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ABSTRACT

A ltearning procedure based on the backpropagation algorithm using the
incremental communication is presénted. In the incremental communication
method instead of communicating the whole value of a variable, the increment
or decrement to its previous value is only sent on a communication link. The
incremental value may be either a fixed-point or a floating-point value. The
method is applied to four different error backpropagation networks and the
effect of the precision of the incremental values of activation, weights and error
signals on the convergence behavior is examined. It is shown through
simulation that at least 7-bit precision in fixed-point and 2-digit precision in
floating-point representations are required for the network to generalize. With
12-bit fixed-point or 4-digit floating-point precision almost the same results are -
obtained as that with the conventional communication using 32-bit precision.
The proposed method of communication can lead to enormous savings in the
communication cost for implementations of artificial neural networks on
parallel computers as well as direct hardware realizations. This method is
_applicable to many other types of artificial neural systems and can be
incorporated along with the other limited precision strategies for representation
of variables suggested in literature.



1. INTRODUCTION
The simulation of artificial neural networks is a compute intensive problem and even a
moderate-sized network using the fastest scalar computers needs a large amount of computing
time. The computing time can be drastically reduced by simulating neural networks on parallel
compufers and many such implementations have been carried out[4,20,22,231. In practice, such
an implementation involves more than mapping of neurons to processors. An efficient way of
" communication between processors that reduces the cost and increases the computational
speed is required.
Full connectivity from external inputs to neurons oI among neurons is a requirement in
many artificial neural network models. Since the connectivity between different layers of nodes.
in neural networks is high, the intercommunication costs in parallel implementations are also

very high. For example, for a feed-forward network with one single hidden layer consisting of

N, x N, x N, nodes, where N, is the number of input nodes, N, is the number of hidden nodes
and N, is the number of output nodes, the number of interconnections between nodes is
C=N,xN,+N,xN,. ¥ N, =N, =N, the total number of interconnections is O(N?).
Considering that the network requires more than oﬁe, say K, training sets to generalize, the
overall intercommunication cost for an epoch turns out to be O(KN?); an epoch is one pass
through the entire éet of training examples. When M epochs are used for training, the total
intercommunication .cost is Of IQMNZ ), which may be considered of fourth order.

With the intercommunication cost of order four and the fact that the output of a node
hsua]ly depends on the output of many other n_odes, it is obvious that the implementziﬁon of
such networks on parallel computers can easily incur large communications cost. The main
objective of this work is to reduce this intercommunication cost to allow faster simulation on
parallel computers as well as to lower the cost for direct hardware implementations. One
possibility is the use of less number of lines for the communication links (channels). However,

in this case the full value data with full precision cannot be routed in one step. Therefore to




take advantage of narrower links we suggest the communication of incfemental values with
- possibly reduced precision.

Two particular characieris!ics of the neural network models which contribute to the
maximum theoretical parallelism are: (a) the high degree of connectivity among the neurons in
the neural networks, and (b) the simultaneous activation of very large number of neurons.
From an algorithmic point of view, this parallelism is extremely high and écmally there is no
computer at present that could support such parallelism for very large problem sizes.

Due to high degree of connectivity and large data flow in the operations of artificial
neural nefworks, the structure and bandwidth of communication links t0 be used are of great
importance. Presently most coarse/medium-grained systems are not able to provide sufficient
interprocessor communication bandwidth. On the other hand, massively parallel fined-grained
systems such as the CM2{4,20] seem tb have insufficient local memory. To minimize
communications time and cost in parallel implementations and overcome these inadequacies,
we propose the use of incremental communication that requires smaller bandwidth for
communication links. The propdsed method of communication is applicable to many other
types of artificial neural systems. It can also be used along with the other limited precision
strategies for variables suggested in literature[2,8,10,17].

The outline .of the paper is as follows. The concept of incremental communication is
discussed in the following section. In Section 3, this method of communication is applied to the
error backpropagation networks and a modified leamning procedure based on standard error
backpropagation algorithm using the incremental communication is pre_s.ented; Subsequently,
the effects of the incremental communication with different precision levels on the convergence
behavior of four different networks are examined in Section 4. Finally, conclusions of the

present study are summarized.



