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Abstract

A modified backpropagation training algorithm using deflecting gradient technique is
proposed. Parallel tangent(Partan) gradient is used as a deflecting method to accelerate
the convergence. This method can also be thought as a particular implementation of the
method of conjugate gradient. Partan gradient consists of two pHases namely, cimbing
through gradient and accelerating through parallel tangent. Partan overcomes the ineffi-
ciency of zigzagging in the conventional backpropagation learning algorithm by deflecting
the gradient through acceleration phase. The effectiveness of the proposed method in de-
creasing the rate of convergence is investigated by applying it to four léa.rning problems with
different error surfaces. It is found through simulation that regardless of the degree of the
complexity of the problems used, the Partan backpropagation algorithm shows faster rate of
convergence to the solution. In particular, for the exclusive-or problem its convergence time
is approximately five times fa,sterl than that of standard backpropagation, whereas about
two times faster rate of convergence is obtained for Encoder/Decoder, Binary-to-local, and

Sonar problems.




1 Introduction

The commonly-used error backpropagation(BP) training algorithm offers a simple way to learn
arbitrary complex decision boundaries. It is an iterative gradient descent algorithm designed
to train multilayer feedforward networks of sigmoid nodes by minimizing the mean square error
between the actual output of the network and the desired output. Despite its popularity and
effectiveness, its convergence, however, tends to be extremely slow. The main objective of this
paper is to incorporate an acceleration technique into the BP algorithm for achieving faster rates
of convergence.

Over the last couple of years, many new acceleration techniques have been developed to
speedup the rate of convergence in the backpropagation training algorithm. The most popular
of these strategies is to include a momentum term in the weight updating phase [15]. Other

techniques include:

o Global learning rate adaptation with different variations, where proper values for learn-
ing rates and momentum factors are chosen to optimize the backpropagation training

‘algorithm|[2, 9, 12].

» Local learning rate adaptations, wherein independent learning rates are used for every
connection and optimal learning rates for every weight is found[10, 6, 7). One variation is

to setup schedule to change the step length as the network is learning [10].

In this paper, we propose a global error gradient adaptation techmique. Other acceleration
techniques can also be incorporated in this method to further improve the rate of convergence.

The outline of the paper is as follows. In the following section, gradient descent method is
summarized. In Section 3, the concept of parallel tangent gradient is described and an algorithm -
for minimizing a differentiable function by using the parallel tangent scheme is given. The
error backpropagation learning algorithm is briefly outlined in Section 4 using our notations.
Subsequently, the effect of incorporating Partan in backpropagation algorithm and a new learning
algorithm based on these two schemes are given. In Section 6, we describe the simulations
perforfned in this study and analyze the results of applying the Partan backpropagation and
conventional backpropagation on four different problems. Finally, the conclusions of present

study are given.




2 Gradient Descent

The gradient is a simple method for optimizing multidimensional problers [8, 14, 16, 17}. Al-
though this method often poses problems of convergence, it is by far the most widely applied,
because of its simplicity. The vector of first partial derivatives of a function f(z1,z2,...,2x), as

the n-dimensional vector,
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defines a direction called the gradient direction, which is the basis of all gradient algorithms. This
vector points in the direction of the greatest rate of increase of function f. Optimum gradient
results when the gradient direction of each point is followed until a local minimum is reached
[17]. When the method is used for minimizing a differentiable function of several variables, it is
sometimes called the steepest descent method. '

In general, the gradient algorithm takes a point p; € S C E™ and computes a new point
i1 € 5 C E*, where S represent an drbitra,ry set and F represents the Euclidean space. The
new point is defined by making

Pit1 =pi T8
where, n > 0 for minimization or < 0 for maximization. Further, p; is the origin of the line, s
is the gradient vector,V f(p;), determining the direction and % is the step-size parameter to be
estimated. If » is small, the gradient path is approximated very closely, but convergence will be
slow. For large 5, convergence will initially be very fast, but the algorithm will oscillate about
the optimum. '

It is interesting to note that in principle this method will not reach the optimum in a finite
number of steps, because the steps shorten as the point is approached. -However, the optimum -
can be approached as closely as desired, and if the starting point is not too near the major axis,
the neighborhood of the optimum is attained rapidiy.

