ Speedups
Points Ergodic Absorbing
ERGIN [ERGDS | ERGWS | ABSIN | ABSDS | ABSWS
Boundary 1.82 3.22 5.82 5.56 4.69 4.78
Intermediate | 1.78 3.33 5.59 4.78 4,88 4.96
Centre 1.77 3.14 5.43 2.54 2.60 2.63

Table 4.6 describes the effect of locations of unknowns to the vectorization speedup.
For the ergodic codes, the speedups for different locations are relatively equal. For
the absorbing codes, the centre point has the least speedup since this point requires
the longest random walk length wherein the vectorization of state transition process
is relatively slow due to the existence of if-statement. _

Table 4.7 shows the vectorizatioﬁ'speedups for differenf‘ number of unknowns.
These speedups are obtained according to Table 4.4. The speedups for the iterative
method and the ergodic codes are relatively constant. The absorbing codes attain
the highest speedups when the number of unknowns is equal to 256. 1t is due to the

optimality of vector processing for this size.

Table 4.7: Vectorization speedups for different number of unknowns.

Number Speedups
of Ergodic Absorbing Iterative
unknowns | ERGIN | ERGDS | ERGWS | ABSIN | ABSDS | ABSWS | method
64 1.82 5.06 5.87 3.99 3.49 4.32 1.37
256 1.82 4,98 5.77 445 4.37 4.65 1.38
1024 1.88 4.39 5.64 3.94 4.36 4.09 1.33

103

4.8.5 The Efficiency

We discuss here the efficiencies of the Monte Carlo solutions at the boundary, interme-
diate and centre points. They are obtained based on the scalar and vector processing
time presented in Table 4.3. The sample variances of the solutions can be calculated

from Figures 4.14 to 4.18, for a sample size of 2000.

Table 4.8: Efficiencies of different scalar codes relative to those of scalar AB-

SIN.
Points Relative Efficiencies
ERGIN | ERGDS [ERGWS | ABSDS | ABSWS
Boundary 4.920 3.808 6.067 4.142 1.183
Intermediate 1.161 1.075 1.467 0.187 1.013
Centre 27.680 7 25.827 34.902 2.014 13.632

Tables 4.8 and 4.9 demonstrate the efficiencies of different codes relative to those
of ABSIN using the scalar and vector processing time, respectively. It is seen that
ERGWS attains the largest relative efficiencies for the solutions of the three points,

using scalar as well as vector processing time.

Table 4.9: Efficiencies of different vector codes relative to those of vector

ABSIN.
Points Relative Efficiencies
ERGIN [ERGDS | ERGWS | ABSDS | ABSWS
Boundary 1.612 2.210 6.356 3.496 1.019
Intermediate 0.432 0.749 1.715 0.191 1.051
Centre 19.325 31.959 74.752 2.065 14.163

For the solution at the boundary point, ABSIN requires the smallest scalar pro-
cessing time. The other codes get relative efficiencies larger than one, since the sample
variance of ABSIN is comparatively larger than those of the other codes. A similar

case occurs for the relative efficiencies obtained using the vector processing time.

104

ERGWS requires the smallest scalar and vector processing time for the solu-
tion at the intermediate point. The relative efficiencies for this point, given in Ta-
bles 4.8 and 4.9, also represent the scalar and vector speedups since the sample

variances are relatively equal.

Table 4.10: Maximum relative efficiencies (mq) of different vector codes rel-
ative to those of scalar ABSIN.

Relative Efficiencies
Points Ergodic Absorbing
ERGIN | ERGDS | ERGWS | ABSIN [ABSDS | ABSWS
Boundary 8.954 | 12.277 35.3141 5.556 | 19.420 5.661
Intermediate | 2.066 3.580 8.2011 4.780 0.912 5.023
Centre 48,994 | 81.0253| 189.520| 2.535 5.235 | 35.907

The comparison between the efficiencies of different vector codes relative to those
of the scalar ABSIN results in maximum relative efficiencies, presented in Table 4.10.
These maximum relative efficiencies provide indication of the possible efficiencies
achieved by utilizing vectorization and different Monte Carlo methods. The ERGWS

achieves the highest efficiency since its sample variance is the smallest.

4.9 Conclusions

In this chapter, we have discussed the Monte Carlo methods for solving a sparse
linear system. The inverse method is commonly used for sampling in the Monte
Carlo solutions. It was found that this method is time consuming, especially for a
long probability table.

The vectorized Monte Carlo codes employing ergodic Markov chains (ERGIN,
ERGDS and ERGWS) require simpler codes than those employing absorbing Markov
chains (ABSIN, ABSDS and ABSWS), since their random walk lengths for all samples

are predetermined. Vectorizing the absorbing Monte Carlo codes requires a stack

105

processing scheme to handle the random nature of the random walk lengths.

The weighted sampling method enhances the vectorizability of the Monte Carlo
codes, since it does not contain any loops and there is no form of data dependency in
the computational process which can inhibit vectorization.

In the Monte Carlo codes, the data structures for handling sparse matrices with
irregular patterns of nonzero locations basically utilize the indirect addressing tech-
niques.

It was found that ERGWS results in the least scalar and vector processing time,

and the largest speedups. For estimating an unknown, the speedup of scalar ERGWS

relative to scalar SEIDEL is about 1.3, while the speedup of vector ERGWS relative
to vector SEIDEL is about 5.4.

' For the solutions at particular points, ERGWS attains the smallest sample vari-
ance and achieves the largest relative efficiency as well. In géneral, the Monte Carlo
codes employing ergodic Markov chains entails smaller sample variances than those of -
Monte Carlo codes utilizing absorbing Markov chains. This is due to the fact that the
nonzero elements of matrix H are the same, and the transition probability matrices
are uniformly disiributed. If the elements of such a matrix are close to each others,

a uniform transition probability matrix can be utilized. Consequently, sampling can

" be carried out directly as the case of the equiprobable method.

Thus, we have shown that the Monte Carlo codes incorporating the weighted
sampling method result in simpler codes, valid solutions, faster execution on scalar

as well as vector processing modes, and higher efficiencies.

106

Chapter 5

Neutron Transport Problems

5.1 Introduction

This chapter considers Monte Carlo methods for solving neutron transport problems.
In a neutron transport problem, several quantities of interest are calculated. These
quantities represent physically interpretable data, such as the number of collisions in
a space element, detector responses and leakage probabilities. These problems usually
involve complex geometries and a seven-dimensional space in fime, energy, position
and angle. The solution of many such problems cannot be obtained using analytical
methods, and classical numerical methods can solve only problems involving simple
geometries, | However, Monte Carlo methods are applicable to solving these problems.
These methods often require extensive computing time; therefore, speeding up of the
computational process is desirable. This chapter examines whether the use of the
weighted sampling method enhances the performance of Monte Carlo calculations in
particle transport problems. '

In order to investigate the effects of incorporating the weighted sampling method
on the Monte Carlo solutions, the inverse method and Brown’s method are used as
a reference for comparison. The inverse method is chosen since it is used by the

Monte Carlo code employed in this work, which is MORSE (Multigroup Oak Ridge

107

Stochastic Experiment) code. Brown’s method is selected since it is best suited for
vector processing (as demonstrated in Chapter 2).

This chapter is organized as follows. Some definitions and the theory of neutron
transport are b_rieﬂy reviewed in the next section. Section 5.3 reviews the use of the
Monte Carlo method for solving neutron transport problems. The MORSE code is
introduced in Section 3.4. In Section 5.5, the methods used for speeding up Monte
Carlo simulations are discussed. Section 5.6 briefly reviews different sampling meth-
ods and illustrates that the sampling process is the workhorse of the Monte Carlo
method. Sections 5.7 to 5.9 examine three neutron transport problems with different
physical cha,ra,cl?eristics, using the three selected sampling methods. The Monte Carlo
codes are implemented on the IBM 3090-180VF, and their performance is discussed.

Finally, concluding remarks are given in the last section.

5.2 Neutron Transport

Neutron transport is described by a Boltzmann transport equation, which catalogues
all possible occurances during the transport process [85]. Seme fundamental assump-
tions of this equation are: {a) neutrons flow without changing direction or speed until
they either interact with atomic nuclei in the considered domain or escape from the
domain, (b) neutrons do not appreciably alter the interacted medium within the time
interval considered, and (c) external fields, such as gravity and electromagnetic fields,
are not accounted for [3].

A seven-dimensional space is needed for describing neutron transport. These
dimensions are three for spatial coordinates, two for describing direction of particle,

and the others for magnitude of velocity (or equivalently energy) and time.

108

5.2.1 Definitions

Before describing the Boltzmann transport equation, some definitions and terminol-
ogy mainly based on reference [85] are briefly introduced in this subsection.

The fluz of neutrons is defined as the number of neutrons per unit area per unit
time. Another useful measure is called fluence, which is defined as the number of
neutrons per unit area. It is equivalent to regarding fluence as a time-integrated flux
over some specified time interval.

Neutrons interact with nuclei in several ways. Interactions or collisions can lead
to absorption, scattering or multiplicative effects. Absorption occurs when a neutron
is absorbed and no neutron is emitted. In scattering, the neutron continues flying
after a collision but its energy and direction may be altered. Multiplicative effects
occur when more than one neutron are emitted after a neutron 1s absorbed by the
nucleus. Scattering is further classified into several scattering processes, such as elastic
scattering and inelastic scattering. Elastic scattering conserves both kinetic energy
and momentum of the colliding particles (neutron and target nucleus). In inelastic
scattering, a portioﬁ of the incident-neutron energy appears as an excitation of the
target nucleus which is subsequently released by photon emission. The probabilities of
these interactions depend on the neutron’s energy and the nature of the target nucleus.
The interaction probabilities are described by cross-sections, which are defined below.

The microscopic cross section (o) is defined as the probability of interaction of
a neutron with a single nucleus per unit area. The unit of area is usually expressed
in barns, where a barn is equal to 1072 m?. The probability of interaction with the
aggregate of nuclet that compose a medium is described by the MACTOSCOPIC CTOSS
section, which is denoted by £ . If N is the volumetric density (nuclei/m?) of the
target medium, then & = No. For a mixture of target nuclide, the macroscopic cross

section is given as

z= Z Nio;,

109

where N; and o; are, respectively, the volumetric density and the microscopic cross .
section of the i-th nuclide [85]. The macroscopic cross section has units of reciprocal
length and is usually expressed in m~!. The reciprocal of the total cross section, 1/,
represents the mean-free-path of a neutron in a medium,; that is the mean distance a
neutron travels before encbuntering an interaction.

The cross section is energy and material dependent. For a given target nucleus and
interaction type, the cross sections are usually tabulated as a function of the incident
radiation energy. The particle’s energy is divided into G energy groups; each energy
group has a set of particle cross sections. The first energy group corresponds to the
highest energy, while the G—th group corresponds to the lowest energy.

The subscripts in the cross éections designate the types of interactions. These are
typically, o, for the absorption cross section, voy for the average number of neutrons
released per fission times the fission cross section, and oy for the total (all possible
reactions) cross section. The scattering cross section is described by a set of energy
transfer cross sections, 0,4, which denotes a scattering cross section from energy
group g to energy group ¢’. The scattering cross section is usually represented in a
matrix form, which is called the scattering matrix.

Table 5.1 shows a typical example of a neutron scattering matrix. This scattering
matrix is an upper right triangular matrix, in which the elements of each row are
located sta.r_ti..ng from the diagonal. In the presentation, however, the elements of
cach row are written starting from the first column in order to compress the space.
This upper right triangular scattering matrix means that a particle cannot gain energy

after a collision; that is no up-scattering is allowed.

110

;
H
;
:

Table 5.1: A neutron cross section matrix.

Energy Energy a, | voy | Oy Tgg
Group (MeV) Scattering Matrix
1 30 0020001811 110 0.16 0.23 0.12 0.07
2 1.4-3 0.0010.00 202170 040 0.11 0.01
g | 0.003-0.017 | 0.00 | 0.00 | 146 || 05y 0ppu1 Togsz - Opc
G < 1078 0.23 | 0.00 | 1.57 || 1.57

i1l

5.2.2 The Boltzmann Transport Equation

In physical terms, the Boltzmann equation accounts for additions to and subtrac-
tions from transporting neutrons in a given increment of space, energy, direction and

time [85]. The Boltzmann transport equation can be written as follows [3,66).

19

— =8 B, 1) = ~LVH(r, E

L, 1) ~ Lu(F, B)4(F, B, 0, t)
+//dE’dQE(rE—>E§' S EL)+ QF BT, (5.1)

where

T = position vectar,

E = particle’s kinetic energy,

v = particle’s speed corresponding to its kinetic energy F,

1 = a unit vector which deécribes the particle’s direction.of motion,
t = time variable,

#(7, E,Q,t) = time-dependent angular flux,

(7, E,Q,t)dEdS) = number of particles per unit volume and time at the space point

7 and time ¢ with energies in dE about E and with directions in df¥ about

=l

b

%%qﬁ(?’, E,Q,t)dEdQ} = net accumulation (gains minus losses) per unit volume and
time at the space point 7 and time ¢ of particles with energies in dE about

E and with directions in d about {1,

~0.V(F, E,},t)dEdQY = net convective loss (due to particle spreading) per unit
volume and time at the space point ¥ and time t of particles with energies in

dE about E and directions in d@ about T ,

112

5(F, E) = total cross sections at the space point ¥ for particles of energy E ,

—2.(F, E)¢(F, E,Q,t)dEd) = particle loss (by absorption and scattering) per unit
volume and time at the space point ¥ and time ¢t of particles with energies in

dE about E and directions in dQ about §7,

5,(F, E' — B, — 0)dEdQ = the differential scattering cross section which de-
scribes the probability per unit path that a particle with an initial energy E
and initial direction {1 , undergoes a scattering collision at ¥ which places it

into a direction within dQ0 about £ with a new energy in dE about E ,

{f 2,7 E' = E, Q0 - (7, B, ,)dE'dY }dEdTl = number of particles result-
ing from collisions which enter a unit volume and time at the space point 7
and time ¢t of particles with energiesin dE about E and directions within d0

about £, and

Q(7, E,0,t)dEdQ = number of source particles emitted per urit volume and time

at the space point ¥ and time ¢ with energies in d£ about £ and directions

within d§ about (1.

The energy dependence of Equation (5.1) can be represented in terms of energy

groups which are defined as

AE, = energy width of the g-th group,

¢ = 1 corresponds to the highest energy group,
g = G corresponds to the lowest energy group,

with the energy constraint given by
G By
S AE, = f dE = E,, (5.2)
g=1 0

which is the maximum particle energy.

113

The Boltzmann equation can further be integrated with respect to energy over

the energy interval AE;. The Boltzmann equation for an energy group g 1is as

follows [66].

10 . — — —
“5‘¢9(F: Qat) = _‘Q'v‘ﬁg(?a Q,t) - E?(F)QSQ(F: Q:t)
v, Ot
L CiRtegt = = = ey
+ 3 [AT o D (r T8 + Q1) (5.3)
g'=g" "

where

bq(7, E,2,t) = time-dependent group angular flux,

¥ (7, F) = energy-averaged total cross sectibn for the g-th group, and
ze'—e(7, 7T — (1) = group ¢' to group g scattering cross section.

Analytical solutions of the Boltzmann equation can be obtained only in a few
very simple and highly idealized cases [3]. In most practical situations, approximate
solutions are the options, which may be obtained using classical numerical methods
and Monte Carlo methods [85]. The classical numerical methods generally involve the
derivation of a discritized approximation to the Boltzmann equation. The resulting
system of equations may then be solved iteratively. The classical numerical solutions
are however limited to geometries compatible with cartesian, cylindrical or spherical
coordinate systems. Thus, for complex geometry problems, one has to rely on the
Monte Carlo method. The Monte Carlo method for solving a Boltzmann equation is .

discussed in the next section.

5.3 The Monte Carlo Method

In the Monte Carlo method, histories of the travel of individual particles through the
geometry are constructed and then analyzed to obtain relevant information, such as

fluence and fluence related quantities [59]. A particle history includes the birth of a

114

particle at the source, its random walk through the transporting medium, where it
undergoes various scattering interactions, and its death, which terminates its history.
‘The termination of a particle history can occur when the particle becomes absorbed,
leaves the geometric region of interest, or reaches énergy level below some preassigned
energy cut-off. In the following subsections, the basic requirements and and the

random walk procedure of the Monte Carlo method are described.

5.3.1 Basic Requirements

In order to solve the Boltzmann transport equation using the Monte Carlo method,
the following items should be provided for computing each particle history (random

walk) [66].

Source o_f Particles

A radiation source is specified by its position, geometry, directional and energy distri-
butions. This provides the Q(7, E,{},t) term in Equation (5.1). The source variables
are produced by constructing random samples from given probability distributions. A
source particle is usually assigned a statistical weight of unity. The weight is further

modified during random walks.

Geometry

In order to track particles throughout the system and relate the positions of particles
to the materials encountered, the geometry can be specified analytically by defining
the surfaces of different geometrical objects. This approach however may not be
practical for a complex object. An alternative approach is that the geometry may
be specified by a set of elementary bodies. The elementary bodies can be combined
together using logical operators to form the zone of a particular object. This approach

is called the combinatorial geometry method [66].

115

Scoring

The quantities of interest are estimated at the end of the random walks of particles.
The following estimators can be used to score fluence or fluence-like quantities at a

point or a region [59]:

e Body crossing estimator scores the fluence crossing a surface. This estimator
‘accumulates the weight of particles crossing the surface divided by the absolute
value of the cosine of the angle between the normal to the surface and the

direction of the incident particle.

o Track length estimator evaluates fluence. The track length of particles crossing

a given zone is summed, then divided by the volume of the zone.

e Collision densily estimator evaluates fluence, by accumulating the weight of
particles colliding within a zone, divided by the product of the total cross section

of the material and the volume of the zone.

In these estimators, scoring is done when a pé,rticle visits the region or surface
of interest. An expected-value estimator, such as the nezt event estimator {17], is
used when the probabilities of particles reaching the region of interest are low. This
estimator evaluates the probability of the next collision being at the detector site;
however, the position of the particle being tracked is not altered and the particles
need not necessarily enter the detector site. The estimator of the detector response

at energy F is then given by [39]

M wexp(— "= E; 8
S(E)m%; p{ 6;1‘:31(2‘? 5o © (5.4)

where w is the statistical weight of a particle leaving a collision, 8 is the number of

mean-free-paths from the collision point to the detector site, p(E' — F;8) is the
probability of scattering from energy E to energy E’ and reaching the detector at

angle 8 between the incident and scattered beams, R is the distance between the

116

collision point and the detector site, while M is the number of collisions encbunt.ered,

and K is the number of particle histories.

5.3.2 Random Walk Procedure

The Monte Carlo method solves the Boltzmann integro-differential transport eqﬁa.»
tion by randomly tracking sufficient number of random walks through the problem
geometry. Estimates of quantities of interest are then obtained by accumulating the
contribution of individual particles.

The density of pa.rticles leavi.ng a source or emerging from a real collision with
phase space coordinates (group ¢,7,,t) is denoted by variable x,(7,{1,1) , which is
defined as

=S [(T o Do (r, @ A+ QERY. (53)

4
g'=g o

One of the forms of the Boltzmann transport equation is the integral emeryént
particle density equation, which can be derived from Equation (5.5). This equation
is given as

xs(F, Q1) = Cy’-ﬂ;(ﬁﬁ’ — Q)T (F — 7, W)Xy‘('#aﬁtst’) + Qq(7, 0, 1), {5.6)
where
Cyrrg(7, & — 1) = a collision integral operator, and

T, (7 — 7,1) = a transport integral operator.

A detailed derivation of Equation (5.6) and definitions of the integral operators
can be found in reference [37]. The collision and tfa.nspdrt integral operators are then

approximated by the following summation equation

xo(7 8,1) = Y X2 (7, 0, 1), (5.7)

where

117

X907 Q,1) = Q,(r,Q,t), and

X2F AT = Copy (70— WT,H(F — 70)x2 Y7, 0, ¢), which denotes the
emergent particle density of particles emerging from n-th collision and having

phase space coordinates (group g, 7,dQ about {J, time ¢).

The collision and the transport integral operators control random walks. The flight
distance is sampled from a distribution described by the transport integra,i operator,
while the particle status after a collision is determined based on a distribution defined
by the collision integral operator. '

The random walk process is initiated by sampling a source particle. The source
coordinates (group go, Fo, Q, time ¢y) are selected from Q, (7,11, ¢), and each source
particle is given a weight equal to unity. Then, a flight distance R is.sa.mpled from
n%(r)e~9(R%) to determine the site for the first collision 7, and the particle’s age
t1 = to+ R/v,. All particles are forced to scatter with the probability of scattering
defined-as £9(71)}/0{°(F1). The weight is further modified by the nonabsorption
probability, which is defined as 1 — [£9°(7,)/Z2° (71)}:

A new energy group ¢; is sampled according to the distribution

f in dﬁEgO"g (?1, ﬁu — ﬁ)

() ’ 58)
and a new clil:ection Q is determined from
D900 (Fhﬁ(} — m (5.9)

Ego —g1 (;}:1)
The random walk process 1s repeated until the particle history is terminated. The
particle history can be terminated by energy cut-off, age cut-off and weight cut-off.

During the random walk process, the particle contributions to the quantity of interest

are scored according to the particle’s weight and the estimator used.

118

5.4 The MORSE Code

A number of general purpose Monte Carlo codes for particle transport :calculation
are available,. MCNP, MORSE and TRIPOLI are perhaps the three most widely
used codes [37]. The MORSE (Multigroup Oak Ridge Stochastic Experiment) code
is a multipurpose neutron and gamma-ray transport Monte Carlo code. This code
consists of about 8000 lines of FORTRAN statements, with very few comments. The
capabilities of MORSE include the ability to simulate either a neutron or a gamma-
ray problem or a coupled neutron and secondary gamma-ray problem. The capa-
bilities also include the handling of multigroup cross sections, the ability to solve
forward or adjoint problems, modular input-output structure, debugging routines, a
three-dimensional combinatorial geometry package, and several options of importance
sampling techniques [66]. With the three-dimensional combinatorial geometry pack-
age provided, MORSE can form complicated geometries by combining several basic
geometrical bodies.

The MORSE code is chosen for use in this work, since it is a multigroup code
and has been widely used at the University of New Brunswick. In the multigroup .
Monte Carlo method, the energy range of interest is divided into several groups and
the average cross sections are obtained for each group. Therefore, MORSE involves
an extensive table lookup searching, which is a time consuming process both in scalar
and vector processing. The table lookup process here is really the construction of

samples from arbitrary discrete distributions.

5.4.1 Main Modules

The MORSE code modules are shown in Figure 5.1. The source module generates
source particles. Then, the random welk routines generate particle histories and do
the major bookkeeping. The combinatorial geometry routine keeps-track of particle

positions with the geometry domain, and identifies the corresponding material. The

119

INPUT

Y

ANALYSIS [-

SOURCE

ANALYSIS T*

GEOMETRY |

TRACKING

COLLISION
ROUTINE

CROSS
SECTION

OUTPUT

Figure 5.1: MORSE code modules.

120

A

*T ANALYSIS

collision module determines the energy loss and change of direction of a particle after |
a collision. The probability tables for collision and tracking processes are provided by
the cross section module. The analysis module 1s used to estimate the contribuiion

of each random walk to the parameters of interest.

5.4.2 Probability Tables

This subsection describes briefly the construction of the scattering probability matrix
from the group-to-group energy transfer cross sections discussed in Subsection 5.2.1.
The angular scattering probability tables, used in the MORSE code for sampling the

.outcome of a collision, are also discussed.

Scattering Probability Tables

The scattering cross section is the summation of group-to-group energy transfer cross

section. That Is

. _
o] = Zo'g.y': forg'=1,2,-++,G. (5.10)
g2'=1

The probability of scattering from energy group ¢ to ¢’ is simply o, ,/09. The
scattering probability table for energy group ¢ is formed by the transfer probabilities
from energy group ¢ to all other possible energy groups. The scattering probability
matrix is a set of the scattering probability tables from the first to the last energy
group. If up-scattering (energy gain) does not occur, then the scattering probabilty
matrix is an upper right triangular matrix. The effect of a collided nucleus on the
length of a probability table in an elastic scattering is discussed. below.
Following an elastic scattering, the outgoing neutron energy (E’) lies in the
interval defined by {59]
E<E' <E, (5.11)

where F is the incoming energy, and o = (A —1}/(A + 1), with A is the ratio of

the target mass to the neutron mass. A can be approximated by the mass number

121

of the target nucleus [59].

According to Equation (5.11), if Ais relatively large, then the minimum energy
of an outgoing neutron is close to its maximum energy; i.e. the energy interval
corresponding to a single collision is narrow. This means that an outgoing neutron
does not lose much of its energy after a collision. In this case, only a short probability
table is required since the outgoing energy group will not be far from the incoming
energy group. On the contrary, when A is relatively small the energy interval of an
outgoing neutron is wide. A neutron can lose most (all if A = 1) of its energy in
one collision. Therefore, a long probability table is needed since the outgoing energy
group can be very far from the incoming energy group (see Section 5.7 for further
discussion). Thus, the length of a scattering probability table is affected by the mass

number of the target nucleus.