2. INCREMENTAL COMMUNICATION

In incremental intercommunication, instead of communicating the whole value of a
variable, only the increment of decrement to its previous value is sent on a oommuﬁicaﬁon lnk.
For example, assume that node Y requires to communicate the value of a variable X to node Z
at different instants, as shown in Fig. 1(a), If X(z} is the output of node Y at time ¢ and X(r+1) is
its output at time z+1, in conventional communication the communication link will cairy the
value X{r+1). In contrast, in the mcrementai communicatiion ;he communication link will carry
the value AX(z+ 1), where AX(t+1)=X(t+ 1}~ X(t). Note ihat the new value X(z+1) as well
as the previous value X(z) has to be stored at node ¥. Moreover, we need to perform an extra
operation (subtraction) to obtain the incremental value AX. At the receiving end, the value
X(1+1) will be obtained by updating the previous value X(t) stored at Z with the AX(t+ 1}, as
given in Fig 1(b). Note that an exra operation (addition) is required at the receiving end. The
idea of incremental communication has been employed eaﬂier in delta communication and
digital differential analyzers (DDAs){1,14].

The number representation used for the incremental valve AX may be fixed- or
floating-point, The fixed-point value may be represented in the integer or fractional form using
fewer numbers of blLS (i.e., limited prec1sxon) than fu]l-precmon used for the variable X. In the
floating-point representation, few bits of the mantissa and full value of the exponent are often
used; this has been referred to as dynamic increment representation in DDAs[14]. The use of
incremental exponent value is also possible. When the incremental value AX is limited to a
smaller p_recision than the precision of X, we denote the incremental value by AX.

If the output of a node changes very fast, i.e. the slew rate for the variable X is high,
then AX may not be small and seve'ral steps may be needed to communicate its valve on a link
having smaller number of lines. Alternatively, if the value of AX is restricted to a fewer number
of bits (or digits), i.e. AX is used instead of AX, for reducirig the num_ber of communication
| steps, the computational results may be affected. The cost of communication can be reduced by

a large factor when AX is small most of the times and AX can be passed to the next layer in



‘one step. In such a case, representing AX with limited precision will not have a major effect on
computational results, because the amount of data that is lost by imposing restriction on the
precision is not substantial. |

The reduction factor in communication for sending a single value using the incremental
communication over the conventional communication is given by

® = o/f, LD
where o represents the number of bits used to represent the full precision value X on the
intercommunication link for the conventional cdmrnunication and B represents the number of
bits used to represent limited precision incremental value, AX, in the incremental
communication.

Based on our preliminary experiments on several different backpropagation networks,
we have found that when the learning coefficients are properly funed, the magnitude of
incremental values for the output of a node in most cases is smaller than the full-precision
output values. This means that if limited precision incremental values of the output of a node
are communicated instead of full precision output values, it would be more cost effective. The
use of incremental values with limited precision reduces the intercommunications ¢ost by a
~ factor proportional to the precision used. The acceptable lower bound on the precision of
incremental values ..is dependent on the type and complexity of the problem and learning
algorithm as illustrated in Section 4.

- The use of weights with limited precision and range has been suggested to reduce the

- cost of hardware implementations[2,10,17]1. In this case full values of hm:ted precisidn weights
are communicated between neurons and no consiraints are imposed on the other values
involved in the neuron computatibns such as node's cutput values and error signals. The impact
of imposing constraints on weight, sigmoid and weight-update has also been studied by few

researchers{8,10]. Obviously, incremental communication can be incorporated in such

| implementations to further reduce the costs.



3. BACKPROPAGATION ALGORITHM

The backpropagation algorithm{9,13,19] is a supervised Jearning algorithm that trains a
multilayer network by adjustirig the link weights of the network using a set of. " training
examples". Each training example consists of an input pattern and an ideal output pattern that
the user wants the network to produce for that input.

A typical backpropagation network is a feedforward network that has an input layer, an
output layer and at least one hidden layer. There is no theoretical imit on the number of hidden
Iayers, but typically there are one or two. The hetwork topology is such that each node in a
layer receives input from every node of the previous layer. Each node computes a weighted
sum of all its inputs and then applies a nonlinear function on the weighted' sum to yield the
output value of the node. Sigmoid function, which is the most frequently used nonlinear
activation function, is being used in this paper and in our silﬁulation of incremental
backpropagation.