The method of steepest descent usually works quite well during stages of the optimization
process [14]. However, as an optimum point is approached, the method usually behaves poorly,
where small orthogonal steps are taken (zigzagging phenomena). To illustrate the zigzagging
phenomena, let us consider an objective function with concentric ellipsoidal contours as shown

in Fig. 1. If the initial point for a gradient search happens to be precisely on one of the axes
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of the system of ellipses, the gradient line will pass right through the optimum(peak) and the
search will be over in one descent (ascent). Otherwise the search will follow a zigzag course such
as the one from po to pa to p3 to pyete.(in order to be consistent with the convention adopted in
the next section, after po the next point is denoted as ps, instead of p}.

It can be seen that the crooked path is bounded by two straight lines which intersect at
the optimum. This suggests that the search from point ps be conducted, not in the gradient
direction toward p4, but along the straight line from pp through ps. In this way, the peak, p*
would be located after three steps: first from py to p; along the gradient at po, then from p; to
ps along the gradient at p,, and finally from p3 along the line through py and p3. This is the two
dimensional version of a method which accelerates along a ridge and usually is called gradient
parallel tangents(gradient Partan} {16].

To accelerate the convergence of steepest descent based learning algorithm(i.e., delta rule
and generalized delta rule, error backpropagation learning a,lgorithﬁl), we propose the use of
parallel tangent{Partan) gradient. This technique improves the speed of training artificial neural

networks by a large factor, as demonstrated in this paper.

3 Parallel Tangent(Partan) Gradient

The parallel tangent technique combines many desirable properties of the simple gradient meth-
ods [8, 16]. It makes ilse of the geometric properties of the quadratic objective functions and
is best suited and works well with elliptical contours. E.Ven when the contours are not pre-
cisely elliptical and for more general cases and nonquadratic problems, the technique has certain
ridge-following properties which make it attractive.

Parallel tangent has many forms and gradient Partan is one form which amounts to a
muitidimensional extension of the accelerated gradient method. This technique represents a
distinct improvement over the method of steepest descent. The Partan method is not really
intended for two dimensions, though in one of our experiment it was quite useful and well suited.

Figure 2 shows a schematic diagram of general parallel tangent . Note that the points have
been numbered such that the odd-numbered ones (i.e., ps,ps, 7, Po, €tc.) are the result of a

climb(gradient search), whereas the even-numbered ones following p, (that is, ps, ps, ps, etc.)




are obtained by acceleration. In other words, the even numbered point py is determined by

acceleration from Psi_y through por_1,k = 2,3,..., N, i.e.,

P2k = Q(sz-1 ) szﬁz;)

where ) is the acceleration function. Acceleration is the process of taking the minimum point
on the line connecting poi1 and Pop_q.

A procedure for minimizing au. differentiable function of several variables is given in Figure
3. This procedure starts with an arbitrary starting point and searches for an optimum using
a positive termination scalar, €. Starting at point pe, point p; is found by a standard gradient
step. After that, the optimization is continued for n iterations and then restarted with a stan-
dard gradient descent. Each step consists of a standard gradient descent search followed by an

acceleration.

4 Backpropagation Algorithm

In this section we briefly review the backpropagation algorithm and introduce our notations for
use in the following section. In the backpropagation training algorithm the gradient descent
method:is used to minimize the difference between the actual output state vector of the network
and the target state vector(criterion function) in a multilayer feedforward neural network. Let
L represent the number of layers in the network, N, represent the number of nodes in layer £
where £ =1,2,3,..., L, and n, represent an arbitrary node in layer £, with n, = 1,2,3,..., Ne.
Let Wﬁfﬂ;jﬂ represent the connection strength between node n, in layer £ and node nyy4 in layer
¢+ 1. Let netl, and A%, represent the net-input and activation values of node ne in layer £,
respectively. Let E represent fhe global error of the network and K r.epresent the number of
training examples required for the network to generalize. Finally let D,‘E’Ek represent the n,-th
pattern of desired output of k-th training example at the output layer(L-th layer).

The objective function to be minimized is the global error of the network which is defined

as
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where
Ne_a

£ _ =18 48-1
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and

Aiz = f(netie).