Angular Scattering Probability Tables

In 1sotropic scattering, an outgoing neutron scatters with equal probability into any
direction. For anisotropie scattering however, probability tables are required to sam-
ple scattering angles. The angular scattering probability table is derived as shown
below. |

Practical applications require the probability of scattering to be given in terms of
the sca.ttering. angle. The probability of elastic scattering from an energy £ to an

energy E’ with an angle cos™! g can be expressed as [40]
os(E — E'5)
a.(E")
1

L
Tron (B & SUE = E)PUw) (5.12)

where 5; refers to the I-th Legendre coefficient and P; to ordinary Legendre polyno-

p(E — E'; p)

mial of order {. In a multigroup cross section structure, where energy £ and energy
E' lie, respectively, within group ¢ and ¢, then o,(E — E') corresponds to o, 4,

while 0,(E') becomes 0¢’. Note that the use of Legendre polynomial of order (2n—1)

122

results in the construction of an angular probability table for » discrete angles {39]. |
Since these polynomials are related to the distribution moments and subsequently

the Legendre coefficients, only n angles can be determined for (2n — 1) coefficients.

5.5 Speeding Up of MORSE Computations

A Moante Carlo code, such as the MORSE code, generally requires a large amount of
computer time in order to obtain results with small statistical variability. There are,
basically, two approaches to speeding up the simulation time of such a code. The
first approach is to modify the statistical methods, such as the scoring method (the
estimators) and the sampling method. We can also bias the prdblem using importance
sampling techniques such that particles are directed to important zones, directions
or energies. The second approach is to reduce the processing time by employing
vector and/or parallel processing. As mentioned earlier in the previous chapters, we
consider the use of the weighted sampling method and vector processing in order to
speed up the computations. This section discusses the vector processing for Monte
Carlo particle transport codes, while the sampling methods are investigated in the -
following section.

With the advent of vector and parallel computers, many efforts are directed to-
wards employing such computers to reduce the processing time of particle transport
simulations. Monte Carlo particle transport codes have been implemented on vector
afid/ or parallel computers at the University of New Brunswick {7,80,81,90,91,92,104],
and elsewhere [10,13,14,47,61,62,63].

The vectorizability of Monte Carlo particle transport code can be enhanced using
two approaches. The first approach globally restructures the entire code; whereas,
the second approach tries to eliminate the vectorization inhibitors in the code. Vec-
tor computers provide compilers for vectorization. However, such compilers cannot

exploit vectorization of many Monte Carlo particle transport codes, since most parts

123

of the codes contain implicit loops and random walk computation [10]. Consequently,
the codes have to be rewritten with global transformations to make them vectoriz-
able. The vectorization inhibitors have to be removed as well in order to achieve high
vectorizability.

The notion of restructuring pafticle transport codes is as follows. A vector code
uses the event-based algorithm (discussed in Section 4.6) in which a set of particies
are simulated simultaneously from one event to another. Events could be the particle
generation, collision and boundary crossing procedures in a particle transport algo-
rithm. Note that this algorithm is different with the history based algorithm, which
simulates only one particle at a time from birth to death.

The vectorized code is designed to follow many particles through their random
walks simultaneously. This is done by forming particle vectors and then applying
the same operations to all the particles in the vector using. vector instructions to
speed up the computation rates. Thus, vector processing can exploit the advantage
of executing identical operations on contiguous data elements (vectors). -

In the Monte Carlo particle transport method, the geometry algorithm must be
able t.o. track pa.rficles throughout the system and relate the positions of particles
to the materials encountered. We found th.a.t this process can be time consuming,
and contains vectorization inhibitors. Therefore, an alternative geometry algorithm
should be used to speed up the computation.

In the previous chapter, it was demonstrated that the weighted sampling method
could enhance the vectbriza,bility of the event-based Monte Carlo codes. As a first
step, we investigate the statistical as well as the processing time effects of incorporat-
ing the weighted sampling method into the scalar MORSE code. We further examine
the effect of vectorizing only the parts in which sampling is performed, since the com-
- piler cannot exploit the vectorization of the MORSE code in its present state. Thus,
the objective here is to investigate local speedups, which can be introduced to the

MORSE code.

124

5.6 Table Lookup

MORSE requires an extensive table lookup searching, particularly to sa,mple an out-
going neutron energy and direction at every collision. The table lookup process can
be viewed as constructing samples based on discrete distributions, whose probability
tables are stored in arrays. The inverse method [56] is usually used to construct sam-
ples from a probability table. As discussed in Chapter 2, this method is not efficient
for table lookup computation since it involves comparisons and requires a prepro-
cessed table. Also, this method is not suitable for vector processing as it involves
 linear (step-by-step) searching.

Since the table lookup computation can significantly affect to the simulation time,
efforts have been made to develop efficient algorithms for the table lookup process in
Monte Carlo particle transport codes by utilizing vector comfmters [14,92].

Brown [14] proposed a vectorizable algorithm for Monte Carlo codes. Brown's
method requires only one comparison to construct a sample, regardless of the length
of the probability table. This method, however, requires a complex procedure to set
up tables for sampling. For each energy group the table for sampling also requires an
array of size 3n, where n is the array size of the probability table {(see Section 2.6
fpr the details). Consequently, a large memory size and a significant amount of time
are required to prepare tables for sampling from large scattering probability matrices,

which are often used in neutron transport codes; such as the MORSE code.

Tassou et al. [92] implemented a vectorized Monte Carlo neutron transport, COM,
on the Cyber-205 supercomputer. The initial scalar and the vector version of the
COM programs utilized functional fits for neutron cross sections and elastic isotropic
scattering kinematics in the center-of-mass system to calculate the energy of collided
particles. In order to investigate the effect of the table lookup process, a 36-group
neutron cross section table was introduced in the scalar as well .a.s the vector COM

codes. The incorporation of this table lookup computation was found to slow down

125

Table 5.2: An illustration of a scattering cumulative probability matrix.

New Energy Group T

1 2 3 4 5 . . . G

1030 040 070 087 093 . . . 1.0

2 020 040 055 078 . . . 1.0

Old 3 0.30 050 076 . . . 1.0
4 0.60 0.78 . . . 1.0

Energy 5 0.72 . . . 1.0
. .o . i.0

Group . .. 10
. 0.87 1.0

G 1.0

the scalar computation by about 12 %, while the vector processing was slowed down
by about 87 %. The vectorization speedup therefore decreases from about 16 {without
table lookup) to only 9.6 {with table lookup). |

A table lookup process implemented using the inverse method exists in MORSE.
The inverse method requires cumulative probabilities, which are prepared before niti-
ating the random walk process. An illustration of a scattering cumulative probability
madtrix is shown in Table 5.2. The matrix is upper right triangular since only down- |
scattering is allowed.

There is a need for an alternative sampling method for table lookup, which can
enhance the .vectorizability of Monte Carlo codes and can utilize directly the scattering
and the angular scattering probability tables. For this purpose, the weighted sampling
method is incorporated into the MORSE code. As a first step, the performance of |
the sequential MORSE code is examined for three problems with different physical
characteristics. Brown’s method is also implemented. The statistical results and the
processing time required for each method are then compared.

It should be noted here that zero probabilities in the scattering and the angular
scattering probabilities must be excluded in constructing Brown’s tables for sampling.

 In the existing MORSE codes, the specified lengths of probability tables include

126

zero probabilities. The MORSE codes, therefore, must be modified to exclude zero
probabilities,

In the MORSE code, sampling for an outgoing neutron energy group and direction
is done in a subroutine called COLISN. The incorporation of the code for the weighted
sampling method in subroutine COLISN is simple. The next energy group and the
scattering direction are chosen ﬁniformly and the particle’s weight is then adjusted.
After the outgoing. group is sampled, the particle weight is adjusted by multiplying
its value by the product of the scattering probability of the selected group and the
length of the corresponding probability table excluding zero probabilities. A similar
adjustment is also done after sampling for an outgoing séattering angle.

In the following sections, we examine the applications of the MORSE code for
solving three problems with different physical characteristics. The objective is to
analyze the effect of the inverse method, Brown’s and the Weiéhted sampling methods
on the solutions and processing time. Each problem is solved using three different
versions of MORSE codes, incorporating the three different sampling methods, viz.

the inverse method, Brown’s and the weighted sampling methods.

127

5.7 Problem 1

This problem is one of the sample problems distributed with the MORSE code [66]. In

this problem, MORSE calculates the fast-neutron fluence at several radial distances

from a point isotropic fission source in an infinite medium of air (see Figure 5.2). The

transport medium air is assumed to consist of only oxygen and nitrogen with a total
- density of 1.29 grams/liters.

In this problem we examine the fluence at three shells, which are the innermost
shell, a middle shell, and the outermost shell; their radii are 30, 200 and 450 meters,
respectively. The objective here is to analyze the performance of diffferent sampling
methods on the estimated values of neﬁtron fluence of several distance.

MORSE uses the combinatorial geometry package to describe thirteen concentric
spherical shells of air surrounding the point source. The neuﬁron fluence crossing the
spherical shells is to be estimated. For this purpose, boundary crossing estimators are
used. In this estimator, the value of the weight of a particle crossing a shell divided
by the absolute value of the cosine of angle between the normal to the surface and
the direction of an incident particle is accumulated. Then, the average of these values
1s used to estimate the neutron fluence.

A cross section library consisting of 22 neutron energy groups is employed in the
MORSE simulation. The simulation uses five Legendre coeflicients, which results
in three scattering angles for each angular probability table. This sample problem
analyzed only the top 13 neutron groups; i.e. neutrons were followed until their energy

dropped below the value corresponds to group 13.

128

SHELL 3

Figure 5.2: An illustration of MORSE Problem I: A point source is surrounded
by concentric spherical shells. The radii of Shell 1, Shell 2 and
Shell 3 are 30, 200 and 450 meters, respectively. .

129

Table 5.3: The scattering probability matrix of air for Problem I.

] Incoming Qutgoing energy group

energy

group 1 2 3 4 5 & il 21 9 19 11 12 13
1 3791 2414 0535 0503 0583 0445 0560 0252 00681 02684 0311 0168 0065
2 3928 2664 0607 .0429 0407 0613 .0330 .0070 .0305 .0366 .0202 L0080
3 4108 3386 0335 0276 0420 0304 0083 0468 0437 L0150 0052
4 4869 4007 0146 0202 .0117 0025 0113 0198 .Ql54 0068
5 ' 5150 4087 0528 0042 0012 0053 K69 L0041 0017
[+ -.5146 4754 0000 0001 0015 0044 0029 0013
7 ATET 3669 0430 0109 0004 0016 0014
8 4243 1600 4142 0002 0002 0011
9 1507 (B218 0276 0000 0aaa
10 BO0T6 4924 0000 0000
11 L3135 .2685 G000
12 8099 159401
13 1.0000

Table 5.4: Some scattering angles and their corresponding cumulative prob-
abilities of air for Problem I. '

Group-to-Group | CP gt CP ui CP 1
1-1 0.7865 ¢ 0.9397 | 0.9668 | 0.5575 | 1.0000 | -0.0979
1.2 0.5487 { 0.0062 | 0.8108 1 0.7800 | 1.0000 | -0.7469
1—3 0.5245 | -0.8781 | 0.8266 | -0.1151 | 1.0000 | 0.7531
22 0.7623 | 0.9372 | 0.9565 | 0.5366 | 1.0000 | -0.0867
2—3 0.5572 | -0.0266 | 0.7878 | 0.7717 | 1.0000 | -0.7598
2—4 0.5086 | -0.8696 | 0.820% | -0.1124 | 1.0000 | 0.7538
3-3 0.7502 ; 0.9322 | 0.9443 | 0.5205 | 1.0000 | -0.1146
3—4 0.5518 | -0.0794 | 0.8193 ; -0.7910 | 1.0000 | 0.7613
3-5 0.4166 | -0.0266 | 0.7401 i -0.8354 | 1.0000 | 0.7687

The mass numbers of oxygen and nitrogen are 16 and 14, respectively. With
these mass numbers, Equation (5.11) results in a relatively small interval of possible
outgoing neutron energy. This means that the outgoing neutron loses only a small
portion of its energy after each collision. Therefore, the probe;.bility table for each
group has high probabilities for the first few subsequent groups and low probabilities
for the rest of the groups. Table 5.3 shows the scattering proba,bilii;y matrix of air,
which was produced by the MORSE code. The matrix is upper right triangular since

only down-scattering occurs during energy transitions.

130

Table 5.4 presents a part of the angular scattering tables used by MORSE in Prob-
lem L It shows the cosines of scattering angles (#) and the corresponding cumulative
proba.biﬁties (CP) for energy groups 1, 2 and 3. For each group-to-group of energy
change, there are three scattering angles preceded by their cumulative probabilities,
which are accumulated from the probability of the first angle to the probability of
the third angle. '

5.7.1 Fluence Estimates

This subsection reports results of Problem I, obtained by employing different sampling

‘methods. The notations for the computer codes corresponding to each method are:
1. INVER: original MORSE code which uses the inverse sampling method,
2. DISCS: MORSE code with Brown’s method, and

3. WGHTS: MORSE code with the weighted sampling implemented such that
random samples are constructed directly from the original probability tables,
and subsequently multiplied by the a,djustmeﬁt factors, (this is Technique I in
Chapter 3). '

In the discussion, the results obtained by INVER code are used as a reference, since
this method is the original method employed in MORSE. The results are analyzed
based on conv.ergence to an unbiased solution, statistical variability, processing time,
and efficiency. The estimated fluences at three spherical shells, obtained using the
three sampling methods, are given in Tables 5.5 to 5.8. The estimated fluence is given
together with the fractional standard deviation and the variability (statistical error)

associated with 99 % confidence level in the results. The corresponding confidence

- 52
X & 2576, — (5.13)

131

interval is defined by

where k is the sample size; X and 5? denote the sample mean and sample variance,
respectively. A high confidence level was chosen here since these intervals are used
to determine whether the estimated results are biased or not, in comparison with the
corresponding estimates obtained using INVER.

The neutron fluence consists of two components, an uncollided component and
a collided component. The uncollided fluence results from neutrons emanating from
the source and reaching the shell directly without encountering any collisions with the

intervening medium. The collided fluence, on the other hand, results from neutrons

having experienced collisions before crossing the shell.

Table 5.5: Uncollided fluence of Problem 1.

Sample INVER DISCS WGHTS
size Estimate(FSD) | Estimate{FSD) Estimate(FSD)
20,000 | 7.1658E-1(0.00707) | 7.1569E-1(0.00707) | 7.1368E-1(0.00707)
+0.131E-1* +0.130E-1 +0.130E-1
40,000 | 7.1592E-1(0.00500) { 7.1546E-1(0.00500) | 7.1516E-1{0.00500)
+0.092E-1 +0.092E-1 +0.092E-1
60,000 | 7.1588E-1(0.00408) | 7.1519E-1(0.00408) | 7.1501E-1(0.00408)
+0.075E-1 +0.075E-1 £0.075E-1
80,000 | 7.1571E-1(0.00354) | 7.1502E-1(0.00354) | 7.1498E-1(0.00354)
+0.065E-1 +0.065E-1 +0.065E-1
100,000 | 7.1381E-1(0.00316) | 7.1322E-1(0.00316) | 7.1315E-1(0.00316)
+0.058E-1 40.058E-1 +0.058E-1

the analytical solution of uncollided fluence= 7.1762E-01.
* statistical variability corresponds to a 99 % confidence interval.

The total fluence is the summation of the uncollided and collided components.
The estimated values of uncollided fluence crossing the innermost concentric spherical
shell are shown in Table 5.5. These values can be verified a.ga.inst analytical solutions,

which is an exponential relationship given by the following equation

G
Uncollided fluence = Y f,e™%, (5.14)

g=1

where

132

fo = fraction of source neutrons emitted in energy group ¢,

r = radius of spherical shell,
G = last energy group,
b = total cross section at energy group g.

The above equation results in a value of 7.1762E-01.

In Table 5.5, an increasing number of source particles (sample size) is utilized,
in order to examine the convergence of the solutions. One would expect that the
estimated fluence remains relatively unchanged as the sample size in(lzrea.sed. One
can notice, however, that for all sampling methods, the estimated uncollided fluence
remains almost constant for sample sizes from 20,000 to 80,000 particles. As the
sample size increases to 100,000 particles, the estimated fluence in the three sampling
methods decreases slightly.

In 01_‘der to explain the above d.iscrepa,ncy, let us examine the variability associated
with each estimate, as defined by the confidence interval. One can see that, for all
sampling methods, the FSDs decrease as the sample size increases. This indicates
convergence to the solution. With the increase in sample size from 80,000 to 100,000,
the estimated values in the three sampling methods slightly decrease, at most by
0.019E-1. This difference however is less than the statistical variability, which is
equal to 0.058E-1; hence the fluctuation in the estimated values for uncollided fluence
is still within the confidence intervals. Thus, the estimated values converge to the
expected solution.

It is seen in Table 5.5 that the magnitude of the analytical solution is inside the
confidence intervals estimated by different sampling methods. Thus, the estimated
uncollided fluence obtained by employing the three sampling sampling methods are
unbiased. |

It is important to notice in Table 5.5 that the three sampling methods result in

values that are very close in magnitude to each other. The trend of convergence

133

is similar. This is, however, expected since the uncollided fluence depends only on
source particles, and is not directly affected by the particular sampling method used.
This is because the sampling method affects only particle collisions and in turn the _
collided component of the fluence. The only influence of the sampling method is
in changing the sequence of random numbers at which source particles are selected.
However, this is smoothed out as the sample size increased to a few thousands. A

similar trend is observed for the other two shells.

Table 5.6: Total fluence crossing Shell 1 (30 m in radius) of Problem I.

Sample INVER DISCS WGHTS
size | Estimate(FSD) [Estimate(FSD) | Estimate(FSD)
20,000 | 1.3774(0.01751) | 1.3406(0.01489) | 1.3435(0.02274)
+0.062" +0.051 £0.079
40,000 | 1.3752(0.01089) | 1.3276(0.01028) | 1.3253(0.01474)
+0.039 +0.035 £0.050
60,000 | 1.3787(0.01198) | 1.3153(0.00812) | 1.3447(0.01734)
+0.043 +0.028 +0.060
80,000 | 1.3649(0.01135) | 1.3131(0.00788) | 1.3296(0.01443)
+0.040 +0.027 +0.049
100,000 | 1.3596(0.00970) | 1.3117(0.00702) | 1.3317(0.01320)
+0.034 +0.024 +0.045

* statistical variability corresponds to a 99 % confidence interval.

Tables 5.6 to 5.8 show the estimates obtained for the total fluence crossing three
different cocentric spherical shells, respectively. By comparing the estimated values
with those of the uncollided fluence reported in Table 5.5, one can directly conclude
that the uncollided fluence constitutes only a small portion of the total fluence. The
collided component therefore dominates the total fluence. Hence one would expect
the sampling method to directly affect the estimated values of total fluence.,

One can notice in Table 5.6 that the estimated fluence converges, as indicated by
the decrease in FSDs, as the sample size increases. The estimated values for the three

sampling methods converge to about the same value. This is indicated by the fact

that the intervals obtained by DISCS and WGHTS overlap those of INVER. This

134

means that DISCS and WGHTS also result in unbiased estimaites, since the INVER’s

solutions are used as a reference.

Table 5.7: Total fluence crossing Shell 2 {200 m in radius) of Problem L.

Sample INVER DISCS WGHTS

size Estimate(FSD) | Estimate(FSD) | Estimate(FSD)

30,000 | 2.1078(0.02494) | 1.9685(0.02012) | 1.9838(0.11728)
£0.135" £0.102 +0.599

40,000 | 2.0480(0.01779) | 2.0049(0.01638) [1.8611(0.06882)
+0.004 £0.085 +0.330

60,000 | 2.0496(0.01480) | 2.0185(0.01610) | 1.8640({0.05616)
+0.078 +0.084 +0.270

80,000 | 2.0671(0.01427) | 2.0848(0.01502) | 1.8510(0.04713)
10.076 +0.079 +0.225

100,000 | 2.0776(0.01448) | 2.0460(0.01380) | 1.8137(0.03985)
+0.078 +0.073 . 40.186

* gtatistical variability corresponds to a 99 % confidence interval.
Table 5.8: Total fluence crossing Shell 3 (450 m in radius) of Problem I

Sample INVER DISCS WGHTS

size Estimate(FSD) | Estimate(FSD) | Estimate{FSD)

20,000 | 1.1906(0.03206) | 1.1940{0.03408) | 1.0298(0.20122)
+0.1011* +0.1048 +0.5338

40,000 | 1.1855(0.02305) | 1.1845(0.02457) | 0.9170(0.14068)
+0.0704 +0.0750 +0.3323

60,000 | 1.1712(0.01868) | 1.1607(0.01825) | 0.9318(0.11716)
+0.0564 +0.0576 £0.2813

80,000 | L.1741(0.01810) | 1.1682(0.01703) | 0.8849(0.09502)
+0.0547 +0.0540 40.2166

100,000 | 1.1751(0.01612) | 1.1623(0.01575) | 0.9123(0.07903)
+0.0488 +0.0472 +0.1857

~ ¥ statistical variability corresponds to a 99 % confidence interval.

From Table 5.6, for Shell 1, the FSDs of DISCS’s results are slightly smaller than
those of INVER, while the FSDs of estimates obtained using the weighted sampling

are about 1.3 times larger than those of INVER. This large variance can be explained

135

by the fact that the adjustment factors employed by the weighted sampling méthod '
vary significantly. Subsequently, the weights of collided neutrons are affected, and
their values have a larger variability. The weighted sampling results (W'GHTS) are
still, however, unbiased since they lie within the bound of the 99 % confidence inter-
vals. |

Table 5.7 shows the results for Shell 2. Here one can noticé that the solutions
of INVER and DISCS converge to about the same value, whereas the WGHTS’s
solutions converge to a smaller value. However, the 99 % confidence intervals of
WGHTS still overlap those of INVER. One can conclude therefore that the weighted
sampling results are still unbiased estimates of the neutron fluence.

" The total fluence of neutrons crossing the outermost shell with radius of 450 meters
is given in Table 5.8. Here one can notice that the values of the estimated fluence
obtained using INVER and DISCS are close to each other for all sample sizes. Their
solutions converge to almost the same value. The WGHTS code results in a slightly
lower value than those of the other two methods. However, the confidence intervals
of WGHTS overlap those of INVER for sample size 20,000, 40,000 and 60,000, as
shown in Table 5.8. For sample sizes of 80,000 and 100,000 the confidence inter{rals '
of WGHTS do not overlap those of INVER. The diﬂ'érence is at most 0.028, which is
about 2.4 % relative to the INVER’s estimate.

The sma;ll.ér estimated values obtained by WGHTS can be explained by the fol-
lowing reason. The weighted sampling utilizes uniform distributions to sample the.
outgoing energy groups and the scattering angles, while the other codes use the orig-
inal scattering probability matrix and the original angular scattering tables. Theré-
fore, the random walks in WGHTS have higher probabilities of reaching lower energy
groups than those in the other codes. This leads to earlier termination of the random
walks in WGHTS, due to the premature reaching of the energy cut-off. Therefore,
the number of neutrons reaching energy cut-off in the weighted sampling is more than

in the other two sampling methods. This is indicated by the fact that the weighted

136

sampling produces fewer collisions, as shown in Table 5.10. Consequently, a shell with
a large radius receives less accumulated fluence, hence the average values {estimated
fluence) are smaller. |

Comparing the values of total fluence of the three shells (see Tables 5.6 and 5.8)
one can notice that the fluence for Shell 2 is higher than that of Shelis 1 and 3. This
is not what one generally expects, that is the farther away the spherical shell from
the source the lower is the fluence. This behaviour can be explained by the fact that
Shell 2 receives particles scattered backward towards the source, which results in an
increased collided fluence. |

The FSDs of estimates obtained using the three sampling methods increase as the
shell radius increases. This is also due to the fact that the variability of the statistical
weights of a neutron increases as the distance from the source increases, since the

energy of a neutron varies significantly during the travel for é,‘ long distance.

5.7.2 Processing Time and Speedups

Here, we examine the execution time (cpu time) required for the three sampling
methods. Table 5.9 shows the processing time required by the different scalar MORSE
codes, namely INVER, DISCS and WGHTS, executed in scalar mode. Five different
~ sample sizes are reported in this table since the solutions shown in the previous tables
are obtained with these sample sizes. Different number of samples is also useful for
recognizing the pattern of processing time. The processing time of DISCS is about
12 % less than f.ha.t of INVER,; whereas WGHTS entails the least processing time,
which is about 32 % of the processing time required by INVER.

The number of collisions resulting in each sampling method directly affect its
proc.essing time. This is due to the fact that each collision requires computation for
the tracking of collided particles, and therefore a larger number of collisions requires
more processing time. Further, it is found that for each sampling me_tho.d the scalar

processing time is linearly proportional to the number of collisions. For each collision,

137

the processing time required by the various sampling methods is close to each other. |

The number of collisions occured during Monte Carlo simulations is reported since
they are affected by the sampling methods used. The number of collisions produced
by different sampling methods is shown in Table 5.10. It can be seen that for each
sampling method, an increase in sample size by a factor of two produces an increase in
the number of collisions by a factor about two. That is, there is a linear relationship

between the number of collisions and the sample size.

As shown in Table 5.10, the DISCS produces about 87 % of INVER’s collisions,
while WGHTS produces ounly about 26 %. As discussed before, the rand.om walks
in WGHTS have higher probabilities of reaching lower energy groups than those in
the other codes, due to the utilization of uniform distributions. Consequently, more
random walks were terminated earlier as they reach the energy cut-off. The WGHTS
code therefore produces fewer collisions. | _

The scalar speedups of the MORSE codes incorporating Brown’s methodl (DISCS)
and the weighted sampling method (WGHTS) relative to the MORSE code imple-
menting the inverse method (INVER) are given in Table 5.11. One can notice that
the speedups for each sampling method is constant as the sample size increases. This
is due to the linear relationship between the samiple size and the processing time
required by each sampling method. On average, DISCS is about 13 % faster than
the existing INVER, while the WGHTS is about three times faster. This emphasizes

Table 5.9: Scalar processing time of MORSE simulation for Problem I.