The backpropagation learning algorithm can be represented as a set of matrix-matrix
operations, The matrix notations can be easily exploited' to represent two types of parallelism
inherent in the backpropagation learning algorithm, namely intra-layer parallelism, i.e., parallel
processing of many nodes of each layer of the network is performed, and training set
parallelism, where f;lulﬁple copies of the network are generated to process the training
exaniples in pa_:allel.. In this paper some of the notations used for formulating the required
equﬁtions for iﬁcremental backpropagation Iearning algorithm are from [20].

Let I, H, and O represent the matrices associated With the input, hiddén and output
layers, respectively. These matrices are of sizes K'xN,;, KxN,, and K xN;, respectively,
where K is the total numbér of training patterns and N,, N, and N, are the nurﬁber-of units
(nodes) in input, hidden and output layers, respectively. The nonlinear transform AU ) is applied
point?wise to the activity matrices to yield I*, H* and 0% Let represent the learning rate, @
the point-wise muliiplication operator and D the desired output matrix of size K x N,. Let 3,

represent the error signal matrix of size K x N, for hidden layer and 8, the error signal matrix



of size K x N, for output layer. Let W, represent the connection weight matrix of size N, x ¥,

from input layer to hidden layer and W,, represent the connection weight matrix of size
N, x N, for the weights from hidden layer to output layer, Finally, for all the above matrices let
the same non-bold character as the name of the matrix represent an arbitrary element of the
matrix; for example, H represents an arbitrary element of the matrix H.
Based on the above notations, the equations in the backpropagation are given in Figure

2. Note that muliiply-and-add is the basic operation in these calculations. The backpropagation
algorithrh consists of three steps: |

1. Forward-pass, which computes the network output.

2. Backward-propagation, that computes the error at each node.

3. Weights-update, which adjusts the weights based on the errors.

These steps are briefly explained in the following Subseétions.

3.1. FORWARD PASS

In the forward-pass ( recall ) the computation does not need any data outside a node
and the computation is local. The result of activation function, which is in most cases in the
range of -1 to +1, s sent on the communication link to be used by the next node. Since the
_ inpﬁt vector is const:ant for the whole process, the computational cost of the first hidden layer
during the forward i)asses can be reduced by storing the initial sum of weighted inputs and
adding to it the sum of delta weightéd inputs in each forward pass. Based on this we propose
the follow‘mg modified equations when incremental communication is used.

At the ¢-th learning step, the Equation (1) in Figure 2 gives

H(t)=1.W,(t).



At the next (¢+1)-th step
H(r+1)=I-Wﬁ(:+1)

=I'(Wa(‘)+A"Vy.(‘”
=I-Wik(t)+I-AWm(r)
=H(t)+AW£h(t}-I.

Therefore, the increment to the valu_e of H(¥) to obtain H(t+1) is

AH(t+1)=H(t+1})—-H(t)
= AW, (1)- L. (3}

Also,
AH*(t+ )= H*(++ 1) - H™(1). ()

- If the magnitude of the increment AH' is larger thén that can.‘ be represented with the

width, B, of the communication link, then it can be sent through many communication steps.

| Truncating the least significant bits of the increment AX to a variable X, and sending it with
specified precision is an efficient way of reducing the cost of communication. The incremental

value may be represented in the fixed-point or in the floating-point format; in the floating-point

represéntation, fewer number of bits of the mantissa than in the standard communication are

used. Let ¢ represefit the function that converts AX to the limited precision fixed-point value

AX and ¢ represent the specified precision for fixed-point representation, then
AX=9(AX,), A3)

In the case of limited precision floating point representation, we use a function ¢’ to convert
AX to AX and €’ to represent the specified precision for floating-point communication. Thus

for fixed-point incremental communication in backpropagation neural networks

AH (14 1) = o(AH (14 1),6), .{6)



and for floating-point incremental communication
. * , ® R .
AH (t+1)=¢'(AH (t+1),€°). : (D)

Adapting € and &’ as training progresses may be an efficient way of sifnulating artificial
neural networks with limited precision incremental communication. In this case the required
precision is determined based on the mégnitude of the mcrem.ental value. Incremental values -
‘with larger magnitude employ larger number of bits whereas incremental values of smaller

magnitude are represented with smaller precision.

