A FORTRAN TO MODULA 2 DICTIONARY

by

W.R. Knight
D.M. Fellows

TR92-073 September 1992

n

‘W,.R., Knight September 198
D.M. Fellows January 198
W.R. 18989

Knight September

SOME DIFFERENCES FROM FORTRAN

Starting a new line does not start a newl statement; statements end with
a semicolon, except for the very last END statement which
terminates the program: That ends with a period.

Modula distinguishes lower and upper case. Variables "CATM and “cat"
are not the same. :

All Modula key words are in capitals.
All variables must be declared.

All main program variables are known to any procedure {suboutine}.
You must declare separately in the procedure to avoid changing
main program variables. '

Arguinénts of a procedure (subroutine) are declared in the argument
list rather than with the other variables.

Modula does not allow mixed arithmetic, i.e. inhteger and real constants
or variables in the same expression. {what is worse it will not
always allow integer and cardinal in the same expression.)

'NASTY ERROR SITUATIONS

In Stony Brook QuickMod, An error message insisting an END statement
is missing probably means that the terminal END statement has
gotten buried in an unclosed comment or in unclosed guotes, and
this can be the hard to find. The problem can even be a
¢omment opened inside of another comment.

FORTRAN (or Topic) MODULA (or information) ' page 1

{) A{) to control order of computation and_to
enclose a procedure argument list
[1 for array indexing

= 3= The modula = is the fortran .EQ.

+ +
* *
/ / real divide
: DIV integer or cardinal divide
wx Not available, use pow from module MathLibO
ABS ABS |
é AMAX1(X,¥) IF.X>Y THEN 7Z:=X ELSE Z:=§;
: AMIN1{X,Y) . IF X<¥ THEN Z:=X ELSE Z:=Y;
ALOG in {lower case) import from MathLibO.
assignment Modula uses := for assignment instead of =

Assignment may convert types: For integer or
cardinal to real use the built-in function
FLOAT, for real to integer, use function entier
from module MathLibO.

g .AND. . AND The ampersand, & ,i1s alsc accepted.

Z ATAN : arctan (lower case) import from MathLibo

5 C See Comment

3 case The nifty CASE construction does not exist in
Fortran. Exampie:

VAR CaseSelector INTEGER (¥* or cardinal *)
CASE CaseSelector OF

ELSE (* some computation ¥*)
END {*case¥*);
As vou would expect, the hlock of computation
appropriate to the case selector is done. The
case selector may be character (or an ennumer-
ated type.) Cases are separated by a vertical
bar.

5 1: (* some computation. ¥*) {
? 2..5: (* some computation. *) i
; 12: (* some computation ¥*) j

FORTRAN (or Topic)

MODULA {(or information) page 2

CHARACTER LETTER
CHARACTER WORD(6)
CHARACTER WORD(0:5)
CHARACTER WORD*6

character literals

COMMON

Comment

COMPLEX

constant

CONTINUE

continuation in col &

cos

DATA

/ divide

VAR LETTER : CHAR

VAR WORD : ARRAY [1..6] OF CHAR
VAR WORD : ARRAY [0..5] OF CHAR
VAR WORD : ARRAY [0..5] OF CHAR

However, be careful; these are different:
VAR CC : CHAR
VAR CC : ARRAY [1..1] OF CHAR

Either single or double gquotes may be used.
LETTER:='A"; WORD:="CAT';
LETTER:="A"; WORD:="CAT";

Put common variables and constants in a module
and import the module.

In Modula a comment begins (* and ends ¥)

A comment may occur anywhere so Jong as it
doesn't break up a word. {Note: In QuickMod a
(*¥ insgide of a comment makes trouble.

Neot included. It can't even be faked gracefully.

See also PARAMETER.

As in Fortran a decimal point specifies a real
number. Mcdula deoes not distinguish between real
and Jong real constants; the YDOY you have to
keer tacking on in Fortran is neither allowed nor
necessary. Quotes, double " or single ', are
used for character constants.

Not needed. Feor loop termination use END.

Irrelevant: Statements are separated by
semicolons.

COs (lower case) import from MathLiboO.

Not available in vanilla Modula. You can set
single constants using CONST (See PARAMETER).
With arrays yvou need an assignment statement for
every element, though you can hide this in a mod-
ule created for the purpose. Stony Brook Modula
has vector constants, see its manual.