Sample | Processing time in seconds
size | INVER | DISCS | WGHTS
20,000 | 79.278 | 68.291 25.117
40,000 | 155.973 | 135.996 | 49.674
60,000 | 228.802 | 206.976 [75.793
80,000 | 305.631 | 273.029 [101.569
100,000 | 378.767 | 340.185 | 125.696

138

Table 5.10: Number of collisions in MORSE simulation for Problem I.

Table 5.11: Speedups of different scalar MORSE codes relative to scalar IN-
VER for Problem L

the attractiveness of using the weighted sampling method to speed up Monte Carlo -

calculations.

Sample Number of collisions
size; INVER | DISCS | WGHTS
20,000 | 384,994 | 330,833 99,118
40,000 ; 761,302 | 663,336 | 197,157
60,000 | 1142,631 | 995,898 | 205,382
80,000 | 1521,797 | 1329,106 | 392,965
100,000 | 1903,822 | 1662,812 | 490,279

Sample | Scalar speedups
size | DISCS | WGHTS
20,000 | 1.161 3.156
40,000 | 1.147 3.140
60,000 | 1.105 3.019
80,000 | 1.119 3.009
100,000 | 1.113 | 3.013

139

5.7.3 Local Speedups

In the previous subsection, the processing time of the entire MORSE code incor-
porating different sampling methods was examined. This section concentrates on
examining the processing time of different sampling methods in the subroutine used
to handle collision process (subroutine COLISN). Thus, the objective here is to ob-
tain the local speedups of different sampling methods as they are incorporated into
subroutine COLISN. This local speedup provides a direct measure of the speeding
of the sampling method, without the additional overhead of other routines in the

MORSE cod_e.

Table 5.12: Scalar processing time of sampling methods in COLISN routine
for Problem L '

Sample | Processing time in milliseconds
size| INVER | DISCS [WGHTS
20,000 | 1263.860 | 1332.077 | 1251.416
40,000 | 2530.249 | 2660.251 | 2509.246
60,000 | 3791.720 | 3994.551 | 3756.862
80,000 | 5054.139 | 5334.382 | 5006.014
100,000 | 6318.385 | 6656.959 | 6258.126

The scalar processing time required by the three sampling methods is reported
in Table 5.12. The processing time of these sampling methods has the same trend.
That is, the pi‘ocessing time of each sampling method is linearly proportional to the
sample size.

For all sample sizes, the least scalar processing time is required by WGHTS,
while the largest one is needed by DISCS. The processing time of INVER is close
to that of WGHTS. This indicates that the inverse method performs well here, since
it requires only relatively few comparisons for each sampling to locate an outgoing
energy group. This is due to the large probabilities for the first few energy groups

and low probabilities for the subsequent energy groups in the scattering probability

140

tables used by the inverse method (see Table 5.3) for this problem.

On average, the processing time of écalar DISC and WGHTS relative to that of IN-
VER are about 105 % and 99 %, respectively. Therefore, the time required by different
sampling methods to cﬁnstruct a sample is about the same. This fact supports the
argument, discussed in Subsection 5.7.2, that the processing time for each collision in
different sampling methods is about the same. Thus, the global speedups achieved by
the MORSE codes incorporating Brown’s and the inverse sampling methods, shown

in Table 5.11, are mostly affected by the reduction in the number of collisions.

5.7.4 Local Vectorization Speedups

The vectorization speedups of MORSE codes incorporating different sampling meth-
ods cannot be obtained, since the entire MORSE code in its present state is not fully
vectorizable. One can examine however the effect of vectorization on local speedups,
since subroutine COLISN is vectorizable. This local speedup should provide some
indications of the global vectorization speedup one could attain, if the entire MORSE
code is vectorized after implemen_ting an event-based Monte Carlo algorithm, dis-

cussed in Section 4.6.

Table 5.13: Vector processing time of sampling methods in COLISN routine
' for Problem L.

Sample | Processing time in milliseconds
size | INVER | DISCS | WGHTS
20,000 | 364.371 | 150.948 136.364
40,000 | 729.298 | 301.443 273.995
60,000 | 1095.980 | 452.000 412.343.
80,000 | 1460.923 | 604.338 545.436
100,000 | 1824.385 | 753.166 684.846

Table 5.13 reports the processing time of vectorized INVER, DISCS and WGHTS.

One can notice that for all sample sizes the least processing time is for WGHTS,

141

Table 5.14: Speedups of the vectorized sampling methods relative to the scalar
inverse method for Problem I.

Sample Vector speedups

size | INVER | DISCS { WGHTS
20,000 | 3.469 | 8.373 9.177
40,000 | 3.469 8.394 9.158
60,000 | 3.460 8.389 9.111
80,000 | 3.460 8.363 9.178
100,000 | 3.463 | 8.389 9.138

followed by DISCS and INVER. Note that the vector INVER requires the largest
processing time, which is not the case of the scalar processing. The processing time
of vector DISCS and WGHTS is only about 41 % and 38 % of that of vector INVER.
These results are in contrast with those of the scalar processing time. This indicates
that the vectorizability of the weightea sampling method is the best. |

The processing time of the vector code relative to that of the scalar code is usually
calculated in order to provide speedup factors. As shown in Ta.ble 5.14, the speedups
of different vector codes (INVER, DISCS and WGHTS) are reported relative to scalar
INVER code. This ta,ble.shows that for different sample sizes the speedups of the |
three sampling methods are about constant. The WGHTS code provides the highest
speedup, about 9.1, while INVER attains the lowest speedup of about 3.5. The DISCS
entails speedup about 8.4. |

142

5.7.5 Efficiency

In {he preceding two subsections, the statistical and the computational performance
have been separately examined. These two performace criteria can be combined by
considering the efficiency of the Monte Carlo solution. As discussed in Section 2.7,
the efficiency of a Monte Carlo solution is inversely propoftional to the product of
the sample variance and the processing time. Therefore, the efficiency of an estimate
obtained by WGHTS relative to that obtained using INVER is the multiplication of
the sample variance é.nd the processing time of INVER divided by the multiplication
of the sample variance and the processing time of WGHTS (see Equation 2.4).

Table 5.15: Efficiencies of different MORSE codes relative to those of INVER,
for Shell 1 of Problem L.

Sample | Relative Efficiency
size | DISCS | WGHTS
20,000 | 1.695 1.967
40,000 | 1.381 1.845
60,000 | 2.644 1.515
80,000 | 2.509 1.962
100,000 | 2.284 1.696

Tables 5.15 to 5.17 show the efficiencies of DISCS and WGHTS relative to those
of INVER for Shells 1, 2 and 3, respectively. Table 5.15 shows that the relative
efficiencies of DISCS and WGHTS, for different sample sizes, are not constant. For
all sample sizes, the relative efficiencies of DISCS are higher than its scalar speedups
over INVER, given in Table 5.11, while those of WGHTS are lower than its scalar
speedups. The reason is that DISCS results in lower sample vafia,nces; whereas, the

increase in sample variances of WGHTS is higher than its scalar speedups,

For a sample size of 60,000, the relative efficiency of DISCS increases due to
the increase in the sample variance of INVER and the decrease in DISCS’s sample

variance. However, WGHTS has the lowest relative efficiency for this sample size,

143

since the increase in its sample variance is higher. On average, the efficiency of DISCS
relative to that of the inverse method is about 2.1, while the relative efficiency of the
weighted sampling is about 1.8. The relative efficiency of the weighted sampling is

lower than its scalar speedup, since its sample variance is larger than that of INVER.

Table 5.16 shows that, on average, the relative efficiencies of DISCS and WGHTS
are about 1.35 and 0.3, respectively. The relative efficiency of DISCS is higher than
its scalar speedup, since its sample variance is slightly smaller than that of INVER.
On the other hand, the relative efficiency of WGHTS is much smaller than its scalar
speedup, since its sample variance is much larger than that of INVER. However,
one can notice that the relative efficiency of WGHTS increases as the sample size
increases, since its samble variance converges faster than that of INVER.

The relative efficiencies of solutions for Shell 3 are reported in Table 5.17. The
relative efficiencies of DISCS and WGHTS, on average, a.re..a.bout. 1.1 and 0.16, re-
spectively. _ |

In summary, the relative efficiencies of DISCS and WGHTS decrease with respect
to the increase in shell’s radii. The relative efficiencies of WGHTS drop signiﬁca,ntly
since the increase in its sample variances is much larger than those of INVER. The

‘relative efficiencies of WGHTS for Shells 2 and 3, reported in Tables 5.16 and 5.17,
are less than one. This indicates that the scalar speedup achieved by the weighted

Table 5.16: Efficiencies of different MORSE codes relative to those of INVER,
for Shell 2 of Problem I.

Sample | Relative Efficiency
size | DISCS | WGHTS
20,000 | 2.045 0.161
40,000 | 1.412 0.254
60,000 | 0.963 0.253
80,000 | 1.043 0.344
100,000 | 1.264 0.522

144

Table 5.17: Efficiencies of different MORSE codes relative to those of INVER,
for Shell 3 of Problem I.

Sample | Relative Efficiency
size | DISCS | WGHTS

20,000 | 1.080 | 0.113
40,000 | 1.011 | 0.141
60,000 | 1.060 | 0.121
80,000 | 1.152 | 0.192
100,000 | 1.102 | 0.208

Table 5.18: Efficiencies of different MORSE codes relative to those of INVER,
for about 5 % FSD of Problem 1.

Shell | Relative Efficiency
DISCS | WGHTS
Shell 1 | 0.671 0.452
Shell 2 | 5.744 0.071
Shell 3 | 1.080 0.0637

sampling method did not compensate for the increase in its sample variances. How-
ever, if an event-based vectorization is implemented for the entire MORSE code, one -
may expect that weighted sampling will result in higher efficiency than the inverse
method, since the vectorization speedup of the weighted sampling code (shown in
Table 5.14) is about 9.1.

The relative efficiencies shown in Tables 5.15 to 5.17 are calculated based on a
given sample size. In some applications, one may desire an answer with a given
acceptable value of FSD. For FSD of about 5 %, the efficiencies of solutions obtained
by DISCS and WGHTS relative to those of INVER are summarized in Table 5.18. For
Shells 1, 2 and 3, the relative efficiencies of DISCS are not constant. This indicates
that the processing time as well as the sample variances of both INVER and DISCS
do not have the same pattern. The relative efficiency of WGHTS however decreases

as the shell’s radius increases. The relative efficiencies for a given sample size also

145

decrease with increasing radius in WGHTS.

5.7.6 Remarks

This section examined the performance of MORSE codes incorporating different sam-
pling methods for solving a simple problem of a point source in air. The statistical
results, processing time, speedups and efficiencies of three sampling methods were
discussed. It was found that weighted sampling results in unbiased solutions with
the largest fractional standard deviations, and requires the least processing time.
The MORSE code incorporating weighted sampling is three times faster than that
incorporating the inverse method.

Two types of efficiencies have been discussed. The first type is obtained according
to a given sample size, while the second is based on a given percentage of fra,c;
tional standard deviation. Most of the relative efficiencies results from the weighted
sampling codes aré less than one, which indicate that their scalar speedups did not
compensate for the increase in .sa,mple variances of their solutions.

In Problem I, a boundary crossing estimator haé been used, and the intervening
medium is air. The problem discussed in the next section has different physical

characteristics, and a different type of estimator is employed.

5.8 Problem I1

The geometry for this problem is depicted in Figure 5.3. A fast neutron beam is
directed towards the test section, which is water in the form of a cylindrical body.
The water density is 0.25 g/em®. The test section is surrounded by air and artificial
external void, respectively. The air density is 1.29 g/I{. The transport of neutrons is
terminated when the neutrons reach exterﬁal void. Two point detectors are located
perpendicular to both the neutron beam and the axis of the cylindrical test section;

they are in the air medium. It should be noted that the water is not contained in a

146

pipe, since the objective is to analyze the effect of water on the sampling methods.
Water contains hydrogen which has some peculiar probability table structure, as
explained in Section 5.4.2.

A neutron cross section library consisting of 33 energy groups with five scattering
angles were used in the MORSE simulations. The scattering probability matrices for
air and water media are shown in Tables 5.19 and 5.20, respectively. The size of these
matrices is 33 by 33, and they are upper right triangular matrices in which the ele-
ments in each row are introduced starting from the main diagonal. The presentation
of these matrices however is not in the form of 33 rows by 33 columns; the elements
of each row start from the first column, in order to compress the storage space. Each
row indicates that the first probability is for the probability of transition in the same
energy group, while the subsequent probabilities are for the probabilities of scattering
to the lower energy groups. Up-scattering after a collision is not permitted in this
case.

The transport medium air is assumed to consist of c;xygen and nitrogen, while
the transport medium water consists of hydrogen and oxygen. The mass numbers of
hydrogen, nitrogen and oxygen are 1, 14 é,nd 16, respectively. Since the mass number
of air is higher than that of water, the energy interval of a neutron corresponding to
a single collision in the air is narrower than that in the water, according to Equa-
tion 5.11. Coﬁsequently, each row of the air scattering probability matrix indicates
that only the ﬁrst two energy groups have high probabilities, while the rest probabil-
ities are low. In the scattering probability matrix of water, on the other hand, the

energy groups having high probabilities are more than two.

147

NEUTRON DETECTOR 1
BEAM

RARAARRRAR)

DETECTOR 2

EXTERNAL VOID

Figure 5.3: An illustration of MORSE Problem II.

148

11 Woqo1 10} Ire Jo xuyewr Aypiqeqord Surie)yess o] :61°G qel,

pna't | €5
VLD 0706 | oo
0000 9IgT" ¥RO® | 1f
0000° 0000 TYETT 9c98 | of
0N0D” 0000° ZZITT 8188 | 62
0000° 00007 GEELT 698 | 82
0000° 0000 6Z8T TLIS | L2
0000 00NOT 688LT ITIS | 92
000" 00000 OPSTT 0918 | 92
0000° 0DOOT BSBTT THIR | bE
0000° 0000° €CBI° LPTR | £%
. 0000° 00007 6%LZ IGeL | 22
0000° 00000 ¥SLZT oL | 1T
0000° 000D ¥RrE 9TZL | OF
000" 0D0DT 6289 1Z9F | 61
000" O800° 0IEST 010K | BT
000" 6200° 0261 2908 | L1 dnoan
000" 00000 O0BiC 00ZY | 91
Q000" 000" 1¥8T" 6SPE | 91 ASieuy
0000 €000° SRI1Z GI8L | BT
0000° 0000' 064F 0128 | £1 PO
0000° 0DOD® 16TF° 6089 | ¥
0000" 0000° EZ28 LLZOT | IT
0000° 0000° 609" €OEP | OT
0000 0OFD° 8RIY OISS | 6
DONO' 0000° 000OT 0000 Q600" 0000° 0000 0000 00000 TO0OT 80000 LOODT S000T 0O00T Q000" 690y 169 | 8
0000 0000° 0000° ©000° DO0DT 000D 0000 TODOT ZT100° LZOOT QOO0 6000° §Z00° LIDOT 000" NERP TAWS | 2
0000° 0000 0000 @000 TO0D TODOT T000C BOOO° PZOOT POOQT ZB00T GROOT 0000° SS00° 6Z0O° LZBP BIEF | 9
G000 0D00° 0DDOT 000D 00D £O00° BE0D° SOTO° 61I0° ZTIOC S600° lBIOT BLTOT 9400 ZG¥0' 998e 000K | 9
GIKKY OO0 0000 Z000 000" BZOKT Y9007 9S00° LAT0" GOZOT GETOT DSR0° 09C0° BLI0T 60E0° VERET BLVET | ¥
oou0r 0000 ££00° ¥I00T §COD° TIIGT £L00°0 6600° £S10° L8107 STROT 6E450° TTRD' VRPIOT 9ZE0° BZBZT SPO¥) £
0000° €000° S00G° 8S00° £600° BSODT TR00° OPI0C €RYOT S0OPODT T090T L0SO° PZSOT 6OED’ £600° 2908 TRSE | I
9000° E£100° A80Q° ¢OID° 22000 OIVQ ISTO" 6RI0" ZOEN ¥OPO° 9190 68RO PSSO’ 21G20° 9880° 1981 sL68°] I

dnoxsy ARieur] mey

149

‘[WalqoLg 10} 1oyem Jo xuryeur Lyfiqeqord Butiagyeos s, :03°¢ 2192,

o'l | £t
AN A G A
£1Z 9L 1v | 1B
80" GEUT LiET OT¥ | OF
Sozot Spn ZepT 1vE 89 | 62
#00° £I10° SE€D° 960" ¥RET 69T | 82
200" 8000 2107 ¥EDT QET WP IRE | 12
000 Zn0t 900" 9100 200" LIZT ¥8LT 1PE | 92
00" 000 f000 800 G0 ROTT TOTT ¥SET YRET) 6T
00 o 170 7E R T Y (N 17 M VX M £+ R 41 Pt | ¥e
000" 1000 TOOT OO £20° SEQT 9L0° 19T EBRET IVET | EF
000 1000 v0O° ZI0° 6100 OWDT §BO° 6LTC TOM 65E | T
1007 00 1000 170" PEOT TS0T 60T 08T SOET 0827 | 12
onnT 000t 000 100 ROOT 00T G107 AEDT 9907 61T TATT SOET 19T | B2
oooT oown {087 EDDT G000 0100 1200 SO be0 OTLT TG6TT TUR' ESE° | 6L
cop: 1000 ZOOT wDDT 8000 SI0° SE0T €200 060 BPET PFET 92%° €S1° | Bl dnoxgy
g00- 100¢ 2000 S00° OIOr TE0r SRO0T 4900 T6O. QSTT BOUT LSTT SR | AT
W00 1000 €00° 900° ZI0T SI0° 1£0° 0SO° €80T - 090" L.D° ZEFT 0Z% | o1 Adreuy
(70O 1101 SO 101 DA 1110 M #1470 M 1SN €111 MR 1 11 M 14T M) CHS *) £ GO N) M 1+ RN 34 At F AR 1 S 1 i
G600 Q00 000° Q00" 000" 100" 100" E00° VOO SO0 600 G107 EROT PIOT 6907 §S0° G1€T 6EV | BI PO
000" 000 O00D° 000° 000T 1007 100" E£00° ROO° 900" OID L00° 600° OFD' LEDX ETT 6EF GEE | €F
gooT 000 OO GOO° 000 I0DT Z0O ZOOT ROO' 9000 YOOT 900" 8EO ZIOT GEZTT 0% S1T WAl | @
on0: Do enot 000° 1000 T0Qr #00° £00° S00T ¥OOT SO0 £20° 10T SOUT OLTT BITT 6987 LT | T
oo’ 0000 Q007 T00° 1000 20D £00° WOO© £OO° POOC 6T0T SI0T 8BOT OFPTT 86D ZETT OIET &80 { O1
¢onr 0000 TOUT TOOT 1o TOOT RODT EOD° EOOT ATDT £TO7 9L @ITT S8D° SITT GSTT GGTT 661T | 6
000" 000" 1000 TOOT 1007 £00° 2000 2000 O10° 800 9¥D° £L07 180" 890 T60° 6L0°T BEET 528 | 8
ong” 0T ToOY T00° ZTOOT RODT 007 1000 G000 ££6° £90° LEO7 0%0° L90 1G0T OFTT ®ITT 9627 | A
000 IDGT TODT 10D 100 18D 9000 S60° 8D WWOT IHB TKOT 907 AROT 1607 £TIT wOET 0T 9
000" I0AT 100 T0D° R0OT SO0T WOOT 930" SkDT OROT SEDT B8RO V0T 6L0° LOTT OSTT ST AT | &
1000 1000 T00° 1000 #00T £00C SEOC ZEOT BEOT €RO° BSOT LPOT QLOT LL0° BPOTT 060" EET Q6T | ¥
000 0000 TO0O00 €000 200" PIQT ZZOT 9E0° IO TEODT 6207 6907 98D° S60° 6907 880" ¥ITT LT | €
000 000" TOOT E00T 6000 9100 TT00 9100 q20T £TO @G0T LS00 L0 TEOT O IS0° 9907 188 81T z
000 0T T 6007 KVTOT OF0° £10° TT0T ¥TOT O OTSHT FO0T DADT £S0° €60 0607 OFDT BEIT TETT 1

dnoan Adrouyg mopN

150

Angular probability tables corresponding to the 33 energy groups are required
to sample sca.ttéring angles, since the characteristic of scattering in this problem is
anisotropic. Tables 5.21 and 5.22 shﬁw some angular scattering probabilty tables for
air a_nd water, respectively. Each table (row) gives the probabilities of five scattering

angles.

‘Table 5.21: Partial angular scattering probability tables of air for Problem II.

Group-to-Group Probabilities
8—8 0.3458 | 0.3253 | 0.1586 | 0.1300 | 0.0402
8—9 0.3814 | 0.2689 | 0.2207 | 0.0987 | 0.0303
99 0.3441 | 0.2681 | 0.2304 | 0.1240 | 0.0335
9—10 0.3181 | 0.2987 | 0.1730 | 0.1678 | 0.0424
10—10 6.3899 | 0.3162 | 0.2230 | 0.0693 | 0.0016
1011 0.3214 | 0.2768 { 0.1933 | 0.1642 | 0.0442

Table 5.22: Partial angular scattering probability tables of water for Prob-

lem IL.
Group-to-Group Probabilities
88 0.4969 ; 0.2811 | 0.1059 | 0.0866 | 0.0296
8—9 0.5007 | 0.1787 1 0.1370 | 0.0958 | 0.0879
9—9 0.6050 1 0.1850 } 0.1322 | 0.0610 | 0.0168
9—10 0.5753 1 0.1449 | 0.1106 | 0.1082 | 0.0611
10-+10 0.5174 | 0.2564 | 0.1691 | 0.0546 | 0.0024
10—11 0.5077 1 0.1582 | 0.1210} 0.1207 | 0.0924

151

5.8.1 Fluence Estimates

The inverse, Brown’s and the weighted sampling methods are incorporated into the
MORSE code for solving this problem. The notations for the computer codes corre-

sponding to these sampling methods are the same as the notations used in Problem I,

which are INVER, DISCS and WGHTS, respectively.

Table 5.23: The response of Detector 1 for Problem II.

Sample INVER DISCS WGHTS
size Response(FSD) Response(FSD) Response(FSD)
20,000 | 9.4123E-5(0.01798) | 8.9986E-5(0.02010) | 9.5923E-5(0.23082)
+0.436E-5* +0.466E-5 +5.704E-5
40,000 | 9.3477E-5(0.01304) | 8.9303E-5(0.01315) | 9.4677E-5(0.12472)
+0.314E-5 +0.303E-5 1£3.042E-5
60,000 | 9.4070E-5(0.01067) | 8.9624E-5(0.01086) | 1.0998B-4(0.15601)
+0.259E-5 +0.251E-5 .+4.110E-5
80,000 | 9.4417E-5(0.00921) | 9.1041E-5(0.00993) | 9.5690E-5(0.12650)
+0.224E-5 +0.233E-5 £3.118E-5
100,000 | 9.3946E-5(0.00827) | 5.0818E-5(0.00869) | 9.1419E-5{0.10667)
+0.200E-5 +0.202E-5 +2.,512E-5

* statistical variability corresponds to a 99 % confidence interval.

In this problem, the next event estimator [17] is used to evaluate the response of
point detectors. From each collision point, this estimator scores the probability of
the next event being at the detector site, but the particle need rot necessarily reach
the detector site. The detector response here is all collided (no uncollided response),
since source particles cannot directly reach the detector. This type of estimator is
useful for this problem, since the probability of neutrons reaching the point detector
is very low. Further, from each collision point, there is only one definite probability
for the next collision event being at the detector site, since the detector 1s represented
by a point.

The estimated values for the two detector responses obtained using the three

sampling methods are shown in Tables 5.23 and 5.24. In these tables, the fractional

152

standard deviations and the 99 % confidence intervals of solutions are also reported
together with the .estimated detector response. Five sample sizes with an increasing
value are utilized in order to analyze the convergence of the estimated reﬁponse.
Table 5.23 shows that the estimated response of the first detector obtained using
the three sampling methods converges, as indicated by the decrease in FSDs as the
sample size increases, except for the FSD of WGHTS with 60,000 samples. With
the increase in sample size from 40,000 to 60,000, the estimated response of WGHTS
Increases with the magnitude of 0.76E-5. This difference however is still less than
the statistical variability, which is equal to 3.04E-5. The discrepancy therefore is still
within the confidence interval, which means that the estimated response of WGHTS

is still converging.

Table 5.24: The response of Detector 2 for Problem II.

Sample INVER DISCS WGHTS

size Response{FSD) Response(FSD) | Response(FSD)

20,000 | 9.4501E-5(0.01819) | 9.1574E-5(0.01947) | 9.4539E-5(0.14149)
' £0.443E-5* +0.459E-5 +3.446E-5

40,000 | 9.3794E-5(0.01249) | 9.2050E-5(0.01369) | 1.1238E-4(0.18857)
+0.302E-5 +0.328E-5 +5.459E-5

60,000 | 9.4387E-5(0.01062) | 9.2299E-5(0.01090) | 9.9699E-5{0.14321)
+0.258E-5 +0.259E-5 +3.678E-5

80,000 | 9.3646E-5(0.00916) | 9.1331E-5(0.00937) | 9.8497E-5(0.11364)
| £0.22TE5 +0.220E-5 +2.883E-5

100,000 | 9.3601E-5(0.00831) { 9.1299E-5(0.00829) { 9.7451E-5{0.05426)
+0.200E-5 +0.195E-5 1.2.366E-5

* statistical variability corresponds to a 99 % confidence interval.