3.2. BACKWARD PASS

In backward passes ( training ), to compute the error locally at each node in the hidden
layer, we need to have both the incoming and outgoing weights of the node. This impliés that
we require communicali.on with other nodes and therefore it is not entirely a local computation.
Since there is no explicit target like desired output in the output layer for the hidden layer, to
compute the error signals at the hidden layer we have to pass the weighted error signals from -

the bottom layer to the next upper layer. Thus,
8 = FI-W )@ (1~ f(I-W,))®(8 W, ). (8)

To reduce the load on communication links, we again propose the idea of incremental
communication. Further, instead of passing the weighted error signals 8] W, from the bottom

layer (output layer) to next upper layer (hidden layer), we just pass the error signals 3. To

implement the idea we have to have both the incoming and outgoing weights stored in each

node, as required by the equation for 8, given above. We can apply either incrémental fixed-

point (@) or floatin g-point (¢") type conversion function toa d, that is,

5=0(5¢), or 5=0(8,¢) BN )
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3.3. WEIGHT UPDATE

The weights are adjusted based on the difference between the ideal output and the
actual output of the network. This can be seen as a gradient decent process in the wéight space
to minimize some error criteria. The connection weights can be updated after each training
example, i.e., on-line update, or at the end of an epoch, ie., bétch update. In general an epoch
is the number of sets of training data presentied to the network (learning cycles) between
weight updates. An overall error must be computed for the entire batch of training patterns. A
more adequate error measure is the mean-square normalized error which is used m our

simulation of backpropagation.

An extra momentum rate, Yy, can be used in the equations (7) and (8) given in Fig. 2.
This will accelerate the convergence time and prevent getting stuck at a local minima by adding
a portion of the earlier change to the weight. Based on this the weights are adjusted according

to @

AW, (t+1)=n 8} -1 +7 AW, (1) AW, (t+1)=n8] -H+y AW, (1) (10)
AW, (t+ 1} = Q(AW, (t+1),€} AW, (t+ 1) = (AW, (t+1),&). (11)

Based on the type of updating strategy (i.¢., batch or on-line) the time required to
communicate incremental values in delta weight matrix, AW, is different. Since in batch update

AW is communicated once in an epoch, its communication cost in batch update is much less

than that in case of on-line update.

3.4. COMMUNICATION COST

Besides the reduction in the communication costs that is achieved by communicating
the reduced precision values, the cost .of communication can even further be reduced by
computing delta weight vector, AW, of each n_ode in a layer locally. In this case the current
output value of each node is stored in the node to be used to compute the next incremental

output value, After sending back the error signal, 6, from the botiom layer to the next upper



1t

layer, a node in the upper layer has all the required data to compute the amount of adjustment
to its outgoing weights. Therefore all nodes have the capability of adjusting both their incoming
and outgoing weights and Lhere. is no need to send back delta weight vector from bdttom layer
to the next upper layer. This strategy accelerates the learning time and decreases the
communication costs. Nevertheless there is always a trade-off between the cost of
communicating delta weight vector, AW, between layers and the cost of repeating the
computation of finding the outgoing delta weight vector, AW, in each node. Note that lhe.
nodes in the output layer do not have outgoing weights and as a result will not perform
duplicate operations.

In the forward pass, incremental activation values with reduced precision, and in the
backWard pass, reduced precision error signals are communicated. Since the value of elements
in error signal matrix, 8, is fairly small and the magnitmde of incremental activation values is
likely to be less than the magnitude of activation values, the communication cost will be
reduced by incremental computation of node outputs. The possible reduction in the size of
communication links is o —PB. For example, if the representation of each full precision
activation value needs 32 bits and each activation incremental value in reduced precision needs
8 bits to be communicated, then the reduction in the cost of one link is (32-8) = 24 bits. Since
the intercommunicatfon cost is O(n?), the total reduction is Of 244) bits.

Each step in the backpropagation learning algorithm consists of two phasgs, namely
recall and training phases. The overall intercommunication cost of this algorithm is of order
O(n*) as stated in Section 1. In the case of on-line update where delta we_ight is communicated
in each step the proportionality constant, ¢, in the complexity is at least equal to 3. When AW
is computed locally and is not passed back between layers, the constant ¢ is equal to 2 for both
on-line arid batch update strategies. Therefore based on the type of updating and
communication strategies used, the actual reduction in terms of number of bits may be between

2.24% t0 3. 24" bits.
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The saving in communication costs depends on the nature, complexity and the size of
the problems. Initialization criteria and leaming coefficients are also major factors. For
example, the advantage to the continuous (on-line) update method is that the netWork starts
learning examples immediately and usually finishes in fewer iterations. On the other hand, batch
update has the advantage of saving both arithmetic and time. Apparently another advantage of
doing batch update is that larger learning rates can be used without getting into local minimas.
The use of larger learning rate will also result in smaller number of training cycles.