The most frequently used activation function f is the logistic function

1
1+4+e=

f(z) =

or its symmetric version
| f(z) = tanh{z).

The learning is the process of modifying the weights in order to decrease the criterion
function, E, which is a function of all W51 = weights. The process looks for a solution weight
vector, W*, that satisfies the minimum distance criterion. Backpropagation learning algorithm
adjusts all connection strengths(weights) of a multilayer feedforward network after each epoch
(where an epoch consists of presentation of a subset or the whole set of the training examples)

based on the negative direction of the error gradient,

£, 641 JE
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where 1 is the lea.rning\'rate factor. The partial error derivative of the hidden units are computed
by the chain rule, leading to the generalized delta rule, as described in [15]. To accelerate the
convergence, a momentum term can be added in the adjustment of coupling strengths. In this
case, a constant « is used as the relative contribution of the previous change of the coupling
sfrength. Thus, incorporating a momentum in the above weight updating rule, the weights are

updated according to the following rule:

dE e
i (e o )

where o stands for the momentum factor and s represents the epoch number.

AWESL (54 1) =
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" In practice, the backpropagation algorithm has proved to be a suitable method in computing
a weight vector that enables the network to perform certain input-output mappings [15]. Stan-

dard backpropagation algorithm (generalized delta rule) has the reputation of being very slow.
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It suffers from major drawbacks which are associated with steepest descent technique(explained
above). Several acceleration techniques have been proposed to overcome this major deficiency
(7, 10, 13]. In the next Section, we propose a modified backpropagation training algorithm using

deflecting gradient technique.

5 Partan Backpropagation

Backpropagation training algorithm teaches a network iteratively. The learning takes place
through the optimization of a criterion function which is defined to be the sum of the criterion
functions of the training examples. In other words, in order to properly train the network, an
objective function which is the result of the contributions of all training samples, is simultaneously
minimized. _

The parallel tangent technique can be incorporated in the backpropagation algorithm. The
acceleration function, {2, will be used to navigate safely without too much inefficient zigzagging.
In fact, parallel tangent overcomes the difficulties of zigzagging by deflecting the gradient. It can
be used with both online (incremental) and batch {cumulative) weight adjustment strategies.
Batch update strategy uses the total gradient which means that the weights are updated only
after all patterns in the training set have passed through the network. The online update scheme
uses the partial gradients rather than the total gradient. It travels over the surface in a direction
determined by a singlé input to the system and does not take into account that another pattern
may influence the network in a completely opposite direction.The general framework of the new

training technique is defined as follows:

WHILE (error >=¢) DO
CALL Forward-Pass procedure;
CALL Backward-Pass procedure;
IF (Odd Points)
CALL Acceleration procedure;
CALL Weight-Update procedure;

END

A proposed detailed algorithm for Partan backpropagation is given in Figure 4. In this




procedure we are recommending two different step-sizes(learning rates). One learning rate for
the climbing through gradient, 5, and the other for accelerating through parallel tangent, p, are
used. We also recommend the use of variable step-sizes, specially for the acceleration step-size.

The Partan-backprop algorithm starts with an arbitrary weight vector, wo, and finds weight
vector w* (see Fig. 4) by a standard gradient descent (backpropagation) step. After that, n
iterations are carried out. Each cycle consists of a gradient descent search followed by an accel-
eration. The procedure will stop whenever the termination point is reached. After n iterations,
one has the choice of either continuing the cycle of backpropagation search and acceleration or

starting over again. In the Figure 4, we have presented the latest choice (start over).

6 Simulation

In order to evaluate the performance of the Partan and conventional backpropagation learn-

ing algorithms, simulations are carried out on four learning problems: exclusive-or(xor), 8-bit

encoder-decoder, binary-fo-local [10], and sonar classification[5]. These problems are chosen be-

cause, they possess different error surfaces and collectively, represent an environment that is

suitable to determine the effect of the proposed learning algorithm. As stated previously, the
experiments are carried out with both conventional and Partan backpropagation using total gra-

dient (batch update) so that the weights are updated only after all the patterns in the training

set have been presentéd to the networks. For both algorithms, the backpropagation procedure

was used to calculate the partial derivatives of the error with respect to each weight.