The estimated response of INVER converges to the highest value, while that of
DISCS converges to the lowest value. However, the confidence intervals obtained
using the three sampling methods still overlap each other. This indicates that the
solutions of DISCS and WGHTS are unbiased.

The estimated values of the second detector response are summarized in Ta-

ble 5.24. For the three sampling methods, their estimates converge as indicated

153

by the decrease in FSDs as the sample size increases, except for the FSD of WGHTS
| with 40,000 samples. As the sample size increases to 40,000, the estimated response
increases with the magnitude of 1.784E-5, which is less than the statistical variability
(3.446E-5). Since the discrepancy is still within the confidence interval, the estimated
response of WGHTS converges to the expected solution.

Since the locations of the two detectors are symmetrical, one would expect that the
estimated values for both detector response are close to each other. Tables 5.23 and 5.24
- show that for 100,000 samples the differences between solutions of Detectors 1 and 2
obtained using INVER, DISCS and WGHTS are 0.0345E-5, 0.0981E-5, 0.6032E-5,
respectively. These differences however are still less than their statistical variability
as indicated by the 99 % confidence intervals. Thus, the estimated values for both
detector response converge to the expected solution.

In both detectors as shown in Tables 5.23 and 5.24, the éénvergence of estimated
response obtained using INVER and DISCS is faster thaﬁ that of WGHTS. This
can be explained by the fact that the fractional standard deviations of INVER and
DISCS to be close to each other, while WGHTS results in about 7 times larger
value. The large FSD of the estimated résponse obtained using WGHTS can be
explained by the fact that the adjustment factors utilized by the weighted. sampling
method vary significantly. Subsequently, the statistical weights of collided neutrons
described by Equation‘(5.4) are affected. In the MORSE codes incorporating the
inverse and Brown’s sampling methods, the weights of neutrons are less or equal to
one. On the other hand, the weights of neutrons can be larger than unity in WGHTS.
Consequently, larger differences can occur more often since the magnitude interval of

particle’s weights is wider. Therefore, their values have a larger variability.

154

5.8.2 Processing Time and Speedups

Table 5.25 reports the scalar processing time of MORSE codes employing different
sampling methods. The increase in the processing time required by the three sampling
methods is linearly proportional with the increase in the sample size. That is, as the
sample size increases by a factor of two, the processing time also increases By a fa.ctér

about two.

Table 5.25: Scalar processing time of MORSE simulation for Problem II.

Sample | Processing time in seconds
size | INVER | DISCS | WGHTS

20,000 | 19.454 | 19.986 13.793
40,000 | 39.397 | 39.595 28.021
60,000 | 59.013; 60.066 42.692
80,600 | 78.973| 80.899 55.019
100,000 | 97.457 | 100,285 69.817

As discussed in Problem I, the sampling methods affect the number of collisions
in the MORSE simulations, which in turn affects the processing time. Similarly, the
relationship between the processing time and the number of collisions is examined
here. Table 5.25 shows that WGHTS requires the least processing time, followed by
INVER and DISCS. The processing time reduction in WGHTS is affected by the
reduction in the number of collisions. The DICSS code requires more pfocessing time
than INVER, even though it involves fewer collisions. This is due to the following
reason. As discussed in Subsection 3.2.2, the processing time of the inverse method
depends on the length of a probability table, while Brown’s method requires a constant
time regardless the length of a probability table. The inverse method performs well
here, since it requires only few comparisons to construct a sample. The reason is that
only the first few mass points in the probability table have high probabilities, while the
rest mass points have low probabilities. Therefore, the COLISN routine incorporating

Brown’s method requires more processing time than that implementing the inverse

155

method.

Table 5.26: Number_ of collisions in MORSE simulation for Problem II.

Sample Number of collisions
size | INVER | DISCS | WGHTTS

20,000 | 22,060 | 21,130 | 14,068
40,000 | 44,093 | 42,538 | 28,188
60,000 | 65,852 | 63,874 | 42,135
80,000 | 87,740 | 85,187 55,966
100,000 | 109,040 | 106,307 | 69,804

Table 5.26 reports the number of collisions occured during Monte Carlo simula-
Itions of Problem II. One can notice that there is a linear relationship between the
number of collisions and the sample size. This is indicated by the fact that an increase
in sample size by a factor of two produces an increase in the number of collisions by
a factor about two. |

The DISCS produces about 3 % fewer number of collisions than the INVER’s
collisions. However, WGHTS produces only about 64 % of the INVER’s collisions.
The reason is that the random walks in MORSE with weighted sampling can reach
lower energy groups with higher probabilities than those employing the other sampling
methods; since the original scattering probability tables (shown in Tables 5.19 and 5.20)
have high pr’ol;a.bilities only for the first few groups and low probabilities for the rest
of the lower gi‘oups. This leads to earlier termination of random walks in WGHTS
as low energy particles reach the energy cut-off. The weighted sampling method

produces therefore fewer collisions.

The scalar speedups of different MORSE codes is shown in Table 5.27. These
speedups are calculated according to the scalar processing time of DISCS and WGHTS
relative to that of INVER. For each sampling method, the speedups for different
sample sizes is constant. This is ca.ﬁsed by the linear relationship between the sample

size and the processing time required by each sampling method. One can notice that

156

Table 5.27: Speedups of different scalar MORSE codes relative to scalar IN-
VER for Problem II.

Sample Speedups

size | DISCS | WGHTS
20,000 | 0.973 1.410
40,000 | 0.995 1.406
60,000 | 0.982 1.382
80,000 | 0.976 1.435
100,000 | 0.972 1.396

Brown’s method is about 2 % slower than the inverse method, while the weighted
sampling method is about 40 % faster. This fact further emphasizes the advantage

of using the weighted sampling method to speed up Monte Carlo computations.

5.8.3 Local Speedups

In this subsection, the processing time performance of different sampling methods
incorporated into subroutine COLISN is examined. The scalar processing time of
Brown’s and the weighted sampling methods is compared to that of the inverse -
method, with the objective to obtain the local speedups. These speedups provide
a direct measure of the speeding achieved by the sampling methods, without the

additional overhéad of other routines in the MORSE code.

Table 5.28: Scalar processing time of different sampling methods in COLISN
routine for Problem II.

Sample | Processing time in milliseconds
size| INVER | DISCS | WGHTS
20,000 { 1718.969 | 1715.083 | 1612.504
40,000 { 3436.748 | 3423.066 | 3224.210
60,000 | 5158.662 | 5136.702 | 4842.191
80,000 | 6877.693 | 6846.168 | 6447.755
100,000 | 8598.855 | 8558.972 [8068.646

157

“Table 5.28 reports the scalar processing time of the three sampling methods. It can
be seen that the processing time for each sampling method is linearly proportional
to the sample size. For all sample sizes, the least processing time is required by
WGHTS, followed by DISCS and INVER. One can notice that this order is different
from that obtained in Problem I, where DISCS required larger processing time than
that of INVER. This can be explained by the fact that the probability tables used in
this problem are longer than those of Problem I. Consequently, the inverse sampling
method requires more comparisons to locate an outgoing energy group of a collided
particle, and therefore it requires ldrger processing time. _

On average, the processing time of scalar DISCS and WGHTS is about 99.7 % and
93.8 % of that of scalar INVER, respectively. The processing time of WGHTS here is
slightly less than that of INVER, while Table 5.27 shows that the global speedup of
WGHTS relative to INVER is three. Thus, one can concludé.tha.t the global speedup
achieved by the MORSE code incorporating the weighted sampling method is mostly

affected by the reduction in the number of collisions.

5.8.4 Local Vectorization Speedups

This subsection examines the local vectorization speedups of different sampling meth-
ods in subroutine COLISN. As discussed in Subsection 5.7.4, this analysis provides
indications of the potential vectorization speedups if the entire MORSE code is vec-
torized.

The processing time of vector INVER, DISCS and WGHTS is given in Table 5.29.
The processing time for all sampling methods is linearly proportional to the sample
size. For all sample sizes, the least processing time is for WGHTS, followed by DISCS
and INVER. This order remains the same as that in the scalar processing. However,
the processing time of vector DISCS and WGHTS is only 37 % and 32 %, respectively.
This indicates that the vectorizability of Brown’s and the weighted sampling methods
is higher than that of the inverse method.

158

Table 5.29: Vector processing time of different sampling methods in COLISN
routine for Problem II.

Sample | Processing time in milliseconds
size | INVER | DISCS | WGHTS
20,000 | 522.803 | 192.452 165.880
40,000 | 1045.616 | 384.045 332.751
60,000 | 1569.946 | 577.747 501.057
80,000 | 2093.273 | 768.228 663.265
100,000 | 2615.586 | 960.814 833.938

Table 5.30 summarizes the speedups of different vector codes relative to scalar
INVER. As the sample size increases these speedups are about constant, due to the
linear relationship between the sample size and the scaiar as well as vector processing
time. In this problem, the speedups of DISCS and WGHTS are slightly higher than
those of MORSE Problem I, since the scalar INVER requires larger processing time
due to the longer probability tables utilized.

Table 5.30: Speedups of the vectorized sampling methods relative to the scalar
inverse code for Problem II.

| Sample Speedups _
size | INVER | DISCS | WGHTS
20,000 | 3.288 | -8.932 9.721
40,000 | 3.287 | 8.949 9.690
60,000 | 3.286 | 8.929 9.664
80,000 | 3.286 | 8.953 9.721
100,000 | 3.288 | 8.950 9.675

-;
]
;
;
's
§
§
H
,
i
i
i
a

] 159

:
:
P
1
i
)
’
i
:
!
i
!

5.8.5 Efficiency

Tables 5.31 and 5.32 show the efficiencies of DISCS and WGHTS relative to INVER
for Detectors 1 and 2, respectively. For both detectors, the efficiencies of DISCS
are close to those of INVER, while the efficiencies of WGHTS are much smaller. |
Table 5.31 shows that the efficiency of the weighted sampling relative to that of the
inverse method is about 0.9 %. For detector 2, shown in Table 5.32, the efficiency
of WGHTS relative to that of INVER is about 1.0 %. The weighted sampling code
results in low efficiencies, since its scalar speedups cannot compensate for the increase

in the sample variance of its solution.

~Table 5.31: Efficiencies of different MORSE codes relative to those of INVER,

for Detector 1 of Problem II.

Sample | Relative Efficiency
size | DISCS | WGH'TS
20,000 | 0.852 0.008
40,000 | 1.072 0.015
60,000 | 1.045 0.005
80,000 | 0.903 0.007
100,000 | 0.952 0.009

Table 5.32: Efficiencies of different MORSE codes relative to those of INVER,

~ for Detector 2 of Problem II.

Sample | Relative Efficiency
size | DISCS | WGHTS
20,000 | 0.905 0.023
40,000 | 0.843 0.004
60,000 | 0.975 0.007
80,000 | 0.981 0.008
100,000 | 1.026 0.010

160

Table 5.33: Efficiencies of different MORSE codes relative to those of INVER,
for about 5 % FSD of Problem II.

Detector Relative Efficiency
DISCS WGHTS
Detector 1 | 0.845 *
Detector 2 | 0.901 *

* the relative efficiencies are not available.

Table 5.33 reports the efficiencies of solutions obtained by DISCS relative to those
of INVER, for about 5 % FSD. The relative efficiencies of WGHTS are not available,
since the FSDs of WGHTS have not reached 5 % until 100,000 samples. This indicates
that the relative efficiencies of WGHTS are very low.

5.8.6 Remarks

The performance of MORSE codes incorporating different sampling methods for esti-
mating the responses of two point detectors has been examined in this section. It was
found that the estimated detector responses obtained using the weighted sampling are
unbiased, but have larger fractional standard deviations than those of the inverse and |
Brown’s methods. The MORSE code incorporating the weighted sampling resulted
in very low relative efficiencies, since its scalar speedups did not compensate for the
increase in f.he sample variances of the solutions.

On average, the weighted sampling in this problem entailed higher scalar speedups
and lower relative efficiencies than those of Problem I. The former is caused by the fact
that scattering occured mostly in water, while in Problem [the scattering occured in
air. The reason for the latter is that the next event estimator used in this problem is
more sensitive to large magnitudes of statistical weights than the boundary crossing

estimator used in Problem 1.

161

e TR

5.9 Problem III

The physical characteristics of this problem are the same as those of Problem II,
except for the water .density. The water density is increased here from 0.25 g/em3

to 1.00 g/cm®. The objective here is to examine the effect of the density of a trans-
port medium on the performance of MORSE codes incorporating different sampling
methods. Increasing the density of a transport medium increases the number of colli-
sions in a simulation. This ma.y'affect, in particular, the performance of the weighted
sampling method, which was shown in the previous two problems to produce results,

that are affected by the number of collisions.

5.9.1 Fluénce_ Estimates

Tables 5.34 and 5.35 show the estimated response for Detect.(.)rs 1 and 2, respectively,
together with the fractional standard deviations and the 99 % confidence intervals.
In Table 5.34, as the sourse particles (sample size) incréa.sed, the estimated values
of detector response obtained using the three sampling methods converge to the ex-
pected solution. This is indicated by the fact that the fractional standard deviation of |
each sampling method decreases as the sample size increases, except for DISCS with
40,000 samples. As the sample size increased to 40,000, the estimated value increases
0.989E-4. This increment however is less than the statistical variability (0.396E-4),
hence the estimated response of DISCS also converges to the solution. The estimated
values of detector responses obtained by INVER and DISCS converge to almost the
same value, while that of WGHTS converges to a smaller value. However, their con-
fidence intervals still overlap each other. This indicates that the estirﬁa,ted responses
of DISCS and WGHTS are unbiased. |
Table 5.35 shows the estimated response for Detector 2 obtained using three dif-

ferent sampling methods converges, as indicated by the decrease in their FSDs as the

162

sample size increased, except for INVER with 100,000 samples. The increment of IN- |
VER’s estimate is 0.104E-4, when the sample size increased from 80,000 to 100,000.
This increment is less than the statistical variability, which is equal to 0.284E-4, Thus,

the INVER’s estimate also converges to the expected solution.

The estimated response of INVER converges to the largest value, while that of
WGHTS converges to the lowest value. The confidence intervals of WGHTS, however,
overlap those of INVER, except for a sample size equals 100,000. For a sample size of
100,000, the difference between the intervals of INVER and WGHTS .is 0.03E-4. As
the case of Problem I, WGHTS results in lower values of estimated detector response
due to the utilization of uniform distributions for determining the outgoing energy
groups and scattering angles. The random walks in WGHTS therefore tend to reach
lower energy groups faster than in the other two sampiing_methods. This leads to
earlier termination of the random walks. The accumulated .ﬁuence is therefore less

than it should be. Thus, the estimated response has a lower value.

163

Table 5.34: The response of Detector 1 for Problem III.

Sample INVER DISCS WGHTS
size Response(FSD) Response(FSD) Response(FSD)
20,000 | 2.9084E-04{06.03503) | 2.8084E-04(0.02370) | 3.1197E-04(0.23935)
+0.262E-4* 10.172E-4 +1.923E-4
40,000 | 2.9783E-04(0.02320) | 3.0970E-04(0.04964) { 2.6646E-04(0.14501)
+0.178E-4 +0.356E-4 +0.995E-4
60,000 | 2.9630E-04(0.01865) | 3.0649E-04(0.03483) | 2.5932E-04(0.10446)
+0.142E-4 +0.275E-4 +0.698E-4
80,000 | 2.9853E-04(0.01594) | 3.0534E-04(0.02752) | 2.6476E-04(0.08875)
' +0.123E-4 +0.217E-4 1+0.605E-4
100,000 | 2.9730E-04(0.01390) | 2.9957E-04(0.02284) | 2.5323E-04(0.07496)
+0.107E-4 +0.176E-4 +0.489E-4

* statistical variability corresponds to a 99 % confidence interval.

Table 5.35: The response of Detector 2 for Problem II1.

WGHTS

Sample INVER DISCS
size Response(FSD) Response(FSD) Response(FSD)
20,000 | 2.9208E-04(0.02657) | 2.8447E-04(0.02820) | 3.0364E-04(0.15015)
+0.200E-4* +0.207E-4 +1.174E-4
40,000 | 2.9342E-04(0.02086) | 2.8881E-04(0.01864) | 2.4555E-04(0.09678)
+0.158E-4 10.139E-4 +0.612E-4
60,000 | 2.9011E-04(0.01607) | 2.9009E-04(0.01598) | 2.4281E-04(0.07404)
10.120E-4 +0.119E-4 +0.463E-4
80,000 | 2.92953E-04(0.01385) | 2.8887K.04(0.01338) | 2.4427F-04{0.06348)
- +0.105E-4 +0.100E-4 +0.399E-4
100,000 | 3.0329E-04(0.03637) | 2.8855E-04(0.01202) | 2.3885E-04(0.05381)
+0.284E-4 +0.080E-4 +0.331E-4

* statistical variability corresponds to a 99 % confidence interval.

164

5.9.2 Processing Time and Speedups

The processing time required by the scalar MORSE codes incorporating different
sampling methods is shown in Table 5.36. One can notice that for each sampling
method the scalar processing time is proportional to the sample size. That is, the

processing time is about doubled as the sample size increases by a factor of two.

Table 5.36: Scalar processing time of MORSE simulation for Problem III.

Sample | Processing time in seconds
size | INVER [DISCS | WGHTS
20,000] 97.623 | 101.046 32.531
- 40,000 | 198.854 | 202.056 | 64.354
60,000 | 295.307 | 303.351 97.408
80,000 | 394.268 | 406.188 | 126.900
100,000 | 495.063 | 510.348 [160.957

The DISCS code requires more processing time than INVER, even though it sim-

ulates fewer collisions. The reason is that Brown’s sampling method in the COLISN

routine requires more processing time than the inverse method. The WGHTS code
requires much less processing time than INVER, since it simulates much fewer col-
lisions. Thus, similar to the processing time of scalar MORSE codes in Problem 1I,

the processing time is affected by the number of collisions in the simulation.

Table 5.37: Number of collisions in MORSE simulation for Problem I111.

Sample Number of collisions
size { INVER | DISCS | WGHTS
20,000 | 188,438 | 173,091 47,121 |
40,000 | 377,499 | 347,880 { 94,478
60,000 | 570,484 | 521,653 { 141,905
80,000 | 759,479 | 694,390 { 189,367
100,000 | 949,270 | 866,103 { 236,425

Table 5.37 reports the number of collisions occured in the simulations of MORSE

165

codes incorporating different sampling methods. It is shown that WGHTS produces
the least number of collisions, followed by DISCS and INVER. One can notice that
this order remains the same as in Problem II. This table shows that the number of
collisions produced by WGHTS is only about 25 % of the INVER’s collisions, while
that of DISCS is about 91 %. The percentage of WGHTS here is much smaller than
that in Problem II. This can be explained by the fact that the number of collisions
of INVER and DISCS increase by factors of 8.6 and 8.2, respectively, while that of
WGHTS increases by a factor of 3.4 only, as the water density increased by a factor

of four.

Table 5.38: Speedups of different scalar MORSE codes relative to scalar IN-
VER for Problem III. ‘

Sample Speedups

size | DISCS | WGHTS
20,000 | 0.966 3.001
40,000 | 0.984 3.090
60,000 | 0.973 3.032
80,000 | 0.971 3.107
100,000 | 0.970 3.076

The scalar speedups of different MORSE codes obtained relative to INVER are
summarized in Table 5.38. For different sample sizes, the speedup is about constant
due to the linear relationship between the processing time and the sarﬁple size. By
comparing these speedups and those in Problem II, one can notice that the speedups
of DISCS in these two problems are about the same, while the speedup of WGHTS
in this problem is 2.1 times larger than that of Problem I1. This can be explained by
the fact that, as the water density increased, the increase i the Inumber of collisions
of WGHTS is less than that of INVER, as discussed in the preceding paragraph.

In this section, the local scalar and vectorization speedups for Problem I1I are not
examined, since it has the same results as those of Problem II. This is due to the fact

that the scattering probability tables used in this problem are the same as those in

166

Problem II.

5.9.3 Efficiency

The efficiencies of DISCS and WGHTS relative to those of INVER for Detectors 1
and 2 are reported in Tables 5.39 and 5.40, respectively. For Detector 1, the relative
efficiencies of DISCS and WGHTS for different sample sizes are less than one, except
for DISCS with 20,000 samples. In general, the sample variances of DISCS and
WGHTS are larger than that of INVER. The discrepancy occurs for 20,000 samples,
where the sample variance of INVER is larger than that of DISCS.

The efficiencies of DISCS for Detector 2 are close to those of INVER, except for a
sample size of 100,000. Except for 100,000 samples, the relative efficiencies of DISCS
are about one, while those of WGHTS are less than one. As the sample size increases
from 80,000 to 100,000, the sample variance of INVER significantly increases, while
those of DISCS and WGHTS are about the same. In the calculation of a relative
efficiency, the sample variance of INVER is as the numerator. For 100,000 samples
therefore, the relative efficiencies of DISCS and WGHTS are higher than those of |
80,000 samples.

Table 5.39: Efficiencies of different MORSE codes relative to those of INVER,
+ for Detector 1 of Problem III.

Sample | Relative Efficiency
size | DISCS [WGHTS
20,000 | 2.264 0.056
40,000 { 0.199 0.099
60,000 | 0.261 0.126
80,000 | 0.311 0.127
100,000 | 0.354 0.146

The efficiencies for about 5 % FSD are shown in Table 5.41. For both detectors,
the relative efficiencies of DISCS are larger than one, while those of WGHTS are less

167

Table 5.40: Efficiencies of different MORSE codes relative to those of INVER,
for Detector 2 of Problem III.

Sample | Relative Efficiency
size | DISCS | WGHTS
20,000 | 0.904 0.087
40,000 | 1.272 0.205
60,000 [0.985 0.204
80,000 | 1.069 0.213
100,000 | 9.812 2.266

Table 5.41: Efficiencies of different MORSE codes relative to those of INVER,
for about 5 % FSD of Problem IIL

Detector | Relative Efficiency
DISCS | WGHTS
Detector 1 | 1.479 0.016
Detector 2 | 1.970 0.032

than one. The sample variances of DISCS are smaller than those of INVER, while
the sample variances of WGHTS are larger. The scalar speedup achieved by WGHTS

does not compensate, once more, for the increase in the sample variance.

5.9.4 Remarks

This section examined a similar problem to Problem II. In this problem, the transport
medium had a higher density. The effects of this higher density on the performance
of MORSE codes incorporating different sampling methods were examined. It was
found that the estimated response obtained using the weighted sampling converges to
a lower value than that of the inverse method, due to early termination of the random
walks in the simulations. The estimated values however are still unbiased since the
99 % confidence intervals overlap those of the inverse method.

The MOR.SE code incorporating the weighted sampling is three times faster than

168

that incorporating the inverse method. This further emphasizes the attractiveness
of the weighted sampling method for vector processing. However, the efficiencies are

"smaller than those of the other methods, since its sample variances are lafger.

5.10 Conclusions

Three sampling methods were incorporated into MORSE codes; namely, the inverse
method, Brown’s method and the weighted sampling method. The inverse method
required extra time and storage to prepare cumulative probability tables. Brown’s
method required a complicated procedure and a large amount of memory to set up
the probability tables in MORSE. The weighted sampling however did not require
preprocessing of scattering and angular scattering probability tables, since it utilizes
the original probability tables without any modifications. _

It was shown, numerically, that MORSE code incorporating the weighted sampling
method entails unbiased estimates. For shells with long .r'adii in Problem I, the esti-
mated fluence obtained using the weighted sampling converged to smaller values, due
to earlier termination of the random walks in the simulations. The estimated detector -
response in Problem III also converged to a smaller value for the same reason.

The incorporation of the weighted sampling method was found to speed up the
scalar computation of MORSE code by at most a factor of three. In its present state,
the MORSE codes did not take full advantages of the weighted sampling method since
oﬁly scalar processing was carried out. In order to show that the weighted sampling
can enhance the vectorizability of the COLISN routine, three sampling methods in-
corporated in this routine were vectorized. The speedup of the vectorized weighted
sampling code relative to the scalar inverse code was about 9.7. This means that one
can expect such high speedups when event-based vectorization is implemented for the
entire MORSE code.

Efficiencies were calculated based on the scalar processing time of the MORSE

169

codes. In the applications examined, the weighted sampling method resulted in lower
efficiencies than Brown’s or the inverse methods, since its scalar speedups could not
compensate for the increase in the fractional standard deviations of its solutions. One
can predict however, that the weighted sampling method will entail higher efliciencies
when the entire MORSE code is vectorized.

In this and previous chapters, the weighted sampling method utilized a uniform
distribution to speed up the construction of samples. This method often entailed
scalar and vector speedups. However, in this éhapter, the MORSE codes incorporat-
ing the weighted sampling method resulted in very low efficiencies due to the large
sample variances of its estimates. In the following chapter, efforts are directed to-
wards developing variants of the weighted sampling method which can increase the
efficiency by reducing sample variance, while maintaining the vectorizability of the

method.