The reduction of communication cost in forward passes is achieved when the precision
used for incremental values is considerably less than the precision used to represent the new
output values. When B is considerably smaller than o and the size o is sufficient enough for
the full precision output value to be communicated just in one step instead of multiple steps,
the learning speed may be decreased and larger response time might result in certain cases. In

the Section 4 we investigate these issues.

3.5. NODE ARCHITECTURE

A node is the basic processing element in the feedforward networks. The nodes in such
networks can be classified as input, hidden, and output nodes. The architecture of a node using
conventional commzunication is shown in Figure 3(a), whereas Figure 3(b) gives the
architecture of a n.ode using incremental communication. The learning process in both
architectures is based on the on-line (continuous) update strategy. In these figures circle, solid
and dotted rectangles represent an operation, a register and a temporary storage register,
respectively. The rectangle with heavy lines represents memory with many words. The solid
arrow represents the direction of flow of data.

The matrix notations used in the previous subsections are not sufficient to detail the

components of the nodes. Therefore we introduce the following additional notations. Let L

represent the number of layers in the network, N, represent the number of nodes in layer £

where £=1,2,3,...,L and n, represent an arbitrary node in layer £, with n, =1,2,3,...,N,.
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Let W% represent a connection strength between node n, in layer £ and node n,.,, in layer
£+1. Let ner!, (1) and A/ (¢) represent the net-input and activation values of node r, in layer

¢ at step ¢, respectively. Finally let D2* represent the n,-th pattern of desired output of k-th
pe . TCP

training example at the output layer (L-th layer).

The architecture in Fig. 3(a) is based on conventional communication method. It shows
the basic components and principal operations of a hidden node. When it is used as an output
node, the sum of weighted error signals, SW#+., is replaced with desired output. The desired
output, D, is supplied by a teacher. The hidden node sends its output to the nodes in the next
layer whereas the output node sends its output signal to the external world. The momentum is
not incorporated in this architecture. A node in the backpropagation network with
conventional communication performs the following operations.

In forward pass the node performs a multiply-and-add operéﬁon (inner product) to
compute the sum of the weighted inputs (net-input value) and a non-linear activation function
calculation to compute its output given by,

Ne_s

net, = ) WlnAL (12)
ne-y=0
Affe =f(net§‘}. ’ .(13)

To carry out the required operations in the backward pass the node n, needs to keep

some of the values from the forward pass. These values are : (a) the inputs that have been
received by the node at the beginning of the forward pass, A“7, (b) its output value, Aj{, that
has been send to the nodes in the next upper layers (layer £-+ 1), and (c) its incoming weights,
W' These values are stored in the memories inside the node, as given in Fig. 3(a).

In the backward pass the node first receives the sum of the weighted error signals of
those nodes to which it is connected. Subsequently, it applies the derivative of the nonlinear
function ( f*) that is being used during the forward pass to yield the node’s output value. Then,

it computes its error signals by multiplying the input from forward pass to the result of
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derivative function. Finally, the amount of adjustment to its incoming weights is computed and

the weight-update operation is performed. These operations can be summarized as follows:

Net
8%, (1) = f'(nett, (1) Y, 851 (1) WEL (1) ~(14)
=0
AW =08, (DA ~(13)
WM (141) = W (1)+ AW (1), ~(16)

Figure 3(b) shows the architecture of a node in incremental backpropagation network,
In forward pass, for every input, the node performs three additional operations compared to
the conventional communication. These operations are: (a) an extra addition at the point of
entry to the node X and prior to the multiply-and-sum operation in order to compute the new
full-precision net-input value, (b) an additional subtraction at the point of exiting node X, after
calculating the full-precision activation value, in order to compute the incremental cutput value
of node X, and (c) a precision reduction operation, ¢ (or ¢”), in order to reduce the precision
of incremental output value,

Extra storage is needed to store previous ihput vector values and previous output
value. Both incoming and outgoing weight vectors, W' and W, are also stored in the
node. They are adjuéted based on updating strategy, i.e., at the end of each training example in
on-line update or at the end of each epoch in batch update. Although the architecture is shown
for the on-line update strategy, with few minor changes it can easily be adapted for the batch
update policy.