Real division, X /Y as of old.
Integer orcardinal division, I DIV J
(Mcdula disallows mixed mode arithmetic.)

FORTRAK (or Topic)

MODULA (or information) page 3

Do .. I = 1,5

Do .. I = 3,9,2

DOUBLE PRECISION X

DIMENSION

ELSE

END

agqual
LEQ.

EQUIVALENCE

FOR ¥ := 1 T0O 5 DO
{* statements *)
END;
FOR I := 3 TO $ BY 2 DO {* statements *) ENﬁ;

Modula allows backward loops.

Note: No statement number ends a loop, the EHND
keyword dces that.

Note: Modula is fussy about types here and won't
let vou to mix integer and cardinal.

VAR X:LONGREAIL; (* See also REAL*S8 ¥)
(stony Brook Modula supplies a module named
LonagMathLib0 paralleiing the REAL module
MathLibo.)

ARRAY [lower_bound .. upper bound] OF type
See also particular types, e.g. INTEGER, REAL,...

E examples: 2.0E3 -0.44E-5
ELSE See also IF
(* end of a procedure named PP *) END PP;
(* ands of IF, FOR, etc blocks *) END;

{* end of an entire module, MM, ¥}

(* ends with a period not semiclon *) END MM.

Modula uses := for assignment, (see also) and
= for Boolean expressions in IF statements, etc.

Use variant reccords or pointers. An example
of each follows for printing the bit pattern
of real 1.0/3.0 as a long cardinal.

(** example 1: VARIANT RECORDS *wkdkdkkkkkkk)
VAR Equiv RECORD
' CASE : CARDINAL OF
1: R: REAL I
2: C: LONGCARD
END (*caze¥)
END (* Eguiv *);
BEGIN Equiv.R := 1.0/3.0;
WritelLongCard{Equiv.C, 12);

(** example 2: POINTERS *******************)
FROM SYSTEM IMPORT ADR;
VAR R : REAL;

P : POINTER TO LONGCARD;

FORTRAN (or Topic)

MODULA (or information} page 4

EXP

. FALSE.
FLOAT
FORMAT

FUNCTION

.GE .

GOTO
GOTO (computed)

LGT.

IF

IFIX

IMPLICIT

BEGIN R := 1.0/3.0;
P := ADR(R};
WriteLongCard{P ,12};

exp (lower case) impert from MathLib(.
FALSE

FLOAT

See Input-ountput and Z-Fformat

PROCEDURE. A sample integer function follows:
PROCEDURE TWICE(X:INTEGER) :INTEGER;
BEGIN
RETURN 2*X (* see below *)

END TWICE;
The value returned is specified by the RETURN
statement. The function's name must appear in
the END statement.

»=

There is no GOTO as it's Modula philoslphy to do
program control with IF-THEN-ELSE or CASE state-
ments.

See cage

(* axample
(* example
(* example

*) IF J<0 THEN J:=0 END;

IF X<¥ THEN Z;:;=X ELSE Z:=Y END;
¥}y IF I<% THEN I 1; J 1= 2;

ELSE I 6; J 1= 7;
END;

(* exampie 4 *} IF code=1 THEN name="CAT"
ELSIF code=2 THEN name="COW"
ELSIF code=3 THEN name="DOGY
ELSE name="UNKNOWN"
END; '

Lro P
*

n

TRUNC

Not needed: Everything must be declared.

FORTRAN {or Topic) MODULA (or information) ' page 5

input-output

There 1is ho general purpose print or read statement.
Instead, input-output is done with procedures, and there
has to be a different procedure for every data type.
Moreover these procedures can't just be used, they are in
procedure libraries and must be imported.

pPifferent implementors may supply different input-output
modules. Commonly the proc¢edures print at most one number
or character per ¢all, with no procedures provided for
structured data tvpes except one dimensional character
arrays

Some selected procedures from Stony Brook Mcodula
follow, those above the line ==== are standard
and available in most other implementations.