170

Chapter 6

Variants of The Weighted
Sampling Method

6.1 Introduction

In the preceding chapters, the pefformance of the weighted sampling method was
exa,rninéd for a variety of problems. The weighted sampling method utilized discrete
uniform distributions to construct samples from probability tables, since discrete |
uniform random numbers could be generated relatively fast in scalar as well as vector
processing. This method was found to be successful to speed up the construction of
samples,I and to enhance the vectorizability of vector Monte Carlo cod;es. However,
this approach resulted in large sample variances in applications involving one and
two-dimensional probability tables. Therefore, for these cases, the efficiencies of the
weighted sampling method were very low. This chapter proposes four variants of the
weighted sampling method, which can be used to increase efﬁciéncy of the weighted
sampling method by reducing sample variances and by reducing the processing time
for constructing samples. An effort is also made towards enhancing the vectorizability
of these variants of the weighted sampling method.

The proposed four sampling methods are designated by the weighted sampling

171

with a stretched table (WSST), the wee'ghted. sampling with a nonuniform distribution |
(WSNU), the combination of the inverse and weighted sampling methods (INWS),
and the combination of the inverse method and the WSST method (INWSST). The
basic weighted sampling method used in the previous chapters is referred to here as
the direct weighted sampling method (WGHTS).

This chapter is organized as follows. Section 6.2 discusses WSST., The WSNU is
described in Section 6.3. This section also presents examples of WSNU employing two
different nonuniform distributions. In Section 6.5, the vectorization of the weighted
sampling variants is investigated. Section 6.6 reconsiders the problem involving a one-
dimensional table discussed in Chapters 3, and demonstrates that WSST and WSNU
‘can improve the performance of the direct weighted sampling. Sections 6.7 to 6.9
reexamine the three neutron transport problems, which were discussed in Chapter 5.

Finally, some conclusions of this chapter are given in the last section.

6.2 Weighted Sampling With a ‘Stretched Table
(WSST)

The WSST utilizes the direct weighted sampling method to sample from a probability
table which is stretched, so that the adjustment factors exhibit low variability. The
sample variance of an estimated quantity would be then expected to be reduced.

The generation table is constructed by dividing bins with associated large prob-
abilities such that the probabilities are close to uniform, while keeping the memory
requirements as low as possible. .

Table 6.1 is the same as Table 2.1. Tt is shown again to clarify the discussion.
Based on Table 6.1, the WSST generation table shown in Table 6.2 is constructed
by dividing the first four bins. Each of these bins is expanded into two bins, and
the corresponding probability is divided evenly. The length of this generation table

n) is equal to 9. Array w stores the new mass points, which are equal to z;p;n, for
q q iPs

172

Table 6.1: An example of a probability table.

Mass points (x) | 10 | 20 | 30 [40 | 50
Probabilities (p) | 0.40 | 0.20 | 0.30 | 0.08 | 0.02

Table 6.2: The generation table of the WSST.

x| 10 10 | 20 | 20 | 30 | 30 | 40 | 40 | 50
p|0.20]020)|0.10{0.10;0.15(0.15 [0.04 | 0.04 | 0.02
w|18.0| i8.0 180 18.0{40.5 (405144 (144 9.0

For this probability table, the direct weighted sampling method results in a sample
variance of 171.76, while the inverse method results in a sarﬁple variance of 118.56.
However, when Table 6.2 is used, the WSST reduces the sample variance to 114,14,
Thus, the WSST method can reduce the sample variance to a value closer to that of

the inverse method, while providing a high speedup which will be shown in Section 6.6.

6.3 Weighted Sampling With A Nonuniform Dis-
tribution (WSNU)

The WSNU is essentially a direct weighted sampling method, but it utilizes a discrete
nonuniform distribution. This distribution is to be constructed such that the sample
variance is reduced and the sampling process is speeded up. .

In order to reduce the sample variance, the probability mass function of the
nonuniform distribution should have a similar shape to that of the x;p; quan-
tity, for y = 1,2,.++,n, where z; and p; denote a mass point and the associated
probability in the probability table. The closer the shape the smaller sample variance
will be,

173

In WSNU, the time for constructing samples is minimized by employing a discrete
nonuniform distribution, which has a closed form mathematical expression. Hence,
the inverse function of the probability distribution function can be used to generate
discrete random numbers in the interval {1,n], which are subsequently used to select
mass points and the associated probabilities from the probability table. With this
procedure, WSNU does not involve any comparisons. Thus, some extra time is re-
quired to generate other discrete random numbers for selecting mass points and the
associated probabilities from the probability table. This extra time however will be
less than the time required by the inverse method for comparisons if the probability
table is relatively long.

In the implementation, the WSNU uses directly the original probability tables
without any alterations. Let us consider the construction of samples from Table 2.1 for
illustration of this method. For this example, WSNU employé a binomial distribution

with the probability mass function given as

aj(l “‘G)n_‘j lfj' € {Oala”'an}a .
pj = j (6.1)

0 : otherwise,

where
n n!

; = =) (6.2)
while a is the shape parameter, and n is the range parameter. It is found that by
employing a binomial distribution with n equals 5 and & equals 0.33, WSNU fesults
in sample variance of about 51.38. The scalar code of WSNU employing the binomial

distribution is described in Figure 6.1.

Subroutine RNBIN and function BINPR are taken from IMSL [46]. Subroutine
RNBIN(1,n,0.33,3) generates a binomial random number in the interval [1,n] with
shape parameter (.33, and stores it into variable j. Function BINPR(j,n,0.33) gives

the probability of the selected binomial random number. This probability is used as

174

do 10 i = 1,k
call RNBIN(1,n,0.33,j)
rv(i)=p(j)*x(j)/BINPR(j,n,0.33)
10 continue

Figure 6.1: Scalar code of WSNU employing a binomial distribution.

an adjustment factor, as shown in Figure 6.1.

C- construct the geometric probabilities
"do 10 j = 0,n-1
pgeo(j)=a*(1.0-a)*xj
10 continue
C- generate samples from the probability table
b=alog(1.0-a) :
do 20 i = 1,k ;
j=int (alog (RNUNF())/b)
rv(i)=x(j)*p(j) /pgeo(j)
20 continue '

Figure 6.2: Scalar code of WSNU employing a geometric distribution.

In Section 6.6, the WSNU method employs a geometric distribution. Its proba-
bility mass function is given as

(6.3)

a’(l_a)j lij{O,l,},
Pi =

0 otherwise,

where a is the shape parameter. The scalar code of WSNU employing the geometric
distribution is shown in Figure 6.2.

" In Figure 6.2, geometrically distributed random numbers are generated using an
algorithm described by Law [56, p. 266]. Note that the first indices of arrays p, x
and pgeo are 0. The first loop is used to calculate the geometric probabilities. The

- second loop generates samples from a probability table represented by arrays x and p.

175

Each sample is subsequently divided by the adjustment factor, which is the geometric

probability of the selected mass point.

6.4 Weighted Sampling With The Inverse Meth-
ods

In the combination of the weighted sampling and the inverse methods (INWS), the
inverse method is used for the first few mass points, and the weighted sampling

method is utilized for the rest of mass points.

do 10 i = 1,k
rl = RNUNFQ)
C- comstruct samples using the inverse method
do 20 j = 1,m
if(c(j) .ge. r1) then
rv(i) = x(j)
go to 10
endif
20 continue
C- construct samples using the weighted sampling
rt = (ri-c(m))/(1.0-c(m))

1 =m+ int(rl * (a-m)) + 1
rv{(i)=x(1)*p(1)*(n-m)/(1.0-c(m))
10 ‘continue

Figure 6.3: Scalar code of INWS method.

The partial utilization of the inverse method can reduce the sample variance by re-
ducing the variability of the adjustment factors, while the weighted sampling method
speeds up the construction of samples by reducing the time spent for comparisons in
the inverse method. Thus, this time reduction will be significant if the probability
table is long.

This method is useful when the probabilities for the first few mass points are

176

very different with those of the remaining mass points, and the rest probabilities are |
relatively uniform. Such a probability table is shown in Table 5.3. In this table, the
probabilities for the first few mass points are much higher than those for the remaining
mass points, which have probabilities close to those of a uniform distribution.

Figure 6.3 shows the scalar code of INWS method. The inverse method is used for
the first m mass points, while the direct weighted sampling is used for the subsequent
(n — m) mass points. For this purpose, the associated probabilities of the (n — m)
mass points have to be adjusted so that their total value is equal to one. Two random
numbers are used; the first one is generated using IMSL function RNUNF, while the
second random number utilizes the former by adjusting the interval of the remainder.
Therefore, the interval of the second random number is (0,1). Note that the second
random number can also be generated by utilizing the lower digits of the first random
number (see Section 2.6).)

The INWSST is the same as INWS, except that the weighted sampling method
uses a stretched probability table. This stretching is requi.red if the remaining proba-
‘bilities vary significantly, as exemplified by the scattering probability tables of water
shown in Table 5.20.

177

6.5 Vectorization

In this section, the vectorization of WSNU and INWS codes is investigated. WSST
is not discussed here since the code is the same as the code of the direct weighted
sampling implementing technique II (see Section 3.2). The vectorization of INWSST

is not described separately, since the vector code is the same as that of INWS.

C- construct the binomial probabilities
do 10 j = 0,n-1 '
pbin(j)=BINPR(j, (n-1),a)
10 continue
C- generate samples from the probability table
call RNBIN(k, (n-1),a,m)
do 20 i = 1,k
rv()=x(m(1))*p(m{id))/pbin(m(i))

20 continue

(a) The vector code.

C- construct the binomial probabilities

UNAN do 10 j=0,n-1
pbin(j)=BINPR(j, (n-1),a)
10 continue
C- generate samples from the probability table
_ call RNBIN(k,(n-1),2,m)
VECT +4-~-=we- do 20 i=1,k
rv(1)=x(m(i))*p(m(i))/pbin(m(i))

(b) The vector compiler report.

Figure 6.4: Vector code of WSNU employing a binomial distribution.

The vectorizability of WSNU depends on the nonuniform distribution employed.

When WSNU uses a binomial distribution the code is not entirely vectorizable, as

178

shown in Figure 6.4(b). In this figure, UNAN denotes that the corresponding loop
is not vectorizable since subroutine BINPR is only for scalar processing. Subroutine
RNBIN(k,(n-1),a,m) generates k£ binomial random numbers and stores them into
array m. This subroutine is only for scalar processing mode.

In contrast with the binomial distribution, Figure 6.5(b) demonstrates that the
code is entirely vectorized when WSNU employs a geometric distribution. Note that
SURAND(seedl,k,rn) uses seedl to generate k uniform random numbers and stores
them into array rn. In this figure, ELIG indicates that the corresponding loop is
vectorizable, but it is not vectorized since scalar processing is faster than vector
processing. This is due to the fact that the table length (n} is relatively short (n =
10}.

IMSL provides a subroutine, called RNGED, to generate geometric random numbers.
We do not use this subroutine since it is not vectorized. Note that ESSL [43] only
provides vectorized routines for generating random numbers according to uniform and
normal distributions. | -

In the scalar code of the INWS method, the first part is for the inverse method
and the second part of the code is for the weighted sampling method. I the vector-
ization is carried out in the same order, the {rector code will require an if-statement
for the direct weighted sampling method. Consequently, the vector code will not be
vectorized, sinf:e it involves indirect addressing. Therefore, to increase the vector-
izability of the.INWS code, the order of the computation is reversed. That is, the
direct weighted sampling method is first carried out to obtain & samples, and then
the inverse method is used to replace some of the samples corresponding to the first
m mass points.

Figures 6.6(a) and (b) show the vector code and vector compiler report of INWS
method. This code utilizes two sets of uniform random numbers. The first set is
generated using subroutine SURAND, while the second set of random numbers utilize

the former by adjusting the range of the remainders. As shown in Figure 6.6(a),

179

two iterations are required. In the first iteration, the direct weighted sampling is
carried out to construct & temporary samples, regardless of whether this method is
really needed or not. In the second iteration, the inverse rhethod is implémented to
correct some of the temporary samples resﬁlt.ing from the first iteration. Therefore,
some unnecessary processing time is spent in the first iteration, when the weighted
sampling method is really not required.

One can predict that the inverse method is required more often if the first m mass
points have much higher probabilities than the other remaining probabilities, since a
uniform random number is most probably located in these mass points. Consequently,
the extra processing time becomes larger since more unnecessary sampling is carried
‘out by the weighted saﬁlpling method in the first iteration.

The advantage of this vector code is that the first loop, implementing the direct
weighted sampling, is fully vectorizable. The innerloop of .ﬁhe code for the inverse
method is also vectorizable. The vector compiler reports that this innerloop is eligible
for vectorization; however, it is not vectorized since the sca;la,r processing is faster than

the vector processing, due to the fact that the value of m is only 3 in this run.

6.6 Estimation of a Distribution Mean

In this sectiori, the performance of WSST and WSNU implemented on the IBM 3090-
180 VF is invéstigated. These methods are used to estimate the mean of an arbitrary
distribution represented by the probability table given in Table 2.6. This problem
is reexamined since Chapter 3 showed that the direct weighted sampling (WGHTS)
produced a large fractional standard deviation (FSD). _ |
The inverse and Brown’s methods are chosen for comparison with the WSST and
WSNU methods. The inverse method is often used and performs well for this problem,
while Brown’s method performs well in scalar and vector processing and attains the

highest efficiency in vector processing.

180

C- construct the geometric probabilities
do 10 j = 0,n-1
pgeo(j)=a*(1.0-a)*xj
10 continue
C- generate samples from the probability table
b=alog(1.0~a)
call SURAND(seedi,k,rn)
do 20 i =1,k
j=int (alog(rn(i))/b)
- rv(i)=x(3)*p(j) /pgeo(j)
20 continue

(a) The vector code,

C- comstruct the geometric probabilities
ELIG +------- do 10 j=0,n-1

e pgeo(j)=a*(1.0-a)**j
C- generate samples from the probability table
b=alog(1.0-a) '
call SURAND(seedi,k,rn)
VECT #------- do 20 1i=1,k

| . j=int(alog(rn(i)}/b)
e _ rv(i)=x{j)*p(j)/pgeo(j)

{(b) The vector compiler report.

Figure 6.5: Vector code of WSNU employing a geometric distribution.

181

call SURAND(seedl,k,rn)
a = (n-m)/(1.0-c(m))
C- construct samples using the weighted sampling

do 10 i = 1,k
rl (rn(i)-c(m))/(1.0~-c(m))
1 =m+ int{r1 * (n-m)) + 1
rv{i)=x(1) * p(1) * a

10 continue

C- construct samples using the inverse method
do 20 i = 1,k '
do 30 j = 1,m
if(c(j) .ge. rn(i)) then

rv(i) = x(j)
go to 20
endif
30 continue
20 continue

(a) The vector code.

call SURAND(seedi,k,rn)
a = (n-m)/(1.0~c(m))
: C- construct samples using the weighted sampling
VECT 4-——m——m do 10 1 = 1,k
! : : ri (rn(i)-c(m))/(1.0-c(m))
I 1 m + int(ri * (n~-m)) + 1
[rv(i)=x(1) * p(1) * a

H

C- construct samples using the inverse method

UNAN do 20 1i = 1,k
ELIG +-=-=———~- do 30 j = 1,m
| if(c(j) .ge. rn(i)) then
20 continue

{(b) The vector compiler report.
Figure 6.6: Vector code of INWS method.

182

Notations for the scalar codes are as follows:

1. INVER: code of the inverse method,

2. bISCS: code of Brown’s method,

3. WGHTS1: code of the direct weighte(i sampling implementing technique I,
4. WGHTSZ: code of the direct weighted sampling implementing technique II,
8. WSST: code of the weighted sampling using a stretched table, and

6. WSNU: code of the weighted sampling employing a geometric distribution.

The notations for the corresponding vector codes are the same as those for the scalar
codes, except for INVER; the vector code of the inverse method is denoted by INVR?2,
and is given in Figure 2.3. The INVR2 code is chosen iﬁstead of INVRI1, since
Section 2.8 reported that INVR2 requires less processing time for a short probability
table as given in Table 2.6, on page 22. |

The WSST code is the same as shown in Figure 3.3, while the generation table
used is given in Table 6.3. The term (mx) denotes that the corresponding mass point
is repeated m times and accordingly the aséociated probability is equally distributed

(similar to as discussed in Section 2.4).

Table 6.3: Generation table for WSST.

x [100(12x) [90(4x) | 70(2x) | 50 | 20 | 15 | 16 | 5 | 2 | 1
p | -05(12x) | -.05(ax) | .05(2x) | .030 | .025 | .016 | .013 | .010 | .005 | .001

6.6.1 Estimates of the Distribution Mean

Table 6.4 reports the estimates of the distribution mean and their %FSDs obtained

using different scalar codes. The results obtained by the corresponding vector codes

183

are not shown since they are the same as those of the scalar codes. Since the two
codes of the weighted sampling methods, WGHTS1 and WGHTS2, have the same
results, only one result is shown in the WGHTS column. The WSNU obtains the
estimated values by employing a geometric distribution with the shape parameter {(a)
equals 0.68, since it was found that this parameter results in the smallest FSD (the

sample variance is only about 39).

Table 6.4; Mean estimates and their %FSDs.

Sample | INVER DISCS WGHTS WSST WSNU
size | X(%FOSD) | X(%ESD) | X, (%FSD) | X o{%FSD) | Xu(%FSD)
20,000 | 87.44(0.19) | 87.40{0.19) | 87.76(1.44) | 87.56(0.41) | 87.49(0.05)
40,000 | 87.42(0.14) | 87.58(0.13) | 87.36(1.02) | 87.48(0.29) | 87.45(0.04)
60,000 | 87.41(0.11) | 87.56{0.11) | 87.54(0.84) | 87.45(0.24) | 87.43(0.03)
80,000 | 87.39(0.10) | 87.57(0.09) | 87.47(0.73) | 87.38(0.20) | 87.43(0.03)
100,000 | 87.43(0.09) | 87.50(0.08) | 87.49(0.65) | 87.48(0.18) | 87.43(0.02)

In Table 6.4, five sample sizes from 20,000 to 100,000 are used for the estimation
in order to obtain small FSDs and examine the convergence. One can notice that all
of the mean estimates converge to the distribution mean, which is equal to 87.431, as
indicated by the fact that their % FSDs decrease as the sample size increases. The
estirna-.ted values therefore converge to the unbiased solution.

One can notice that the FSDs produced by WSST are lower than those of WGHTS.
These FSDs héwever are still higher than those of INVER and DISCS. In contrast
with WGHTS, WSNU gives the smallest FSD. Thus, the WSNU method reduces

significantly the sample variance of the direct weighted sampling method.

6.6.2 Processing Time

The processing time of different scalar codes is shown in Table 6.5. It shows that the
increase in processing time of each sampling method is linearly proportional to the

increase in sample size. In this table, one can notice that the least processing time

184

is for WGHTS2 as well as WSST, followed by WGHTS1; then the processing time
increases respectively for the DISCS, INVER, and WSNU codes. The difference in
the processing time of'WGHTS2 and WSST is of the order of microseconds. This
can be explained by the fact that WGHTS2 and WSST have the same codes, and
the lengths of their generation tables are not much different. These two codes require
the least processing time, since they only carry out fetching from memory during the
construction of samples. On the other hand, thé WSNU code requires the largest
processing time due to the extra time spent for generating discrete random numbers

from the geometric distribution.

Table 6.5: Scalar processing time of various codes to sample from Table 2.6,
in milliseconds.

Samples | INVER | DISCS | WGHTS1 | WGHTS2 | WSST | WSNU
20,000 | 100.58 | 98.28 85.19 83.28 | 83.28 [138.44
40,000 ; 201.25 | 196.55 170.12 166.51 | 166.51 | 275.86
60,000 | 302.24 | 294.98 255.12 249.97 | 249.97 | 414.26
80,000 { 402.52 | 392.81 340.02 333.11 | 333.11 | 554.52

100,000 § 504.30 | 491.25 425.39 416.58 | 416.58 | 691.00

Table 6.6: Vector processing time of various codes to sample from Table 2.6,
. in milliseconds.

Samples | INVR2 | DISCS | WGHTS1 | WGHTS2 | WSST | WSNU

20,000 | 18.23| 10.98 8.42 7.02 7021 36.06
40,000 | 36.38 | 21.83 16.81 13.93 | 13.93] 71.93
60,000 | 54.72 | 32.74 25.28 20.90 | 20.90 | 107.72
80,000 | 72.95| 43.65 33.53 27.89 | 27.89| 143.52
100,000 | 90.94 | 54.53 42.07 34.80(34.80| 179.93

Table 6.6 summarizes the processing time of different vector codes. The WGHTS2
and WSST codes require the least processing time, which is only about 38 % of

INVER’s processing time. In the scalar processing case, however, their processing

185

time is about 83 % of that of INVER. This indicates that the vectorizability of |
WGHTS2 and WSST is better than that of INVER. The processing time further
increases for WGHTS1, DISCS, INVR2, and WSNU codes, respectively. -

6.6.3 Speedups

This subsection investigates the minimum and maximum vectorization speedups of
different vector codes. The objective here is to examine the range of possible speedups,
which can be achieved by the vector codes of WSST and WSNU methods. As dis-
cussed in Subsection 3.4.3, the minimum vectorization speedups (Vinin) of a vector
code is obtained relative to the scalar code having the least processing time. The
speedup of a vector code obtained relative to the scalar code having the largest pro-

cessing time is referred to as the maximum veciorization speedup (Viuaz).
g ¢

Table 6.7: Minimum vectorization speedups (Vinin) of vector codes relative
to the scalar WSST. '

Samples | INVR2 | DISCS | WGHTS1 | WGHTS2 | WSST | WSNU
20,000 [4.568 | 7.585 9.891 11.863 | 11.863 | 2.309
40,000 | 4.577| 7.628 9.905 11.953 | 11.953 1 2.315
60,000 | 4.568 | 7.635 9.888 11.960 | 11.960 ; 2.321
80,000 | 4.579| 7.631 9.935 11.944 | 11.944 ¢ 2.321

100,000 ; 4.581| 7.639 9.902 11.971 [11.971 { 2.315

Table 6.8: Maximum vectorization speedups (Vipez) of vector codes relative
' to the scalar WSNU,

Samples | INVR2 [DISCS | WGHTS1 | WGHTS2 | WSST | WSNU
20,000 7 7.594 | 12.608 16.442 19.721 | 19.721 ; 3.839
40,000 | 7.583 | 12.637 16.410 19.803 | 19.803 | 3.835
60,000 | 7.571| 12.653 | = 16.387 19.821 | 19.821] 3.846
80,000 | 7.622 | 12.704 16.538 19.882 | 19.882 1 3.864

100,000 | 7.598 | 12.672 16.425 19.856 | 19.856 | 3.840

186

Table 6.7 shows the vectorization speedups achieved by the various vector. codes
with respect to the scalar WSST. These speedups represent the minimum vectoriza-
tion speedups, since the scalar WSS8T code requires the smallest scala,r-processing
time. This table demonstrates that, as the sample size increases, the speedups of the
various sampling methods are almost constant. This can be explained by the fact that
the relationship between the sample size and the scalar as well as vector processing
time is linear. Note that the vector codes of WGHTS2 and WSST entail the highest
speedups, while WSNU attains the lowest speedups for different sample size.

The vectorization speedups of different vector codes with respect to the scalar
WSENU code are shown in in Table 6.8. Since the processing time of the scalar
WSNU code is the smallest, these speedups represents V... As the case of the Vi,
speedups, the V... speedups for different sample sizes are also almost constant. One
can notice that these speedups are about 1.66 times la,rger.hthan the corresponding
Vinin speedups since the scalar WSNU’s processing time is about 1.66 times larger

than the scalar WGHTS2’s processing time.

6.6.4 Efficiency

This subsection summarizes the relative efficiencies of various scalar and vector codes.
These relative efficiencies are obtained with respect to the inverse method, since it
. is the most commonly used method. Therefore, the relative efficiencies of different
scalar codes are obtained with respect to the scalar INVER code, and those of vector
_codes are obtained with respect-to the vector INVR2 code.

The minimum and maximum relative efficiencies of different vector codes are also
presented in this subsection. The objective here is to investigate the range of possible
relative efficiencies, which can be achieved by various vector codes and especially
WEST and WSNU methods. As discussed in Subsection 2.7, the minimum relative
efficiency, denoted by #uis, is obtained with respect to the highest efficiency of a

scalar code. The maximum relative efficiency {#mes) is obtained using the lowest

187

efficiency of a scalar code as a reference. It can be noted that these efficiencies are
calculated based on the sample variances, which are obtained from Table 6.4 (see

Equation {2.4)).

Table 6.9: Efficiencies of scalar codes relative to those of scalar INVER.

Samples | DISCS | WGHTS1 | WGHTS2 | WSST | WSNU
20,000 | 1.024 0.020 0.021 | 0.259 | 10.479
40,000 [1.183 0.022 0.023 | 0.281| 8.931
60,000 [1.021 0.020 0.021 | 0.254 9.804
80,000 [1.260 0.022 0.023 | 0.302| 8.058

100,000 | 1.297 0.023 0.023 0.302] 14.779

Table 6.9 presents the efficiencies of different scalar codes relative to the scalar
INVER code. This table shows that as the sample size increases the relative efficien-
cies of DISCS, WSST and WSNU do “not remain constant. The reason is that .the
decreése in the sample variances of INVER, DISCS, WSST and WSNU does not have
the same pattern. One can notice that WSST achieves higher efficiencies than those
of the direct weighted sampling codes (WGHTS1 and WGHTS2). Its relative efficien-
cies however are still lower than one. This means that the scalar speedup achieved |
by WSST relative to INVER is still smaller than the increase in the sample variance
of WSST. |

In contrast with WSST, for all sample sizes, WSNU entails the highest relative
efficiencies even though its processing time is the largest. This implies that WSNU
results in the smallest sample variance. Thus, the WSNU method reduces significantly
the sample variance of the direct weighted sampling method.