The network architectures are predetermined, specifying the number of hidden units, the
step sizes ps and us, the number of patterns in the training set, and the convergence criterion
¢, which was set so that the average error per pattern in the training set is bellow some thresh-
old. For conventional backpropagation networks, we have selected the architectures (multilayer
networks) and parameters(gain and momentum rates) that resulted in good performance. The
same parameters and architectures are used for Partan backprop to exhibit its superiority over
the conventional backprop. Ideal parameters and architectures for Partan may even show faster
rate of convergence. For example, when the Partan parameters are tuned for the xor problem,

its convergence is almost five times faster than conventional.



At the start of each simulation, the weights are initialized to random values between +r
to —7. Since the backpropagation algorithm is sensitive to different starting points, we carried
out our simulation with various runs starting from different random initialization for the weights
of the network. At the end of each epoch, the weights of the network were updated. For each
algorithm twenty simulations were attempted, some of which have converged to local minima
and failed to reach the solution criteria. The statistics on the number of epochs includes those

attempts that were successful and reached optimum.

6.1 Exclusive-Or Problem

The network architecture used for solving this problem consists of two input units, two hidden
units, and one output unit. The training is considered complete when the cumulative error is be-
low 0.1. The conventional backpropagation method using a = 5.0/fan-in and o = 0.9 required
on average 86.22 (standard deviation 0=25.36) epochs through the four input vectors while
the modified method(Partan backprop) using an = 5.0/fan-in and an g = 0.9 without using
momentum in the backprop procedure, required on average 45.76 epochs(c = 17.25). Thus, Par-
tan backprop shows faster rate of convergence to the solution. When learning parameters tuned

carefully the Partan backprop exhibit even faster convergence, on average 17.38 epochs {0=5.85).

Exclusive-Or Problem

Learning Parameters Number of Trails Number of Epochs
Algorithm || 5/fan-in | « 7 +7 | Attempted | failed | Average | Standard Dev.
Conventional 5.0 09 [ 0.0 | 05 25 2 86.22 25.36
Partan 5.0 0.0 | 0.9 | 0.5 25 1 45.76 | 17.25
Partan 8.0 0.0 } 0.9 [ 2.0 25 3 17.38 5.85

6.2 Encoder/Decoder Problem

For this task, the network architecture consisted of eight inputs which were connected to three
hidden units which were connected to eight output units. The input to the network consists of

eight data line in which one of the data line is one(i.e., 00000001, 00000010, ..., 10000000). The




output of the network is the same as input. This is an example of auto-associative networks
by which a set of orthogonal input vectors are mapped to a set of orthogonal output vectors
through a small set of hidden units [1] . This network produces target outputs exactly similar to
the inputs. Thus, the network is to learn an encoding of a 8-bit input vector into a 3-bit pattern
and its decoding into a 8-bit output vector. Solution to the problem occurs when the cumulative
errors for one epoch is less than 0.2. On this problem, the Partan backpropagation exhibited
a significant improve'ment in the rate of convergence. It shows approximately 50% of d_ecrea;se
in the number of epochs over the conventional backpropagation. With tuned parameters more

improvement can be expected.

Encoder/Decoder Problem

Learning Parameters Number of Trails * Number of Epochs

Algorithm || n/fan-in | « 7 +7 | Attempted failed Average | Standard Dev.
Conventional 2.0 05 { 00 | 1.0 25 - 1475.64 207.77
Partan 2.0 0.0 | 0.5 | L0 25 - 927.44 59.12

6.3 Binary-To-Local Problem

The network architecture used for this problem consisted of three input units, two units in the
first hidden layer, eigl';t units in the second hidden layer, and eight output units. The input vector
represent a value between zero to seven and the output vectors components are all zero except
the one that is indicated by the input vector and is set to one(i.e., input vector [100]7 produces
the output vector [OOOIUOUU]T). This problem is called binary-to-local because, an appropriate
network structure maps a binary representation of a number into a local representation. This
network is believed to produce an error surface with sharp ravines [10]. Thus it is chosen as an
interesting test-bed to experiment the ridge-following property of Partan backpropagation. The
training is considered complete when the error for one epoch is less than 0.5. The conventional
backpropagation with an 1 = 0.8/fan-in and « = 0.5 represent on average 1166.38(c = 320.80)
epdchs to reach the optimum where as the Partan method with an 5 = 0.8/fan-in and u = 0.5,

required on avéra,ge 708.88(¢c = 68.98) epochs.
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Binary-to-Local Problem