module TnOutcii i in v snsnnsens et et
sample use data type format
WriteInt(I,5}; INTEGER I5
WriteInt(I,w); INTEGER : Tw
WriteCard(C,7); = CARDINAL ’ I7
WriteHex(C,4); CARDTINAL Z4
Write(a); CHAR Al
WriteS8tring({s}; ARRAY OF CHAR A{length of 8}
Writeln; /
ReadInt(I) INTEGER free format
ReadCard(C} CARDINAL free format
Read(C} CHAR Al
ReadString{C) ARRAY OF CHAR free format
mcedule RealInOut W a s e e et e st e e e e e
sample use data type format
WriteReal(R,10); REAL E10.*
WriteLongReal(R,18); LONGREAL El8.%

' * is chosen by the procedure.
ReadReal(R,); : REAL free
ReadiLongReal(R,18}; LONGREAL free
============== Procedures belcow this line are not

standard. '
WriteFixed(R,7,3); REAL, LONGREAL F9.4

WriteFixed(R,w-2,w-2-d)}; REAL, LONGREAL Fw.d

module LongInout W r e ek i w e et

sample use data type format
WritelLong(I,15}; LONGINT I15
WriteLongCard{(C,17); LONGCARD ©oI17
ReadLong(I}; LONGINT free format

ReadLongCard(C); LONNGCARD free format

FORTRAN {or Topic)

MODULA {(or information) page 6

INTEGER T, J
INTEGER LIST(8}
INTEGER LIST(0:7)
LLE,

logarithm

LOGICAL L
LOGICAL LL(16)

LCOP

MAX(A, B)

MIN(A, B)

MOD({X,3)
.NOT.
.NE.

.OR.

PARAMETER {PI=3.141)

parentheses

PRINT
QUIT

READ

VAR I, J : INTEGER;
VAR LIST : ARRAY [1..8] OF INTEGER;

VAR LIST ARRAY [0..7] OF INTEGER;

<=

in (lower case} import from MathLibO.
VAR L : BOOLEAN;

VAR LL : ARRAY [1..16] OF BOOLEAN;

LOOP

(* example *)} LOOQP;

Jd 1= J+1;
IF J > 5 THEN EXIT:
END (*loop*);

Net available., Use

IF A>B THEN C:=A ELSE C:=B END;
(MAX is a built-in Modula function, but it has neo
relation to the fortran MAX. In Mcdula the argu-
ment of MAX is a simple ordered type and MAX(type)
returns the largest value that type can take.)

Not available. Use
IF A<B THEN C:=A ELSE C:=B END;

{MIN is a built-in Mcdula function, but it has no
relation to the fortran MIN. In Modula the argu-
ment of MIN is a simple ordered type and MIN(type)
returns the least value that type can take.)
X MODh 3
NOT
or <>
OR
CONST PI=3.141; '
The decimal point specifiest PI as real. You
heed not and must not otherwise declare PI real
{ } to contrel order of computation, and to

to enciose a subroutine argument list,
{ 1 for arrav indexing
See ' input-output

EXIT See also LOOP

See input-output

FORTRAN (or Topic)

MODULA (or information) page 7

REAL X, ¥, Z
REAL VECTOR(0:8)

REAL*8
RETURN

SIN
SORT
STOP

SUBROQUTINE

TAN
THEN
. TRUE.

while ioop

WRITE

%z format

VAR X, Y, Z : REAL;
VAR VECTOR : ARRAY [0..8}1 OF REAL;
As in Fortran, real constants are
identified by a decimal point.
Same as above but use LONGREAL instead of REAL.
({See also DOUBLE PRECISION and CONSTANT.)

RETURN; .

In a function: RETURN value_to_return;
sin {lower case) import from MathLibO.
sqgrt {lower case) import from MathLibO.
HALT

PROCEDURE.

A sample subroutine to clear a vector follows:
PROCEDURE VectorClear (VAR ¥: ARRAY OF LONGREAL);
VAR I: CARDINAL;

‘BEGIN,;
FOR I := O TC HIGH(V) DbO;
v[I] := 0.0;

END;
END VectorcClear;
tan {lower case) import from MathlLibo.
THEN See also IF
TRUE

WHILE logical expression DO
(* statements *)
END;

See input-output

WriteHex from module InOut only writes cardinals.
(For mapping bit patterns of other types toc CARD-
INAL, see EQUIVALENCE.)

HexOut from module I0, as modified at U.N.B, will

write anvthing in hex {(If vour version of IO
does'nt have HexOut, W. Knight has the source.)