As shown in Table 6.10, the relative efficiencies of all vector codes, except for
WSNU, are larger than those of the corresponding scalar codes shown in the pre-

ceding table. The reason is that these codes attain higher vectorization speedups
than INVR2, while WSNU entails lower speedups. The WSNU code results in the

highest relative efficiencies, since for different sample sizes its sample variances are

188

the smallest.

The minimum and maximum relative efficiencies of different vector codes are given
in Tables 6.11 and 6.12, respectively. The minimum relative efficiencies are obtained
relative to the efficiencies of the scalar WSNU, which gives the highest scalar efficien-
cies for all sample sizes. The maximum relative efficiencies, on the other hand, are
obtained relative to the lowest efficiencies of the scalar code, which is provided by
WGHTS. These relative efficiencies show the range of possible efficiencies that one
can achieve through vectorization and implementation of a good sampling method.

In Table 6.11, the relative efficiencies of the sampling methods are less than their
correspondiﬁg vectorization speedups shown in Table 6.8, except for WSNU. This can
be explained by the fact that their vectorization speedups are less than the increase
in their sample variances. The relative efliciencies of WSNU here are the same as the
vectorization speedups, since its scalar and vector codes ha.w.i.e the same magnitudes
of sample variances.

Table 6.12 reports the efficiencies of various vector codes relative to the efficiencies
of scalar WGHTS1. Since the efficiency of scalar WGHTS1 is the lowest, these relative
efficiencies represent .. The relative efﬁciencies of WGHTSI1 and WGHTS2 are
the same as their vectorization speedups, since the sample variances of their scalar
and the corre§ponding vector c_odes have the same magnitudes. In comparison with
the corresponding minimum relative efficiencies, these maximum relative efficiencies

are about 500 times higher. This is due to the fact that the efficiency of scalar

Table 6.10: Efficiencies of vector codes relative to those of vector INVR2.

Samples | DISCS | WGHTS1 | WGHTS2 | WSST | WSNU
20,000 | 1.662; 0.037 0.045 | 0.556 | 7.292
40,000 | 1.926 0.041 0.049 | 0.608; 6.191
60,000 | 1.666 0.037 0.045| 0549 6.826
80,000 | 2.049 0.041 0.049 | 0.652} &.627

100,000 | 2.107 0.041 0.050 | 0.653 | 10.235

189

Table 6.11: Minimum relative efficiencies (min,) of vector codes relative to the

efficiency of scalar WSNU.

Samples | INVR2 | DISCS | WGHTS1 | WGHTS2 | WSST | WSNU
20,000 0.527 | 0.875 0.020 0.024 | 0.293| 3.839
40,000 | 0.619| 1.193 0.025 0.031| 0.376| 3.835
60,000 0.563 | 0.938 0.021 0.025 | 0.310 3.846
80,000 | 0.687 | 1.407 0.028 0.034 | 0.448| 3.864

100,000 0375 0.791 0.016 0.019| 0.245 3.840

WSNU is about 500 times higher than that of WGHTS1. Based on these results one
can notice that weighted sampling using a stretched table increases the efficiency of
the direct weighted sampling at most by a factor of 16, while the efficiency of the

weighted sampling employing a geometric distribution increases at most by a factor

of 247.

6.6.5 Remarks

The weighted sampling using a stretched table (WSST) and the weighted sampling
employing a geometric distribution (WSNU) have been implemented in this section.
The efficiency of WSST is found to be lower than that of the inverse code. The
WSNU significantly reduced the sample variance of its solution, hence it resulted in

the highest efficiency. Based on these results we conclude that the vector processing

Table 6.12: Maximum relative efficiencies (fmq;) of vector codes relative to
the efficiency of scalar WGHTS1.

Samples [INVR2 | DISCS | WGHTSE | WGHTS2 | WSST | WSNU
20,000 | 270.391 | 449.339 10.118 12.135 | 150.380 | 1971.625
40,000 | 247.879 | 477.343 10.120 12.212 | 150.666 | 1534.728
60,000 | 272.686 | 454.193 10.092 12.207 | 149.840 | 1861.471
80,000 | 249.524 | 511.315 10.141 12.191 | 162.756 | 1404.082

100,000 | 244.326 | 514.872 10.111 12.224 | 159.437 | 2500.612

190

together with the right choice of a sampling method can significantly enhance the

resulting efficiency.

6.7 MORSE Problem I

MORSE Problem I has been discussed in Section 5.7. In this problem, the MORSE
code was used to estimate the fast-neutron fluence at several radial distances from a
point isotropic source in an infinite ﬁledium of air (see the illustration in Figure 5.2).
This problem is reexamined here since the direct weighted sampling resulted in com-
paratively low efficiencies in the previous investigation. Thus, the objective here is to
enhance the efficiencies of Monte Carlo solutions by incorporating the INWS method
into the MORSE code. | |

The scattering probability matrix of air is shown in Table 5.3. For each group
within energy groups 1 to 9, only the first three mass points have much higher prob-
abilities than the remaining probabilities. In the INWS method employed, therefore,
the inverse method is used for the first three mass points and the direct weighted
sampling 1s employed for the subsequent.mass points.

It should be noted here that the inverse method is still used for sampling scattering
angles after collisions, since the number of discrete angles in this problem is at most
three and the corresponding probabilities vary significantly.

This section examines the performance of the MORSE code incorporating the
INWS method, and compare it with that of the other sampling methods. For this
purpose, the performance of the inverse method (INVER) and the direct weighted
sampling method (WGHTS), reported in Section 5.7, are shown again here as ready

references.

191

6.7.1 Fluence Estimates

Table 6.13 summarizes the total fluence crossing Shell 1. This table shows that, for
all sa.rriple sizes, the estimated fluence obtained by INVER, WGHTS and INWS are
very close in magnitude, while their 99 % confidence intervals overlap each other. The
FSDs of INWS decreases as the sample size increases. Moreover, the convergence of
INWS’s FSD is faster than those of the other sampling methods. These facts indicate
that the solutions of INWS are unbiased. Generally, INWS results in the smallest
FSD, which enhances the performance of the direct weighted sampling by reducing

the sample variance.

Table 6.13: Fluence of neutrons crossing Shell 1 (30 m in radius) of Problem I.

INWS

Sample INVER WGHTS

size | Estimate(FSD) | Estimate(FSD) [Estimate(FSD)

20,000 | 1.3774(0.0175) | 1.3435(0.0227) | 1.3560(0.0186)
+0.062* +0.079 10.065

20,000 | 1.3752(0.0109) | 1.3253(0.0147) | 1.3466(0.0120)
£0.039 +0.050 +0.042

60,000 | 1.3787(0.0130) | 1.3447(0.0173) | 1.3389(0.0093)
£0.043 +0.060 +0.032

80,000 | 1.3649(0.0114) | 1.3296(0.0144) 1.3426(0.0085)
+0.040 +0.049 +0.029

100,000 | 1.3596(0.0097) | 1.3317(0.0132) 1.3407(0.0076)
+0.034 +0.045 £0.026

* statistical variability corresponds to a 99 % confidence interval.

In Table 6.14, the FSD of INWS decreases as the sample size increases. This
indicates that its estimated fluence crossing Shell 2 converges to the expected solu-
tion. The INVER and INWS codes result in almost the same estimated values. The
INWS’s results are therefore unbiased. Moreover, this table shows that INWS suc-
cessfully reduces the FSDs of WGHTS. The FSD of INWS converges faster than that
of INVER.

192

Table 6.14: Fluence of neutrons crossing Shell 2 (200 m in radius) of Problem I.

Sample INVER WGHTS INWS

size | Estimate(FSD) | Estimate(FSD) | Estimate(FSD)

20,000 | 2.1078(0.0940) | 1.9839(0.1173) | 2.1457(0.0293)
+0.135* +0.599 £0.162

40,000 | 2.0480(0.6178) | 1.8611(0.0688) 2.1283(0.0191)
+0.094 .1+0.330 10.105

60,000 | 2.0496(0.0148) | 1.8640(0.0562) 2.0866(0.0163)
£0.078 +0.276 +0.088

80,000 | 2.0671(0.0143) | 1.8510(0.0471) 2.0967(0.0145)
£0.076 +0.225 +0.078

100,000 | 2.0776(0.0145) | 1.8137(0.0399) 2.0894(0.0131)
+0.078 +0.186 +0.071

* statistical variability corresponds to a 99 % confidence interval.

Table 6.15: Fluence of neutrons croésing Shell 3 (450 m in radius) of Problem I.

Sample INVER WGHTS INWS
size | Estimate(FSD) | Estimate(FSD) | Estimate(FSD)
20,000 | 1.1906(0.03206) | 1.0298(0.20122) | 1.1683(0.03171)
+0.1011* +0.5338 +0.0954
40,000 | 1.1855(0.02305) | 0.9170(0.14068) | 1.1854(0.02305)
+0.0704 +0.3323 +0.0704
60,000 | 1.1712(0.01868) | 0.0319(0.11716) | L1.1556(0.01702)
_ +0.0564 +0.2813 +0.0533
80,000 | 1.1741(0.01810) | 0.8849(0.09502) { 1.1490(0.01570)
: +0.0547 +0.2166 +0.0465
100,000 | 1.1751(0.01612) | 0.9123(0.07903) | 1.1523(0.01474)
+0.0488 +0.1857 +0.0438

* statistical variability corresponds to a 99 % confidence interval.

193

Tablés 6.15 shows the estimated fluence crossing Shell 3. In this table, for all
sample sizes, the estimated values of INVER and INWS are very close to each other.
The confidence intervals of INWS overlap with those of INVER. This indicates that
the estimated values obtained by INWS are unbiased. The INWS method entails the
smallest FSD, except for 40,000 samples the FSD of INWS is the same as that of
- INVER. For sample size of 40,000, the FSDs of INVER and INWS are the same.

6.7.2 Processing Time and Speedups

Table 6.16 shows that, on average, the scalar processing time required by INWS is
about 87 % of that of INVER. As shown in Table 6.17, the nufnber of collisions
produced by INWS is about 87 % of the INVER'’s collisions. This indicates that the
processing time of INVER and INWS is proportional to the number of collisions.

Table 6.16: Scalar processing time of MORSE simulation for Problem L.

Sample | Processing time in seconds

size | INVER | WGHTS | INWS
20,000 | 79.278 | - 25.117 | 65.406
40,000 | 155.973 49,674 | 135474

- 60,000 | 228.802 | 75.793 | 206.196
80,000 | 305.631 | 101.569 | 273.012
100,000 378.767 | 125.696 | 344.577

* The speedups of scalar WGHTS and INWS codes relative to scalar INVER code
are summarized in Table 6.18. These speedups are calculated based on the scalar
processing time shown in Table 6.16. On average, the INWS code is about 14 %
faster than INVER. One can notice that the speedup of INWS is lower than that
of WGHTS. This is due to the fact that INWS requires more processing time than
WGHTS.

194

Table 6.17: Number of c¢ollisions in MORSE simulation for Problem I.

Sample Number of collisions
size | INVER | WGHTS INWS
20,000 | 384,994 99,118 | 334,236
40,000 [761,302 | 197,157 667,772
60,000 | 1,142,531 | 295,382 | 998,583
80,000 | 1,521,797 | 392,965 | 1,331,179
100,000 | 1,903,822 | 490,279 | 1,662,201

Problem I.

Table 6.18: Speedups of scalar MORSE codes relative to scalar INVER for

Sample | Scalar speedups
size | WGHTS | INWS
20,000 | 3.156 | 1.212
40,000 3.140 | 1.151
60,000 3.019 | 1.110
80,000 3.009 | 1.119
100,000 3.013 | 1.099

195

6.7.3 Local Speedups

In this subsection, the processing time of various sampling methods in the subroutine
COLISN is investigated. The objective is to obtain the local speedups in the subrou-
tine COLISN. Thus, these speedups provide a direct measure of the speeding of the
sampling methods, without the additional overhead of other routines in the MORSE

code.

Table 6.19: Scalar processing time of sampling methods in COLISN routine
for Problem I.

Sample | Processing time in milliseconds

size | INVER | WGHTS INWS
20,000 | 1263.860 | 1251.416 | 1253.466
40,000 | 2530.249 | 2509.246 | 2506.891
60,000 | 3791.720 | 3756.862 | 3761.909
80,000 | 5054.139 | 5006.014 ; 5012.591
100,000 | 6318.385 | 6258.126 | 6267.143

Table 6.19 shows the scalar processing time of various sampling methods. One can
notice that the processing time of INWS is proportional to the sample size, as that
of the other sampling methods. In general, the processing time of INWS is slightly
larger than that of WGHTS, while the processing time of INWS is smaller than that
of INVER. TI;is indicates that the direct weighted sampling method in INWS method
can reduce the processing time of the inverse method.

In Table 6.19, the processing time of INVER is larger than that of INWS by a
factor of 0.8 %. However, Table 6.18 shows that the INWS method entailed global
speedup by a factor of 1.14. Thus, the global speedup of the MORSE code incor-
porating the INWS method is mostly affected by the reduction in the number of

collisions.

196

6.7.4 Local Vectorizétion Speedups

This subsection investigates the vectorization of various sampling methods in sub-
routine COLISN. As discussed in Subsection 5.7.4, this local speedup should provide
some indications of the global vectorization speedup if the MORSE code is vectorized

based on an event-based Monte Carlo algorithm.

Table 6.20: Vector processing time of sampling methods in COLISN routine
for Problem L.

Sample | Processing time in milliseconds
size | INVER | WGHTS INWS

20,000 | 364.371 | 136.364 | 369.926
40,000 | 729.298 | 273.995 737.231
60,000 | 1095.980 | 412.343 | 1106.003
80,000 | 1460.923 | 545.436 | 1474.755
100,000 | 1824.385 | 684.846 | 1863.324

Table 6.21: Speedups of the vectorized sampling methods relative to scalar
INVER for Problem L.

Sample Vector speedups

size | INVER | WGHTS | INWS
20,000 | 3.469 9177 | 3.388
40,000 | 3.469 9.158 3.400
60,000 ; 3.460 9.111 3.401
80,000 | 3.460 9,178 | 3.399
100,000 | 3.463 9.138 | 3.363

Table 6.20 summarizes the processing time of vector INVER, WGHTS and INWS.
For all the sample sizes, the least processing time is for WGHTS, followed by INVER
and INWS. This order is not the same as that in the scalar processing. The processing
time of vector INWS is slightly larger than that of INVER. This can be explained
as follows. As shown in Figure 6.6, the vector code of the INWS method has two

iterations used for the direct weighted sampling method and the inverse method,

197

respectively. Since the first three mass points have much higher probabilities than the
remaining probabilities, the inverse method is often used. Consequently, the extra
processing time spent by INWS becomes higher since more unnecessary sampling
is carried out by the weighted sampling method in the first iteration. Thus, the
extra processing time required by INWS is larger than the processing time reduction
attained by the direct weighted sampling in this code.

Table 6.21 shows the speedups of different vector codes relative to scalar INVER
code. One can notice that for all sample sizes the speedups of INWS are about

constant. The speedup of INWS is about 3.4, while that of INVER is about 3.5.

6.7.5 Eﬂiciency

Tables 6.22 to 6.24 report the efficiencies of WGHTS and INWS relative to th_ose
of INVER, for shells 1, 2 and 3, respectively.. Note that the efficiencies of WGHTS,
taken from Tables 5.15 to 5.17, are shown again as ready references.

In Table 6.22, on average, the relative efficiencies of WGHTS. and INWS are
about 1.8 and 1.6, respectively. The WGHTS code entails higher efficiency than that
of INWS, since it has higher scalar speedup.

Table 6.22: Efficiencies of MORSE codes relative to those of INVER, for Shell
" 1 of Problem 1.

Sample | Relative Efficiency
size | WGHTS | INWS
20,000 1.967 1.104
40,000 1.845 0.991
60,000 1.515 1.961
80,000 1.962 2.087
100,000 | 1.606 | 1.832

As shown in Table 6.23, on average, the relative efficiencies of WGHTS and INWS
are 0.31 and 1.01, respectively. The INWS code increases the efficiency of the direct

198

weighted sampling by reducing the sample variance. The efficiency of INWS is slightly |
higher than that of INVER due to the fact that INWS achieves higher speedup than
that of INVER.

Table 6.23: Efficiencies of MORSE codes relative to those of INVER, for Shell
2 of Problem L.

Sample | Relative Efficiency
size | WGHTS | INWS
20,000 | 0.161 0.847
40,000 0.254 0.924
60,000 | 0.253 | 0.879
80,000 | 0.344 1.054
100,000 0.522 1.324

Table 6.24: Efficiencies of MORSE codes relative to those of INVER, for Shell
3 of Problem L.

Sample | Relative Efficiency
size | WGHTS | INWS
20,000 0.113 1.360
| 40,000 | 0.141 | 1.152
60,000 0.121 1.239
80,000 0.192 1.554
160,000 | 0.208 1.367

. Table 6.24 shows that, on average, the relative efficiencies of WGHTS and INWS

: | are 0.16 and 1.34, respectively. For the estimated fluence crossing Shell 3, one can
. notice that INWS significantly increases the efficiency of direct Weighted sampling by
___ a factor of about 8.4. This is achieved by reducing the sample variance.

; As discussed in Subsection 5.7.5, the relative efficiencies of DISCS and WGHTS
;, decrease significantly with respect to the increase in shell’s radii. However, the relative
i : efficiencies of INWS have a different trend. In general, the efficiencies of INWS
| _ relative to those of INVER for Shells 1 to 3 are 1.6, 1.01 and 1.34, respectively. The

199

interesting fact here is that the relative efficiency of INWS for Shell 3 is higher than
that of Shell 2. This can be explained by the fact that the direct weighted sampling
method is used more often at low énergy, in which the transition probabilities are
close to uniform. Consequently, the statistical variability of the adjustment factors is

low.

Table 6.25: Efficiencies of MORSE codes relative to those of INVER, for about
5 % FSD of Problem I.

Shell | Relative Efficiency
WGHTS | INWS
Shell 1 | 0.452 1.038
Shell 2 | 0.071 1.242
Shell 3 | 0.037 1.360

Table 6.25 summarizes the efficiencies of WGHTS and INWS relative to those of
INVER for FSD of about 5 %. One can ﬂotice that the relative efficiency of INWS
increases with the increase in the shell’s radius. This supports the argument in the
previous paragraph. The efficiency of INWS relative to that of INVER is equal to
1.213, on average. Thus, INWS increases the efficiency of WGHTS by a factor of 6.5,
and also performs better than INVER. |

In summary, the efficiencies of INWS are higher than those of INVER for all
radii. The relative eficiency of INWS generally increases with the increase in the
shell’s radius. This indicates the attractiveness of INWS over the other sampling

methods, if the simulations involve shells with long radii.

6.7.6 Remarks

In this section, the combination of the inverse and the direct weighted sampling
methods (INWS) significantly enhanced the efficiency of the direct weighted sampling
method. Moreover, the efficiency obtained by INWS was higher than that of INVER

due to the smaller processiﬁg time and the smaller sample variance. In general, the

200

relative efficiency of INWS increases as the shell’s radius increases. This indicates

that INWS performs well if more collisions occur at low energy.

6.8 MORSE Problem 11

This problem has been discussed in Section 5.8. The illustration is depicted in Fig-
ure 5.3. In this problem, a fast néutron beam is directed towards the test section,
which is water in the form of a cylindrical body. The test section is surrounded by
air, which is in turn surrounded by artificial external void. The transport of neutrons
is terminated when the neutrons reach external void. There are two point detectors
located perpendicular to both the neutron beam and the axis of the cylindrical test
section. |

In this section, MORSE Problem II is reinvestigated since the direct weighted
sampling resulted in relatively low efliciencies. Thus, the objective here is to examine
whether the efficiencies of Monte Carlo solutions can bé increased by incorporating
the INWSST method into the MORSE code.

The scattering probability matrix for the transporﬁ medium water is shown in
Table 5.20. This matrix shows that the neutron cross section consists of 33 energy
groups. In this probability matrix, only the first four mass points in the energy
groups 1 to 10 have high probabilities, while the rest mass points have relatively low
probabilities. Therefore, based on the previous section, the combination of the inverse
method and the weighted sampling method can be used to enhance the efficiency of
the Monte Carlo solutions.
~ For each energy group, the low probabilities (starting from the fifth mass point
to the rest) vary significantly. These probabilities have to be stretched in order to
reduce the sample variance. Therefore, we investigate the INWSST method in which
the inverse method is used for the first four mass points and the weighted sampling

using stretched tables is employed for the subsequent mass points.

201

It should be noted that the inverse method is still utilized for sampling scattering
angles after collisions, since the number of discrete angles 1s at most five and the

corresponding probabilities vary significantly.

6.8.1 Fluence Estimates

This section examines the performance of the MORSE code incorporating the INWS
method, and compare it with that of the other sampling methods. For this purpose,
the performance of the inverse method (INVER) and the direct weighted sampling
method (WGHTS), reported in Section 5.8, are shown again here as ready references.

Tables 6.26 and 6.27 show the estimated response of Detectors 1 and 2, respec-
tively. The estimated values of detector response are reported together with the
fra_,ctioual standard deviations and the 99 % confidence intervals. In these tables,
the FSDs of INWSST decrease as the sample size increases. This indicates that the
solutions converge to the expected solution. INWSST results in slightly higher FSDs
than those of INVER. However, the FSDs of INWSST are much lower than those of
WGHTS for all sample sizes. This fact indicates that INWSST reduces signiﬁcanﬂy _
the sample variance of the direct weighted sampling method.

As shown in Tables 6.26 and 6.27, the estimated values of INVER and INWSST
are slightly different, but their confidence intervals overlap each other. The estimated

values of detector response obtained by INWSST are therefore unbiased.

202

Table 6.26: Response of Detector 1 for Problem II.

Sample INVER WGHTS INWSST
size Response{FSD) Response(FSD) Response(FSD)

20,000 | 9.4123E-05(8.01798) | 9.5923E-05(0.23082) | 9.2905E-05(0.019830)
+0.436E-5* £5.704E-5 +0.462E-5

40,000 | 9.3477E-05(0.01304) | 9.4677E-05(0.12472) | 9.1406E-05(0.01347)
+0.314E-5 +3.042E-5 +0.317E-5

60,000 | 9.4070E-05(0.01067) | 1.0228E-04(0.15601) | 9.2022E-05(0.01094)
+0.259E-5 +4.110E-5 +0.259E-5

80,000 | 9.4417E-05(0.00921) | 9.5690E-05(0.12650) | 9.1579E-05({0.00930)
+0.224E-5 +3.118E-5 +0.219E-5

100,000 | 9.3946E-05(0.00827) | 9.1419E-05(0.10667) | 9.1395E-05(0.00920)
+0.200E-5 +2.512E-5 +0.217E-5

* statistical variability corresponds to a 99 % confidence interval.

Table 6.27: Response of Detector 2 for Problem II.

Sample INVER WGHTS INWSST
size | Response(FSD) Response(FSD) Response(FSD)
20,000 | 9.4501E-05(0.01819) [9.4539E-05(0.14149) | 9.3001E-05(0.01807)
+0.443E-5* +3.446E-5 £0.433E-5
40,000 | 9.3784E-05(0.01249) | 1.1238E-04(0.18857) | 9.2817E-05{0.01283)
+0.302E-5 +5.459E-5 +0.307E-5
60,000 | 9.4387E-05(0.01062) | 9.9699E-05(0.14321) | 9.1431E-05(0.01098)
' 40.258E-5 +3.678E-5 +0.259E-5
80,000 | 9.3646E-05(0.00916) | 9.8497E-05(0.11364) | 9.2488E-05(0.00945)
+0.221E-5 +2.883E-5 +0.225E-5
100,000 | 9.3601E-05(0.00831) | 9.7451E-05(0.09426) | 9.2852E-05(0.00841)
+0.200E-5 +2.366E-5 +0.201E-5

* gtatistical variability corresponds to a 99 % confidence interval.

203

AL LA WL L LR LA T A S A Skt B A S R e

6.8.2 Processing Time and Speedups

" Table 6.28 shows the scalar processing time of MORSE codes employing different

sampling methods. This table shows that INWSST requires slightly less processing
time than that of INVER. As shown in Table 6.29, the number of collisions produced
by INWSST is also slightly less than that of INVER. One can infer therefore that
the processing time required by INVER and INWSST for each collision is about the
same. Thus, the processing time reduction in INWSST is caused by the reduction in

the number of collisions.

Table 6.28: Scalar processing time of MORSE simulation for Problem II.

Sample | Processing time in seconds
size | INVER | WGHTS | INWSST
20,000 | 19.454 13.793 19.317
40,000 | 39.397 28.021 38.649
60,000 | 59.013 42.692 58.124
80,000 | 78.973 55.019 78.378
100,000 | 97.457 69.817 96.318

Table 6.29: Number of collisions in MORSE simulation for Problem II.

Sample Number of collisions
size | INVER | WGHTS | INWSST

20,000 | 22,060 14,068 21,645
40,000 | 44,093 28,188 43,477
60,000 [65,852 42,135 65,543
80,000 | 87,740 55,966 87,528
100,000 | 109,040 69,894 | 109,367 ||

Table 6.30 shows scalar speedups of WGHTS and INWSST relative to INVER.
The speedup of INWSST for different sample sizes is constant, since the processing

time of INVER and INWSST is linearly proportional to the sample size. The speedup

- of INWSST is equal to one. This implies that the inverse method in INWSST is used

204

more often than the weighted sampling method, since most of the collided neutrons

have high energy during the simulation.