In the backward pass (training), based on the communication strategy (explained in

Section 3.4), node n, either receives AW’ from the upper layer (layer £+1) for updating

the outgoing weights as

Wb (s 1) = Wher! (2)+ AWELL (1), -7

Al ey} Mg efite}
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He g

or computes outgoing weight increment, AW 4! | locally by using the error signal vector, 8,

. that is received from the upper layer (layer £+1),

. New o +
Weltl G+D=WES D enfal 1) 3 Osf,,j OWE (1), .(18)
. Heap =
where
Nes
AL (t)= £ Y WK (1)ALI(1), {19
ﬂg,..;=0

This architecture is much more suitable for cases where activation function uses the
previous activation value A7 (t—1} as well as the net-input value netf (1} (or Al7I(t}) to

compute the new output value Af (1), ie.,

AL (1) = AL (£~ 1),netl, (1)). (20)

4. COMPUTATIONAL EXPERIMENTS

We have performed empirical studies to determine the effect of the precision of fixed-
point and floating-point representation of incremental activation value,AA, error signal, 8, and
delta weight, AW, on the convergence. In the simulation of error backpropagation networks
we have implemented the batch update version of the algorithm on a SUN 4 workstation with
One processor. | .

For the computational studies, the bzickpropagation learning parameters are tuned
based on other researchers’ experiments that are reported in the literaturef5,6,11). We assume
that a network is converged if starting at a precise initial configuration after a number of
epochs, it could learn to separate the input patterns according to the " threshold and margin "
criterion. If the total range of the input units is 0.0 to 1.0, any value below 0.4 is considered to
be zero and any value above 0.6 is considered to be a one; values between 0.4 and 0.6 are
constdered to be " marginal ", and are not counted as correct during training[6]. The
experiments consist of training four different networks while varying the precision of
fncremental values of activation, error signal and delta weight in the fixed- or floating-point

incremental communication.
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Benchmark problems consist of four single hidden layer networks, all of them with
N, x N, x N, architecture. These networks are well known and have been used in most
experiments throughout the history of artificial neural networks[6]. In our investigation of
incremental communication, these networks are used for measuring and comparing the effects
of precision of the incremental values on the convergence. These networks are as follows:

® Network A: The XOR/parity network with one hidden unit and crosscut connections.
® Network B: The XOR/parity network with two hidden units and no crosscut connections.
® Network C: A classifier network with 4-4-1 architecture with 16 patterns in training set.
The network classifies the inputs as 0 or 1.
® Network D: An encoder network with 64-20-1 architecture with 69 patterns in training
| set. The network classifies the inputs as 0 or 1. .
Note that networks with crosscut connections are more communication intensive than
networks without crosscut connections,

In the experiments for the fixed and floating-point incremental communication, the
precision for fixed-point representation is varied from 7 to 12 bits in the steps of one bit and
the precision of mantissa for floating-point representation is varied from 2 to 4 digits in the
steps of one digit. The digit representation of mantissa in floating-point representation of
incremental values is employed due to the ease of implementation. When the precision of 6-bit
was used for delta weight, AW, and error signal, 8, the network were found failing to
converge; the precision of 6-bit for incremental activation values was however acceptable for
higher precision for AW and 3.

For all networks stated above we continue training until the normalized mean-square
error of an epoch becomes less than 0.001 or for an entire training set every output is correct.
The number of epochs is used to measure learning time and to compare the effectiveness of

_various precisions of fixed-point and floating-point incremental representations. The same
precision is used for all incremental values in out experiment. In other words, the precisions of

AA, AWand § are kept the same during the course of learning. In this study all the
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computations inside a node, viz. sigmoid, weight-update or error signal computation, are
handled in full precision.

The result of expen‘ménts for Network A is shown in the Figures 4. Figure 4(a)
represents the error for varying precision of fixed-point representation as a function of the
number of epochs. It is seen that as the precision of incremental values increases, the number of
epochs required for generalization gets closer to the number of epochs required for
generalization with conventional communication. Figure 4(b) represents the error for various
floating-point precision values for incremental communication and full floating-point precision
values used for conventional communication. It is seen that the error exhibits properties similar
to as given in Figure 4(a). A comparison of Figures 4(a) and 4(b) shows that, although both
forms of communication generalize with different precision values, the learning time for the
floating-point incremental representation is closer to the conventional. learning time than that
for the fixed-point incremental representation. This is expected since floating-point
representation allows the representation of a larger range.