Table 6.30: Speedups of scalar MORSE codes relative to scalar INVER for
Problem II.

Sample Speedups

size | WGHTS | INWSST
20,000 1.410 1.607
40,000 1.406 1.019
-60,000 1,382 1.015
80,000 1.435 1.008
100,000 | 1.396 1.012

6.8.3 Local Speedups

The processing time performance of different sampling methods in subroutine COL-
ISN is investigated in this subsection. The scalar process;ing time of Brown’s and the
INWSST methods is compared to that of the inverse method, with the objective to
obtain the local speedups. These speedups provide a direct measure of the speeding
of the sampling metho&s, without the additional overhead of other routines in the

MORSE code.

Table 6.31: Scalar processing time of sampling methods in COLISN routine
- for Problem IL '

Sample | Processing time in milliseconds
size | INVER | WGHTS | INWSST
20,000 | 1718.969 | 1612.504 | 1712.627
40,000 | 3436.748 | 3224.210 | 3430.066
60,000 | 5158.662 | 4842.191 | 5140.457
80,000 | 6877.693 | 6447.755 | 6851.574
100,000 | 8598.855 | 8068.646 | 8563.725

The processing time of the scalar codes is shown in Table 6.31. In order to

205

compare the performance of INWSST, the processing time of INVER and WGHTS
from Subsection 5.8.3 is reported again as ready references. The processing time
of INWSST is linearly proportional to the sample size. For all sample sizes, the
processing time of INWSST is only slightly less than that of INVER but larger than
that of WGHTS. Therefore, the processing time of INVER and INWSST to construct
a sample is about thé same. This supports the argument that the processing times
of INVER and INWSST for each sampling after a collision are close to each other.
| Thus, one can conclude that the global scalar speedup of INWSST relative to INVER

is one.

6.8.4 Local Vectorization Speedups

The vectorization of various sampling methods in the COLISN routine is examined
in this subsection. The objective is to investigate the local vectorization speedup
of INWSST, and to compare it with those of INVER and WGHTS. This speedup
should be able to provide some predictions of the global vectorization speedup one
would achieve if the entire MORSE code is vectorized by implementing an event-based

Monte Carlo algorithm.

Table 6.32: Vector processing time of sampling methods in COLISN routine
* for Problem II. :

Sample | Processing time in milliseconds

size | INVER | WGHTS [INWSST
20,000 | 522.803] 165.880 | 392.098
40,000 | 1045.616 | 332.751 | 783.381
606,000 | 1569.946 | 501.057 | 1172.598
80,000 | 2093.273 ;| 663.265 | 1563.363
100,000 | 2615.586 | 833.938 | 1971.798

The processing time of vector INVER, WGHTS and INWSST is shown in Ta-
ble 6.32. For all sample sizes, the least processing time is for WGHTS, followed by

206

INWSST and INVER. This order remains the same as that in the scalar processing
time. However, the processing time of vector INWSST is only 75 % of that of vector

INVER; this is not the case of the scalar processing. Thus, this implies that the
vectorizability of the INWSST method is higher than that of INVER.

Table 6.33: Speedups of the vectorized sampling methods relative to scalar
INVER for Problem II.

Sample Speedups

size |INVER | WGHTS | INWSST
20,000 | 3.288 9.721 4,368
40,000 | 3.287 9.690 4.379
60,000 | 3.286 -9.664 4.384
80,000 | 3.286 9.721 4.383
100,000 | 3.288 3.675 4.343

Table 6.33 reports the speedups of different vector codes relative to scalar INVER.
The speedups of INWSST for all sample sizes are about constant, due to the linear
relationship between the sample size and the processing time in scalar as well as vector
processing. It is shown that the speedup of INWSST is higher than that of INVER.
This indicates that the weighted sampling method in INWSST code significantly
reduces the vector processing time. Thus, this fact provides some indications of the
ability of the INWSST method to speedup the construction of samples in a vector

MORSE code while maintaining a small sample variance of its solution.

6.8.5 Efficiency

Tables 6.34 and 6.35 reports the efficiencies of WGHTS and INWSST relative to those
of INVER for Detectors 1 and 2, respectively. In Table 6.34, for sample size of 20,000
and 100,000, the relative efficiencies of INWSST are about 12 % lower than those of
INVER. The reason is that the processing times of INVER and INWSST are about

the same, while the sample variances of INWSST for these sample sizes are larger

207

than those of INVER.

The average of the relative efficiency of INWSST for both detectors is about 0.985.
This magnitude is 104 times higher than that of WGHTS. Thus, the combination

of the inverse method and the weighted sampling using a stretched table increases

significantly the efficiency of WGHTS.

The efficiency of INWSST is close to that of INVER. This indicates that the
performance of INWSST approaches that of INVER. This can be explained by the

fact that the inverse method in INWSST is more often used since more collisions

occur at high energy.

Table 6.34: Efficiencies of MORSE codes relative to those of INVER, for De-

tector 1 of Problem II. -

Sample | Relative Efficiency
size | WGHTS | INWSST
20,000 0.008 0.897 .
40,000 0.015 (.999
60,000 0.005 1.009
80,000 0.0607 1.050
160,000 0.009 0.864

Table 6.35; Efficiencies of MORSE codes relative to those of INVER, for De-

tector 2 of Probiem II.

Sample | Relative Efficiency
size | WGHTS | INWSST
20,000 | 0.023 1.054
40,000 0.004 0.986
60,000 | 0.007 1.012
80,000 [0.008 0.971
100,000} 0.010 1.004

208

For a FSD of about 5 %, the efficiencies of WGHTS and iNWSST relative to
those of INVER are given in Table 6.36. For both detectors, the efficiency of IN-
WSST relative to that of INVER is equal to 0.768, which is much larger than that
of WGHTS. Thus, the combination of the inverse method and the weighted sampling
using a stretched table also significantly increases the efficiency of the direct weighted

sampling for a given FSD.

Table 6.36: Efficiencies of MORSE codes relative to those of INVER, for about
5 % FSD of Problem II.

Detector Relative Efficiency
WGHTS INWSST
Detector 1 * 0.697
Detector 2 * 0.838

*: the relative efficiency is not available.

6.8.6 | Remarks

This section reexamined MORSE Problem 1I, in which the responses of two point -
detectors were estimated. The performance of INWSST approaches that of INVER
due to the fact that the inverse method in INWSST is more often used since more
collisions occur at high energy. It was found that the efficiencies of solutions ob-
tained by INWSST are much higher than those of WGHTS. Thus, the combination
of the inverse method and the weighted sampling using a stretched table increases

significantly the efficiency of the direct weighted sampling method.

209

6.9 MORSE Problem III

This problem has the same physical characteristics as those of MORSE Problem II,
except for the water density. The water density here is four times higher than that
of Problem II. As discussed in Section 5.9, direct weighted sarmpling resulted in low
efficiency for the solution of MORSE Problem III. The combination of the inverse
method and the weighted sampling using a stretched table (INWSST) is utilized in
this problem to examine the effect on the solution variance and the processing time.
The INWSST code used here is the same as the code used in the previous section,

since the scattering probability tables involved are the same.

6.9.1 Fluence Estimates

Tables 6.37 and 6.38 demounstrate the estimated response of Detectors 1 and 2, re-
spectively. The estimated values of both detector responses are reported together
with the fractional standard deviations and the 99 % confidence intervals. In these
tables, the FSDs of INWSST decrease as the sample size increases. This indicates
that the estimated values converge to the expected solution. Note that the FSDs of
INWSST are smaller than those of INVER for all sample sizes. This indicates that
INWSST significantly reduces the sample variance of the direct weighted sampling
method.

In Tables 63? and 6.38, the confidence intervals of INWSST overlap those of
INVER for all sample sizes. Therefore, for both detectors the estimated responses of
INWSST are unbiased.

An interesting fact about INWSST is that, for each sample size, the estima.ted
values of the two detectors are very close to each other. This can be explained by
the fact that the statistical weights of collided neutrons in INWSST do not vary
significantly. Consequently, the sample variances of the estimated values for both

detectors are small, which is not the case of WGHTS.

210

Table 6.37: Response of Detector 1 for Problem III.

Sample INVER WGHTS INWSST
size Response(FSD) Response(FSD) Response(FSD)
20,000 | 2.9084E-04(0.03503) | 3.1197E-04(0.23935) | 2.9026E-04(0.02671)
+0.262E-4* +1.923E-4 +0.200E-4
40,000 | 2.9783E-04(0.02320) | 2.6646E-04(0.14501) | 2.9036E-04(0.01946)
10.178E-4 +0.995E-4 +0.146E-4
60,000 | 2.9630E-04(0.01865) | 2.5932E-04(0.10446) | 2.8841E-04(0.01581)
' +0.142E-4 +0.698E-4 +0.118E-4
80,000 | 2.0853E-04(0.01594) | 2.6476E-04(0.08875) | 2.8089E-04(0.01363)
+0.123E-4 30.605E-4 1-0.102E-4
100,000 | 2.9730E-04(0.01390) | 2.5323E-04(0.07496) | 2.8772E-04(0.01206)
+0.107E-4 +0.489E-4 +0.089E-4

* statistical variability corresponds to a 99 7% confidence interval.

Table 6.38: Response of Detector 2 for Problem III.

Sample INVER WGHTS INWSST
size | Response(¥FSD) ‘Response{ FSD) Response(FSD)
20,000 | 2.9208E-04(0.02657) | 3.0364E-04(0.15015) | 2.9228E-04(0.02613)
' +0.200E-4* +1.174E-4 +0.197E-4
40,000 | 2.9342E-04(0.02086) | 2.4555E-04(0.09678) | 2.8737E-04(0.01914)
+0.158E-4 +0.612E-4 - +0,142E-4
60,000 | 2.9011E-04(0.01607) | 2.4281E-04(0.07404) | 2.9062E-04(0.01581)
+0.120E-4 +0.463E-4 +0.118E-4
80,000 | 2.9293E-04(0.01385) | 2.4407E-04(0.06343) | 2.8677E-04(0.01354)
£0.105E-4 40.399E-4 +0.100E-4
100,000 | 3.0329E-04(0.03637) | 2.3885E-04(0.05381) | 2.8553E-04(0.01203)
+0.284FE-4 +0.331E-4 +0.088E-4

* statistical variability corresponds to a 99 % confidence interval.

211

6.9.2 Processing Time and Speedups

The scalar processing time of the three MORSE codes is shown in Table 6.39. The
processing time of INWSST is linearly proportional to the sample size. The IN-
WSST code requires more processing time than the INVER code, even though it
simulates fewer collisions, as shown in Ta.ble. 6.40. The number of collisions produced
by INWSST is about 2 % less than that of INVER. Therefore, for each collision, the
processing time required by INWSST is slightly larger than that of INVER. This can
be explained by the fact that, in this problem, a large number of collisions occur
at low energy due to the high magnitude of water density, see Table 6.45 shown in
the next section. This indicates that the weighted sampling using a stretched table
is more often used for sampling. Thus, the processing time of INWSST is higher
- than that of INVER, since INWSST first carries out the inverse method, followed by
the weighted sampling method. One can predict however the;t this combination will
reduce the processing time of the inverse method if the probability table is relatively

long.

Table 6.39: Scalar processing time of MORSE simulation for Problem III.

Sample | Processing time in seconds
size [INVER | WGHTS | INWSST
20,000 | 97.623 32.531 | 101.206
40,000 | 198.854 64.354 | 200.103
60,000 | 295.307 | 97.408 | 300.030
80,000 | 394.268 | 126.900 | 398.273
100,000 | 495.063 | 160.957 | 496.878

The scalar speedups of WGHTS and INWSST relative to INVER are repofted in
Table 6.41. For different sample sizes, the speedups of INWSST is about constant.
The reason is that the processing time of INVER, as well as INWSST, is linearly
proportional to the sample size. The speedup of INWSST is less than one, since it

requires slightly more processing time as discussed in the preceding paragraphs.

212

Table 6.40: Number of collisions in MORSE simulation for Problem IIL

Sample Number of collisions
size | INVER | WGHTS | INWSST
20,000 | 188,438 | 47,121 | 185,973
40,000 [377,499 94,478 [370,496
60,000 | 570,484 | 141,905 | 557,141
80,000 | 759,479 | 189,367 [741,368
100,000 | 949,270 | 236,425 | 925,001

The local scalar and vectorization speedups for this problem are not examined,
since the results are the same as those of MORSE Problem II. This is due to the fact
that the scattering probability tables used in this problem are the same as those in

Problem II.

Table 6.41: Speedups of scalar MORSE codes relative to scalar INVER. for
Problem III. :

Sample Speedups

size | WGHTS | INWSST
20,000 3.001 0.965
40,000 | 3.090 0.994
60,000 | 3.032 0.984
80,000 3.107 (.990
100,000 | 3.076 0.996

213

6.9.3 Efficiency

Tables 6.42 and 6.43 show the relative efficiencies of estimated response for Detec-
tors 1 and 2, respectively. For different sample sizes, the relative efficiencies of IN-
WSST for Detector 1 are higher than one. In Table 6.43, for all sample sizes except
for 20,000 samples, the efficiency for Detector 2 obtained by INWSST is also larger
than that of INVER.

Table 6.42: Efficiencies of MORSE codes relative to those of INVER, for De-
tector 1 of Problem III. '

Sample | Relative Efficiency
size | WGHTS | INWSST
20,000 0.056 1.666
40,000 0.099 1.486
60,000 0.126 1.446
80,000 0.127 1.436
100,000 0.146 1413

Table 6.43: Efficiencies of MORSE codes relative to those of INVER, for De-
tector 2 of Problem I11.

Sample | Relative Efficiency
size | WGHTS | INWSST
20,000 { 0.087 0.996
40,000 0.205 1.231
60,000 | 0.204 1.013
80,000 { 0.213 1.081
100,000} 2.266 10.275

In Table 6.43, the relative efficiency of INWSST for 106,000 samples is quite
different. This discrepancy is caused by the fact that as the sample size increases
from 80,000 to 100,000 the sample variance of INVER significantly increases, while

the sample variance of INWSST is about the same.

214

Table 6.44: Efficiencies of MORSE codes relative to those of INVER, for about
5 % FSD of Problem HI. '

Detector | Relative Efficiency
WGHTS | INWSST
Detector 1 | 0.016 1.367
Detector 2 | 0.032 1.760

Table 6.45: The probability of collisions produced by INWSST in MORSE
Problem II and III.

Problem Energy group .
8 9 10 i1 12 13 14 15 16 17 18 19 20
11 603 045 0 021 032 025 024 059 055 015 .027 008 007 0¥t
(R 137 026 014 021 019 019 045 051 017 033 .0l0 .009 019
Problem Energy group
21 22 23 24 25 26 27 28 29 30 31 a2 33
I1 L09 007T 010 009 007 005 004 003 004 002 002 001 004
il 019 018 026 024 023 022 020 031 028 020 019 018 312

The average relative efficiency of INWSST for both detectors is 2.2. This is
6.2 times higher than that of WGHTS. Thus, in this problem, the combination of
the inverse method and the weighted sampling using a stretched table successfully
enhances the efficiency of the direct weighted sampling. |

Ta.ble 6.44 summarizes the efficiencies of WGHTS and INWSST relative to those
of INVER for FSD of about 5 %. The efficiency of INWSST relative to that of
INVER is 1.564, on average. This magnitude is 65.2 times larger than the relative
efficiency of WGHTS. Thus, INWSST increases significantly the efficiency for a par-

ticular fractional standard deviation by reducing the sample variance of the estimated

response.

In this problem, the relative efficiency of INWSST is higher ilzhan that of MORSE
Problem II. This can be explained by the fact that the number of collisions for each
energy group in both simulations are different; the collisions occur in energy groups
8 to 33. Table 6.45 shows the frequency of collisions occured in energy groups 8 to

33 for each neutron source. One can notice that Problem III has more number of

215

collisions occuring at low energy groups than Problem I, since the transport medium
in Problem IiI has higher density than that of Problem II. In this context, the rela-
tive efficiency of INWSST in Problem III is 2.23 times higher than that -of MORSE
Problem II. For a FSD of about 5 %, the relative efficiency of INWSST in Problem
HI is also 2.03 times higher than that of Problem II. This indicates that the INWSST
method works better in such a problem involving a large number of collisions at low
energy, in which the weighted sampling method in INWSST is used more often. Thus,
INWSST achieves better performance when the problem involves a large number of
collisions at low energy.

Based on this result, one can conclude that the performance of INWSST ap-
proaches that of INVER if the simulation involves a large number of collisions at high
energy. However, INWSST performs better than INVER if more collisions occur at
low energy. One can expect, therefore, that the performaﬁce of INWSST will ap-
proach that of INVER if the transport medium has a high mass number, since the
inverse method in INWSST will be more often employed -due to the fact that a large

number of collisions will occur at high energy.

6.9.4 Remarks

In this problem, the density of water 1s higher than that of MORSE Problem II. This
problem therefore involves more number of collisions at low energy than in Problem I1.
It was found that INWSST entails unbiased estimated response for both detectors.
- The INWSST code increased significantly the efficiency of the direct weighted sam-
pling. Moreover, INWSST resulted in higher efficiency than that of INVER. The
relative efficiency of INWSST in this proble.m was higher than that of Problem II.
This indicates that the combination of the inverse method and weighted sampling
using stretched tables is effective in reducing the sample variance when the problem

involves a large number of collisions at low energy.

216

6.10 Conclusions

This chapter proposed some variants of the direct weighted sampling. In the problem
involving a one-dimensional probability table, the weighted sampling employing a
geometric distribution entailed much higher efficiency than that of the direct weighted
sampling as well as that of the inverse method. This was achieved by significantly
reducing the sample variance. An effort was also made to reduce the processing time
of generating geometric random numbers by increasing the vectorizability of the code.

For MORSE Problem I, the combination of the inverse and the weighted sampling
methods (INWS) enhanced the performance of the direct weighted sampling. The
TINWS method resulted in higher efficiency than those of the inverse method and the
direct weighted sampling method. |

In MORSE Problems 1I and III, the MORSE code incorporating the combination
of the inverse method and weighted sampling using stretched tables (INWSST) signif-
icantly improved the performance of the direct weighted sampling method. In Prob-
lem II the efficiency of INWSST was about the same as that of the inverse method,
while in Problem III its efficiency was higher than that of the inverse method. This is
due to the smaller sample variance obtained by the INWSST method. One can con-
clude, therefore, that the combination of the inverse method and weighted sampling
using a stretched table performed better in such a problem involving a large number
of collisions at low energy.

In this chapter, only the scalar processing of MORSE codes incorporating various
-sampling methods is examined, since in its present state the MORSE code is not
vectorizable. However, the local vectorization speedup was investigated by measuring
the scalar and vector processing time of different sampling methods in the COLISN
routine. Thus, this local speedup provides some indications of the global vectorization
speedup, if the entire MORSE code is vectorized by implementing an event-based

Monte Carlo algorithm.

217

In summary, the performance of INWS and INWSST approaches that of INVER, |
if fhe simulation involves a large number of collisions at high energy. On the other
hand, they perform better than INVER, if more collisions occur at low eﬁergy due to
the fact that the weighted sampling in these methods will be more often employed.
Finally, it should be emphasized that both methods are expected to significantly
reduce the processing time, if the probability table is sufficiently long.

218

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have investigated some of the existing methods for sampling from
arbitrary discrete distributions represented as probability tables. The inverse method,
the equii)robable method, the alias and Brown’s methods were considered. Since these
methods have some disadvantages, we have proposed a new sa.mpliﬁg method, called
the weighted sampling method, which is especially suited for vector processing. All
these sampling methods have been applied to Monte Carlo solutions of a large sparse
system of linear equations and neutron transpert problems. The codes were written
in VS Fortran and implemented on the IBM 3090-180VF. Their performance was
evaluated based on the scalar as well as vector processing time, the fractional standard
deviation, and the efficiency of the Monte Carlo solutions. In order to provide a
measure of both the statistical and computational performance, the efficiency was
defined in terms of both the processing time and the sample variance of a solution.
For the estimation of the distribution mean of a one-dimensional probability table,
it was found that the coinputing time of the inverse method increases as the length of
the probability table increases due to the searching process in the method. For a long

probability table this method requires therefore much larger processing time compared

219

to the other methods. The equiprobable method requirés the least processing time in
scalar as well as vector processing. However, this method requires a large storage of
size of 10° if the smallest probability is a b-digit decimal number. The a.li-a,s method
is not fully vectorizable since it requires if-statements involving indirect addressing.
Brown’s method is suitable for vectorization as it does not involve any if-statements.
It was found that the alias and Brown’s methods require a complicated procedure to
set up the tables for sampling, and these tables require storage of size three times of
the probability table’s size. All the existing sampling methods results in about the
same sample variances,

In order to overcome the computational drawbacks of the existing methods, we
have proposed a new sémpling method for sampling from probability tables, named
as the weighted sampling method. The weighted sampling method utilizes a uniform
distribution to construct samples from a probability table. Sﬁi)sequently, each sample
is multiplied by an adjustment factor. Thus, this method eliminates searching, and
contains only fetching and arithmetic operations. The scalar and vector codes of the
welghted sampling method are simpler than those of the other methods. It was shown
that the weighted sampling method enhances the vectorizability of a vector Monte
Carlo code, and achieves therefore the highést vectorization speedups.

For estimating the mean of a one-dimensional probability table, the weighted
sampling method results in a low efficiency if the values of mass points have the
same trend as .tha,t. of the associated probabilities. On the other hand, this method
achieves a high efficiency if the values of mass points and the associated probabilities
have opposite trends. _'

Two Monte Carlo methods based on absorbing and ergodic Markov chains for
solving a system of linear equations have been investigated. The Monte Carlo solu-
tions incorporating the inverse method, Brown’s method and the weighted sampling
method have been examined. It was shown that the weighted sampling method re-

duces the time complexities of these methods from ©(n3) in the case of the inverse

220

method to ©(n?), for solving a system of n linear equations. The weighted sampling
method also enhances the vectorizability of the Monte Carlo codes for solving a sparse
linear system. Major restructuring of the scalar codes is required to achieve high vec-
torization speedups. For this purpose, a stack processing scheme (an event-based
algorithm) was implemented to carry out concurrently a set of random walks. The
weighted sampling method speeds up the computation of the Monte Carlo methods in
scalar as well as vector processing. In general, the efficiencies of Monte Carlo solutions
.incorporating the weighted sampling method are higher than those incorporating the
inverse and Brown’s methods. Thus, the weighted sampling method is suited for the
Monte Carlo methods for solving a large sparse system of linear equations.
| Three neutron transport problems with different physical characteristics have been
examined and solved using the MORSE code. The standard code uses the inverse
method for sampling energy groups and neutron directions é);fter collisions. Brown’s
- method and the weighted sampling method were incorporated into the MORSE code.
It was found that Brown’s method requires a complica‘ﬁed procedure and a large
- amount of memory to set up the probability tables in the MORSE code. In contrast,
the weighted sampling method does not require preprocessed scattering and angular
scattering proba.bility tables, since it can utilize the original probability tables. The
weighted sdmpling method was found to speed up the scalar processing of the MORSE
code. In order.‘to predict the potential vectorization speedup, we have investigated the
local vectorization speedup of the weighted sampling method incorporated into the
subroutine which handles collision process. The weighted sampling method increases
the vectorizability of this subroutine, and achieves high speedup of about 10. In
this case, the weighted sampling method results in a large sample varianée, since the
statistical weights of neutrons vary significantly. Consequenily, this method results
in lower efficiencies than those of Brown’s and the inverse methods._
In an attempt to improve the efliciency of the weighted sampling method, four

variants of the weighted sampling method were developed. These variants involve

221

stretching of a probability table, nonuniform distributions and the combination of
two sampling methods. For the mean estimation from a one-dimensional probability
table, the variant which utilizes a nonuniform discrete distribution entails much hi gher
efficiency than those of the other sampling methods. This is achieved by reducing the
sample variance and vectorizing the generation of random numbers from binomial and
geometric distributions. The combination of the inverse method and the weighted
sampling method with a stretched probability table achieves high efficiency, if the
neutron transport application involving a large number of collisions at low energy.
This is typically true for many applications.

The computational study has been carried out on the IBM 3090-180 with a vector
facility. The architectures and the techniques of vectdrizing compilers of other vector
computers are similar to those of the IBM 3090. Therefore, we expect that the
implementations and qualitative results in this thesis are apblicable to other vector
computers. |

In conclusion, we have made the first major attempt fo investigate the vectoriz-
ability of some of the existing discrete sampling metho.ds, applied them to the var-
ious problems, and assessed their performance for the scalar and vector processing.
To overcome the computational drawbacks of these sampling methods, the weighted
sampling method was proposed. It was shown that this method enhances the vec-
torizability of .the vector Monte Carlo codes and achieves better performance for the
scalar as well a{s vector processing. The study of vectorizing the generation of discrete

nonuniform random numbers has been carried out as well.

222

7.2 Future Work

Future work may include:

e The implementation of the codes developed in this work on other univector
processors. This should be a straightforward task, due to the fact that the
architectures and the techniques of vectorizing compilers of other vector com-

puters are similar to those of the IBM 3090-180VF.

e The implementation of the codes developed in this work on parallel-vector pro-
cessors. The sampling methods were implemented on the IBM 3090-180VF
which has only a single vector processor. The vectorization speedups attained
in this work indicate that high speedups can be achieved if the codes are im-

plemented on parallel-vector computers.

e The development of variants of the weighted sampling method using distribu-
tions other than geometric and binomial distributions. Other discrete distri-
butions are worth investigated since a reasonable sample variance of a Monte

Carlo solution can only be achieved by using a suitable distribution.

¢ Further study of determining the most suited variant of the weighted sampling
method for a given application. The study should be directed towards utilizing
a mathematical model for minimizing the sample variance of a Monte Carlo

solution.

o The vectorization of the entire MORSE code. The local vectorization of the
weighted sampling method in the MORSE code achieved high speedups. This
fact provides an indication that vectorization of the entire MORSE code is worth

considering.

e The investigation of an efficient geometry algorithm to track particles through-

out the system and relate the positions of particles to the materials encountered

223

in the MORSE code. This process is time consuming and contains many vec-
torization inhibitors. Its vectorization is therefore essential, if the MORSE code

1s to be fully vectorized.

Minimization of time for processing multistack on univector as well as multivec-
tor processors. If there is only one vector processor, the problem is to obtain the
optimal sequence of processing the stacks since only one stack can be processed
at a time. For a multivector processor with the assumption that the number
of processors is less than the number of stacks, the problem is to assign a set
of stacks to the processors. Optimization of these processes will be useful to

reduce the computing time.

224

References

[1] Ahmad, M., Giri, N., and Sinha, B.K. (1980), Estimation of The Mixzing Pro-
portion of Two Known Distributions, Rapports De Recherches Du Depa,rt.ment
De Mathematiques Et De Statistique, Universite De Montreal, Quebec,

{21 Aho, A.V., Hopcroft, J.E., and Ullman, J.D. {1974), The Design And Anal-
ysis of Computer Algorithms, Addison—Wesley Publishing Company, Reading,
Massachusetts.

[3] Bell, G.I. and Glasstone, S. (1970), Nuclear Reactor Theory, Van Nostrand
Reinhold Company, New York.

[4] Berg, P.W. and McGregor, J.L {(1966), Elementary Partial Differential Fqua-
tions, Holden-Day Inc., San Francisco, California.

[5] Bhavsar, V.C. (1981), Parallel Algorithms For Monte Carlo Solutions of Some
Linear Operator Problems, Ph.D. Thesis, Department of Electrical Engineering, -
Indian Institute of Technology, Bombay, India.

[6] Bhavsar, V.C. and Isaac, J.R. (1987), Design And Analysis of Parallel Monte
Carle Algorithms, SIAM J. Sci. Stat. Comput, Vol. 8, No. 1, pp. s73-595.

[7] Bhavsar, V.C., Noye, G., and Husseiﬁ, EM.A. (July 1988), Performance of
a Monte Carlo Code on Two Supercomputers, Proc. of 12th IMACS World
Congress on 'Scientific Computation’, Paris, Vol. 4, pp. 408-410.

[8] Binder, K. and Heermann, D.W. (1988), Monte Carlo Simulation in Statistical
Physics: An Introduction, Springer-Verlag, Berlin, Heidelberg.

[9] Bobrowicz, F.W., Lynch, J.E., Fisher, K.J., and Tabor, J.E. (1984), Vectorized
Monte Carlo Photon Transport, Parallel Computing, Vol. 1, pp. 295-305.

[10] Brown, F.B. (1981), Vectorized Monte Carlo, Ph.D. Thesis, Department of Nu-
clear Engineering and the Department of Electrical and Computer Engineering,
University of Michigan.

225

[11] Brown, F.B., Martin, W.R., and Calahan, D.A. (1981), A Discrete Sampling |
Method for Vectorized Monte Carlo Calculations, Trans. Am. Nucl. Soc. Vol. 38,
pp. 354-355.

- [12] Brown, F.B., Martin, W.R., and Calahan, D.A. (1981), A Computer Program for
A Discrete Sampling Method for Vectorized Monte Carlo Calculations, Personal
Communication.

[13] Brown, F.B. and Martin, W.R. (1984), Monte Carlo Methods For Radiation
Transport Analysis on Vector Computers, Progress in Nuclear Energy. Vol. 14,
No. 3, pp. 269-299.

[14] Brown, F.B. and Martin, W.R. (1987), Status of Vectorized Monte Carlo For
Farticle Transport Analysis, The International Journal of Supercomputer Appli-
cations, Vol.1,No.2,11-32.

[15] Carnevali, P. and Kindelan, M. {1990), A Simplified Model to Predict the Per-
formance of FORTRAN vector Loops on the IBM 3090/VF, Parallel Computmg,
Vol. 13, pp. 35-46.

[16] Carter, L.L. and Cashwell, E.D. (1977), Particle-Transport Simulation wz’th the
Monte Carlo Method, Technical Information Center, Energy Research and De-
velopment Administration, Oak Ridge, Tennessee,

[17] Cassidy, B. (Oct. 1986), UNB Installs IBM 3090 Computer And Vector Facility,
Compilation, Vol. 19, No. 3, pp. 2-3.

[18] Cheng, H. (September 1989), Vector Pipelining, Chaining, and Speed on the
IBM 3080 and Cray X-MP, IEEE Computer, Vol. 22, No. 9, pp. 31-46.

(19] Cheney, W. and Kincaid, D. (1985), Numerical Mathematics and Computing,
Second edition, Brooks / Cole Publishing Co., Monterey, California.

[20] Clark, R.S. and Wilson, T.L. (1986), Vector System Performance of The IBM
3090, IBM Systems Journal, Vol.25,No.1, pp. 63-82.

[21] Cooper, L. (1974}, Applied Nonlinear Programming For Engmeers And Scien-
tists, Aloray Inc., Englewood, New Jersey.

[22] David, H.A. (1981), Order Statistics, Second edition, John Wiley & Sons Inc.,
New York.

[23] Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer-Verlag,
New York.

226

[24] Dongarra, J.J., Duff, L.S., Sorensen, D.C., and Van Der Vorst, H.A. (1991), Solv- |
ing Linear Systems on Vector and Shared Memory Computers, STAM, Philadel-
phia.

[25] Duff, L.S., Erisman, A.M., and Reid, J.K. (1989), Direct Methods for Sparse
Matrices, Oxford University Press, New York. '

[26] Edmundson, H.P. (1952), Monte Carlo Matriz Inversion and Recurrent Events,
Math. Tables Other Aids Comput., Vol. 7, pp. 18-21.

[27] Forsythe, G.E. and Leibler, R.A. (1950), Matriz Inversion by a Monte Carlo
Method, Math. Tables Other Aids Comput., Vol. 4, pp. 127-129.

[28] Gerald, C.F. and Wheatley, P.O. (1989), Applied Numerical Analysis, Fourth
edition, Addison-Wesley Publishing Co., Reading, Massachusetts.

[29] Gibson, D.H., Rain, D.W., and Walsh, H.F. (1986), Engincering and Scientific
Processing on the IBM 3090, IBM Systems Journal, Vol. 25, No. 1, pp. 36-50.

[30] Glynn, P.W. and Iglehart, D.L. (Nov. 1989), Importanbe Sampling for Stochas-
tic Simulations, Management Science, Vol. 35, No. 11, pp. 1367-13%.

[31] Halton, J.H. (1970), A Retrospective and Prospective Survey of The Monte Carlo
Methods, STAM Review, Vol.12, No.1, pp. 1-63.

[32] Hammersley, J.M. and Handscomb, D.C. (1964), Monte Carlo Methods,
Methuen, London.

[33] Heller, D. (October 1978), A Survey of Paraliel Algorithms In Numerical Lin-
ear Algebra, SIAM Review Vol. 20, No 4, pp. 740-773.

[34] Heidelberger, P. (1987), Discrete Event Simulations and Perallel Processing:
Statistical Properiies, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York. '

{35] Hillier, F'.S. and Lieberman, G.J. (1988), Introduction To Operations Research,
Fourth edition, Holden Day Inc., Oakland, California.

[36] Hussein, E.M.A. (1983), Fast Neutron Scattering Method for Local Void Frac-
tion Distribution Measurement In Two-Phase Flow, Ph.D. Thesis, McMaster
University. '

[37] Hussein, E.M.A. (1988), Modelling and Design of a Neutron Scatterometer for
Void-Fraction Measurement, Nuclear Engineering and Design, 105, pp. 333-348.

227

[38] Hussein, E.M.A. (1990), Center-of-Mass Monte Carlo Simulation of Neutron |
Scattering Frperiments, Appl. Radiat. Isot., Vol. 41, No. 10/11 pp 1033-1039,
Int. J. Radiat. Appl. Instrum. Part A.

[39] Hussein, E.M.A. (1991), Approzimate Estimators for Fluence at a Point in
Monte Carlo Center-of-Mass Neutron Transport, Nuclear Science and Engineer-
ing, Vol. 108, No. 4, pp. 416-422.

[40] Hwang, K. and Briggs, F.A. (1984), Computer Architecture And Parallel Pro-
cessing, McGraw—Hill Computer Science Series, New York,

[41] IBM (19886), Designing and Writing FORTRAN Programs for Vector and Par-
allel Processing, IBM 5C23-0337-00, Kingston, New York.

[42] IBM (March 1990), Engineering and Scientific Subroutine Library, Guide and
Reference Release 4, Fifth Edition, IBM Corp., Kingston, New York.

[43] IBM (March 1988), VS FORTRAN Version 2 Release 3, Language and Library |
Reference, Fourth Edition, IBM Corp., Kingston, New York.

[44] IBM (August 1989), VS FORTRAN Version 2 Release 4, Language and Library
Reference, Fifth Edition, IBM Corp., Kingston, New York.

[45] IMSL (August 1989), Fortran Subroutines for Statistical Analysis, Version 1.0,
IMSL Inc., Houston, Texas.

[46] Ishiguro, M., Harada, H., Makino, M., and Martin, J.L. (Fall 1987), Perfor-
mance Analysis of Vectorized Nuclear Codes On A FACOM VP-100 At The
Japan Atomic Energy Research Institute, The International Journal of Super-
computer Applications, Vol. 1, No.3, pp. 45-56.

[47] Johnson, N.L. and Kotz, 5. (1977), Urn Models and Their Application, John
Wiley & Sons Inc., New York.

[48] Kahn, H. (1958), Applications of Monte Carlo, The Rand Corpora,tlon

[49] Karmarkar, N. (June 1991}, A New Parallel Architecture for Sparse Mairiz
Computation Based on Finite Projective Geometries, Proceedings of Supercom-
puting Symposium '91, V.C. Bhavsar (Ed.), Faculty of Computer Science, Uni-
versity of New Brunswick, Fredericton, N.B., pp. 309-321.

[50] Kemeny, J.G. and Snell, J.L. (1960), Finite Markov Chams D. Van Nostrand
Company, Princeton, New Jersey.

[51) Knuth, D.E. (1968), The Art of Computer Programming: Volume I / Fun-
damental Algorithms, Addison—Wesley Publishing Company, Reading, Mas-
sachusetts. :

228

[52] Kogge, P.M. (1981), The Architecture of Pipelined Computers, McGraw—Hill
Book Company, New York. :

[53] Kronmal, R.A. and Peterson,Jr. A.V. (1979), On the Alias Method for Generat-
ing Random Variables from a Discrete Distribution, The American Statistician,
Vol. 33, No. 4, pp. 214-218.

[54] Kronsjo, L. (1987), Algorithms: Their Complezity and Efficiency , Second Edi-
tion, John Wiley & Sons Inc., Chichester.

[55] Law, A.M. and Kelton, W.D. (1982), Simulation Modeling and Analysis
McGraw-Hill Book Company, New York.

[56] Liu, B. and Strother, N. (June 1988), Programming In VS Fortran On The
IBM 3090 For Mazimum Vector Performance, IEEE Computer, Vol.21, No.6,
pp- 65-76.

[57] Los Alamos Scientific Laboratory (1963), Los Alamos Group-Averaged Cross
" Section, LAMS-2941, Los Alamos.

[58] Lux, I. and Koblinger, L. (1991), Monte Carlo Particle Transport Methods:
Neutron and Photon Calculations, CRC Press Inc., Boca Raton, Florida.

[59] Marsaglia, G. (1963), Generating Discrete Random Variables in a Computer,
Comm. ACM, Vol. 6, No. 1, pp. 37-38.

[60] Martin, W.R., Rathkopf, J.A., and Nowak, P.F. {Nov. 1988), Monte Carlo
Photon Transport On The Cray-XMP, Trans. American Nuclear Society.

[61] Martin, W.R., Nowak, P.F., and Rathkopf, J.A. (1986), Monte Carlo Photon
Transport On A Vector Supercomputer, IBM Journal of Research and Develop-
ment, Vol.30, No.2, 193-201. :

[62] Martin, W.R., Wan, T.C., Abdel Rahman, T.5., and Mudge, T.N. (1987), Monte
Carlo Photon Transport on Shared Memory and Distributed Memory Parallel
Processors, The International Journal of Supercomputer Applications, Vol. 1,
No. 3, pp. 57-74.

[63] Mathur, A.P. and Galiano, E. (1987), Inducing Vectorization: A Formal Anal-
ysis, Technical Report, SERC-TR-6-P, Software Engineering Research Center,
Purdue University, West Lafayette, Indiana 47907,

[64] Mathur, A.P., Galiano, E., Ligon III, W., and Greenlaw, T. (1987), Concur-
rent Erxecution over Multiple Data Sets on Vector Processors, Technical Report,
SERC-TR-7-P, Software Engineering Research Center, Purdue University, West
Lafayette, Indiana 47907.

229

[65] MORSE-CG (1971), General Purpose Monte Carlo Multigroup Transport Code |
' with Combinatorial Geometry, CCC-203, RSIC, Oak Ridge National Laboratory.

[66] Nakagawa, M., Mori, T., and Sasaki, M. (1991), Comparison of Vectorization
Methods Used in a Monte Carlo Code, Nuclear Science and Engineering, Vol. 107,
No. 1, pp. 58-66.

[67] Neuts, M.F. (1981), Matriz-Geometric Solutions in Stochastic Models: An Al-
gorithmic Approach, Johns Hopkins Univ. Press, Baltimore, MD.

[68] Niederreiter, H. (November 1978), Quasi-Monte Carlo Methods And Pseudo-
' Random Numbers, Bulletin of The American Mathematical Somety, Vol. 84,
No. 6, pp. 957-1041.

[69] Niederreiter, H. (1988), Low-Discrepancy and Low-Dispersion Sequences, Jour-
nal of Number Theory, Vol. 30, pp. 51-70.

{70] Noye, G. (1887), Optimizing Monte Carlo Codes on IBM 3090-180VF, Work
Report, School of Computer Science, University of New Brunswick.

[71] Papoulis, A. (1984), Probability, Random Variables, aﬁd Stochastic Processes,
Second Edition, McGraw-Hill Book Company, New York.

[72] Radicati, G. and Vitaletti, M. (March 1989), Conjugate-gradient Subroutines
for the IBM 3090 Vector Facility, IBM Journal of Research and Development,
Vol. 33, No. 2, pp. 125-135.

[73] Rego, V.J. and Mathur, A.P. (March 1990), Concurrency Enhancement through
Program Unification: A Performance Analysis, Journal of Parallel and Dis-
tributed Computing, Vol. 8, No. 3, pp. 201-217.

[74] Rego, V.J. (Dec. 1989), Some Efficient Computational Algorithms Related to
Phase Models, Purdue CSD-TR727, Acta Informatica.

[75] Rego, V.J. and Mathur, A.P. (October 1990), Ezploiting Parallelism Across
Program Ezecution: A Unification Technique and Its Analysis, IEEE Transac-
tions On Parallel and Distributed System, Vol. 1, No. 4, pp. 399-414.

[76] Rubinstein, R.Y. (1981), Simulation and The Monte Carlo Method, John Wiley
& Sons Inc., New York.

[77] Sadeh, E. (April 1974), Monte Carlo Solution of Partial Differential Equations
by Special Purpose Digital Computer, IEEE Trans. Computers, Vol. ¢-23, No 4,
pp. 389-397.

230

(78] Sarno, R. (Sept. 1988), Performance Modelling of Vectorized Monte Carlo
Codes, M.Sc. Thesis, Technical Report TR88-043, Faculty of Computer Science,
University of New Brunswick, Fredericton, N.B., Canada.

[79] Sarno, R., Bhavsar, V.C., and Banerjee, P.K. (August 1989), Design and Anal-
ysis of Vector Processing in Monte Carlo Particle Transport Codes, Proceedings
of the 1989 International Conference on Parallel Processing, The Pennsylvania
State University Press, University Park, pp. I11.80-II1.87.

[80] Sarno, R., Bhavsar, V.C., and Banerjee, P.K. (Sept. 1989), Design and Anal-
ysis of Vectorized Monte Carlo Codes, Technical Report TR89-048, Faculty of
Computer Science, University of New Brunswick, Fredericton, N.B., Canada, 48

pages.

[81] Sarno, R., Bhavsar, V.C., and Hussein, EM.A (Nov. 1989), Performance
of Discrete Random Variable Generators on IBM 3090-180VF, Proceedings of
APICS Annual Computer Science Conference, V.C. Bhavsar (Ed.), Faculty of

Computer Science, University of New Brunswick, Fredericton, N.B., Canada,
pp. 114-125.

(82] Sarno, R., Bhavsar, V.C., and Hussein, E.M.A (December 1990), Generation of
Discrete Random Variables on Vector Computers For Monte Carlo Simulations,
International Journal of High Speed Computing, Vol. 2, No. 4, pp. 335-350.

[83] Sarno, R., Bhavsar, V.C., and Hussein,E.M.A (June 1991), Monte Carlo So-
lutions of Linear Equations Using Weighted Sampling, Proceedings of Super-
computing Symposium 91, V.C. Bhavsar (Ed.), Faculty of Computer Science,
University of New Brunswick, Fredericton, N.B., Canada, pp. 151-163.

[84] Schaeffer, N.M. (1973), Reactor Shielding for Nuclear Engineers, U.S. Atomic
Energy Commission, Springfield, Virginia.

[85] Sedgewick, R. (1990), Algorithms in C, Addison-Wesley Publishing Company,
Reading, Massachusetts. . .

[86] Singh, Y., King, G.M., and Anderson, J.W. (19886), IBM 3090 Performance: A
Balanced System Approach, IBM. Systems Journal, Vol. 25, No. 1, pp. 20-35.

[87] Spanier, J. and Gelbard, E.M. (1969), Monte Carlo Principles and Neutron
Transport Problems, Addison—Wesley Publishing Company.

[88] Stinson, D.R. (1987), An Iniroduction to The Design and Analysis of Algo-
rithms, Second edition (Revised), The Charles Babbage Research Centre, Win-
nipeg, Canada.

231

(89]
[90]

[91]

[92]

[93]
[94]
[95]

[96]
[97]

[98]

[99]

Tassou, T.A. (1986), Adaptation of A Monte Carlo Radiation Transport Code
To Supercomputers, M.Sc. Thesis, Faculty of Computer Science, University of
New Brunswick, Fredericton.

Tassou, T., Bhavsar, V.C., Hussein, E., Gallivan, K.A. (1986), Monte Carlo
Neutron Transport on the Alliant FX/8, School of Computer Science, University
of New Brunswick, Fredericton, NB, TR86-035.

Tassou, T.A., Hussein, E.M.A., Bhavsar, V.C., and Gujar, U.G. (1986), Monte
Carlo Neutron Transport on the Cyber-205 Supercomputer, Proceedings of Sec-
ond International Conference on Simulation Methods in Nuclear Engineering,
Brais, A. (Ed.), Groupe d’analyse Nucleaire Ecole Polytechnique, Montreal,
Canada, Vol. 2, pp.619-637.

Thinking Machines Corporation (Oct. 1991), The Connection Machine CM-5
Technical Summary, Cambridge, Massachusetts.

Topham, N.P., Omondi, A., and Ibbett, R.N. (1988), On the Design and Perfor-
mance of Conventwnal Pzpelmed Archatectums The Journal of Supercomputmg,
No. 1, pp. 353-393.

Trivedi, K.S. (1982), Probability & Statistics With Reliability, Queuing, And
Computer Science Applications, Prentice-Hall Inc., Englewood Cliffs, New Jer-
sey.

Troubetzkoy, E., Steinberg, H., and Kalos, M. (1973), Monte Carlo Radiation
Penetration Calculations on a Parallel Computer, Trans, Am. Nucl. Soc., Vol.
17, p.260,1973.

Tucker, 5.G. (1986), The IBM 3090 System: An Overview, IBM System Journal,
Vol. 25, No. 1, pp. 4-19.

Varga, R.S. (1962), Matriz Iterative Analysis, Prentice-Hall, Englewood, Cliffs,
N.J. .

Walker, A.J. (1977), An Efficient Method for Generating Discrete Random Vari-
ables with General Distributions, ACM Trans. on Mathematlcal Software, Vol.
3, No. 3, pp. 253-256.

Wang, A.K.F. (Sept. 1989), Some Models for Vectorized Algorithms, M.Sc.
Thesis, Faculty of Computer Science, University of New Brunswick, Fredericton,
N.B., Canada.

[100] Wasow, W.R. (1952), A Note on the Inversion of Matrices by Random Walks,

Math. Tables Other Aids Comput., Vol. 6, pp. 78-81.

232

{101] Weberpals, H. (1990), Architectural Approach to the IBM 3090FE Vector Per- |
formance, Parallel Computing, Vol. 13, pp. 47-59. :

[102] Wilks, S.S. (1963), Mathematical Statistics, Second printing, John Wiley &
Sons Inc., New York.

[103] Woo, V.M.C. (May 1989), Monte Carlo Codes and Vectorization Techniques,
M.Sc. Thesis, School of Computer Science, University of New Brunswick, Fred-

ericton, N.B., Canada.

[104] Ya, P.V. (1980), New Fast Algorithms For Matriz Operatwn SIAM J. Com-
puting, Vol. 9, pp. 321-342.

{105] Zee, S.K., Turinsky, P.J., and Shayer, Z. (1989), Vectorized and Multitasked
Solution of the Few-Group Neutron Diffusion Equations, Nuclear Science and
Engineering, Vol.‘ll]l, No. 1, pp. 58-66.

233

Appendix I
The IBM 3090-180VF

Some of the features of the IBM 3090-180 with a Vector Facility available at the

University of New Brunswick are as follows: [17]
o 64 MB of central storage,

16 channels,

18.5 nanosecond cycle time,

e a 64-KB high speed buffer,

® 64-bit wide data paths.

The Vector Facility has the following features:

e 32-bit binary operands (INTEGER*4 or LOGICAL*4},
¢ 32-bit floating-point operands (REAL*4},

¢ 64-bit floating point operands (REAL*8),

e 16 vector registers, each containing 128 32-bit operands,

the couple of vector registers to process 64-bit operands,

234

¢ masked vector addressing,
o 171 new instructions for vector processing,

e pipelined add, subtract, compare and multiply arithmetic units.

235

;
;
i
!
i
‘

Candidate’s full name

Place and date of birth

Permanent address

Schools attended

Universities attended

VITA

: Riyanarto Sarno

: Surabaya, Indonesia,

August 3, 1959.

: JI. Tales 4 No.14,

Surabaya (60244),

Indonesia.

: Surabaya Senior High School II,

Surabaya, Indonesia,

1975 - 1977.

: Bandung Institute of Technology,

Bandung, Indonesia,

Ir (EE), 1978 — 1983,

University of Padjadjaran,
Bandung, Indonesia,

Drs.(Economics), 1980 — 1985.

University of New Brunswick,
Fredericton, Canada,

MSc.(CS), 1987 - 1988.

Publications:

1. Sarno, R. (Oct. 1983), System Softwares for Mini Computer WANG 2200 VP,
Ir. Thesis, Department of Electrical Eng., Bandung Institute of Technology,

Bandung, Indonesia.

2. Sarno, R. (Nov. 19835), Forecasting of Indonesian Economic Variables Using
Dynamic Input-Output Models, Drs. Thesis, Faculty of Econémics, University

of Padjadjaran, Bandung, Indonesia.

3. Sarno, R. {Sept. 1988), Performance Modelling of Vectorized Monte Carlo
Codes, M.Sc. Thesis, Technical Report TR88-043, Faculty of Computer Science,

University of New Brunswick, Fredericton, N.B., Canada.

4. Sarno, R., Bhavsar, V.C., and Banerjee, P.K. (August 1989), Design and Anal-
ysis of Vector Processing in Monte Carlo Particle Transport Codes, Proceedings
of the 1989 International Conference on Parallel Processing, The Pennsylvania

State University Press, University Park, pp. I1I1.80-1I1.87.

5. Sarno, R., Bhavsar, V.C., and Banerjee, P.K. (Sept. 1989), Design and Anal-
ysis of Vectorized Monte Carlo Codes, Technical Report TR89-048, Faculty of
Computer Science, University of New Brunswick, Fredericton, N.B., Canada,

48 pages:

6. Sarno, R., Bhavsar, V.C., and Hussein, E.M.A. (Nov. 1989), Performance
of Discrete Random Variable Generators on IBM 3090-180VF, Proceedings of
APICS Annual Computer Science Conference, V.C. Bhavsar (Ed.), Faculty of
Computer Science, University of New Brunswick, Fredericton, N.B., Canada,

pp. 114-125,

7. Sarno, R., Bhavsar, V.C.,; and Hussein, E.M.A. (Dec. 1990), Generation of

Discrete Random Variables on Vector Computers For Monte Carlo Simulations,

International Journal Of High Speed Computing, Vol. 2, No. 4, pp. 335-350.

8. Sarno, R.,-Bhavsa,r, V.C., and Hussein, EM.A. (June 1991), Monte Carlo
Solutions of Linear Equations Using Weighted Sampling, Proceedings of Super-
computing Symposium 91, V.C. Bhavsar (Ed.}, Faculty of Computer Science,
University of New Brunswick, Fredericton, N.B., Canada, pp. 151-163.