Figure 5 gives the errors for the application of the fixed- and floating-point incremental
communications for Network B, With the use of fixed- and floating-point representations for
the increments the network outputs converge for various precisions. Note that the leaming
time for the ﬂoatjng—npoint increment representation is much closer to that of the conventional
communication, compared to the fixed-point incremental communication. The learning time
with 4-digit mantissa in the floating-point representation is very similar to the conventional
representation.

The results of applying conventional communication, fixed- and floating-point
incremental communications to Network C are shown in Figure 6. Although there are some
instabilities during the convergence, both the fixed- and floating-point representations
converge for all the chosen precision values. Again the learmning time for the floating-point
incremental representation is closer to the conventional learning time than that for the fixed-

point incremental representation.
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Figure 7 shows the result of applying fixed- and floating-point incremental
communications, respectively on Network D. Figure 7(a), which represents the results for the
fixed-point incremental communication, shows instability in some cases. Both. forms of
incremental communication converge for various precisions. Figure 7(b) shows that the
learning times of floating-point incremental communication for most of the precision values are
very close to that of the conventional learning times.

The number of epochs required for generalization for the various networks using
different incremental representations are surhmarized in Table 1. It is seen that in all cases the
networks converge, but the convergence time gets closer to the conventional communication
convergence time as the number of bits is increased. The average reduction in the
communication cost of fixed-point incremental communication is more than that of floating-
point incremental communication. On the contrary, the results for ﬁoating-point incremental
communication are mostly better than those for the fixed-point incremental communicatibn.

The incremental communication decreases the magnitudes of output value of various
nodes in each training step by an amount proportional to (o —f). Based on the gradient
descent algorithm, this may cause an increase/decrease in the required number of epochs for
generalization. Communicating the limited precision incremental values means that all of the
required information is not sent to the receiving node. Since partial data is sent to each node, it
may again cause the hetwork to generalize in a smaller/larger number of epochs.

In our other experiments on different networks we have found that 4-digit precision for
incremental output values in floating-point communication and 12-bit precision in fixed-point
communication are sufficient for the network to converge in the same time as conventional
communication. For the case of AW and 8, 4-digit precision in floating-point communication
and 13-bit precision in fixed-point communication is sufficient to produce the same result as for

conventional communication.
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5. CONCLUSION

A new method of communication for artificial neural networks is proposed. It is shown
that the learning process in the neural networks is communication intensive. The proposed
incremental inter-node communication architecture attempts to minimize the communication
costs with a large factor by communicating only increments/decrements of variable values; the
representation of incremental values of the activation, weights and error signals can be either
fixed or floating-point. The communication costs can further be reduced by using limited
precision for the incremental values. The precisions of various incremental values can be kept
the same or may be different.

In our experiments with error backpropagation networks the increase in learning time
(number of epochs) is found to be small. In fact, in some cases with an approprizite number of
bits for incremental values, which is much smaller than the number of Eits for the full-precision
values, the learning time is very close to and sometimes even the same as the conventional
communication.

The concept of incremental inter-node communication is applicable to large classes of
artificial neural networks. It can also be used along with the other limited precision strategies
for representing variables suggested in literature. The proposed method of communication can
be applied for pafallel implementation of the artificial neural networks on various
multiprocessor archifectures. The communication complexity of implementing incremental
communication on multiprocessor computers with various topologies is discussed in our other
report {7}. The incremental communication supports smaller bandwidth for the channels and
therefore, decreases the required communication time. The incremental method and especially

the fixed-point representation for incremental values is svitable for VLSI realization.
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Figure 4, Fixed and floating-point communication for network A.
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. Figure 4. Fixed and floating-point communication for network A (cont.).
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Table 1. The number of epochs required for generalization.

FLOATING-POINT FIXED-POINT
TYPE | COMMUNICATION * COMMUNICATION STAN-
DARD
2 3 4 7 8 9 10
COMM.
NETWO DIGITS| DIGITS{ DIGITS| BITS | BITS | BITS | BITS

Network A| 130§ 106 | 97 | 207 | 154 § 116 | 104 | 70

Network B| 96 | 87 | 82 | 102 | 141 96 | 87 70

Network C| 229| 109 | 109 | 199 | 130 | 121 ] 108 | 109

Network D} 242 | 209 | 184 | 435 337 {336 | 210 | 116

* Number of digits in mantissa.