Learning Parameters Number of Trails Number of Epochs

Algorithm || p/fan-in | « I +7 | Attempted | failed | Average | Standard Dev.
Conventional 0.8 0.5 | 0.0 | 0.3 25 1 1166.38 320.80
Partan 0.8 0.0 [ 0.5 | 0.3 25 1 708.88 68.98

6.4 SONAR, Mines vs. Rocks Problem

This is the last task that is used in our experiments. The training and test sets each consisted
of 104 patterns [5]. Each input pattern is a set of 60 numbers in the range of 0.0 to 1.0. The
network architeciure that is used for this problem consisted of 60 input units, 24 hidden units,
and 2 output units. This architecture is reported by Gorman and Séjnowski {5] to be the best
architecture that produces good results. Solution to this problem occurs when the error for one

epoch becomes less than 0.1.

SONAR, Mines vs. Rocks Problem

Learning Parameters Number of Trails Number of Epochs

Algorithm || n/fan-in | « 7 +7 | Attempted | failed | Average | Standard Dev.
Conventional 0.5 09 | 0.0 | 0.3 25 - 892.08 27.73
Partan 0.5 0.0 | 09 | 0.3 25 1 486.25 37.99

7 Conclusion

In this paper, we have proposed the use of a deflecting gradient method in order to increase the
rate of convergence in the backpropagation learning algorithm. The parallel tangent (Partan}
gradient is used as a deflecting method to accelerate the convergence to the solution. We have
demonstrated through simulation that the proposed method decreases the rate of convergence
by a large amount. The modification in the backpropagation algorithm amounts to computing a

new point that is closer to the optimum than the point computed by steepest descent procedure.
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The new algorithm uses two learning rates, one for gradient search and the other for accelerat-
ing through parallel tangent. When backpropagation algorithm is used for gradient search the
momentum dees not improve the rate of convergence in parallel tangent technique.

With the Partan method, the initial approach as well as the final convergence are faster.
In all the problems we studied so far, the convergence of Partan was faster than conventional
backpropagation. The most desirable property of Partan backpropagation, however, is its strong
global convergence characteristics. Each step of the process is at least as good as steepest descent;

the additional move(acceleration) to p;4y provides further decrease of the objective function.
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Figure 2. Parallel Tangent Gradient.
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PROCEDURE Partan (input[pa, £], output[p*});

Po is the starting point vector and ¢ is a termination scalar which is chosen to be greater than
zero. p* is the optimum vector. n and u are appropriate step size factors(learning rates) for
climbing and acceleration, respectively. V f(p:) is the gradient of the criterion function f at
point p;. I' represents the function that is used to compute a proper step size. n represents the

number of independent variables.
BEGIN

P* = Po;
REPEAT
P& = Po = P*;
P* = Pr — 1V f(Pi);
FOR :=1torn DO
BEGIN
n=TL(n,Vf(p*),n);
s =p* —nVF(p*);
§=8—py;
Pr = P7;
P* = s + pé;
= T(g,6,n);
END; -
UNTIL (|lpo —p*ll <¢);
RETURN (p*);
END.

Figure 3. Parallel Tangent Gradient Optimization Algorithm.
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PROCEDURE Partan-backprop (input[I, D, wg, £], output[w*]);
I and D are the input and desired output vectors, respectively. wq is the starting point, w*
is the optimum weight vector, and £ is a termination scalar which is chosen to be greater than
zero. 1 and pu are appropriate step size factors(learning rates) for climbing and acceleration,
respectively. V., is the gradient of the criterion function f at point w;. n represents the number
of independent variables and M is number of iterations(epochs). T represents the function that
is used to compute a proper step sizes. backprop is the standard backpropagation procedure that
returns the gradient of the criterion function at a given point and the amount of existing error.
BEGIN
=1
w* = Wq;
REPEAT
WE = W= W%
CALL backprop(input(I, wy, ¢ ,D}, output [V, ,error]);
W' = Wi — 1V,
FOR i=1ton DO
BEGIN
CALL backprop(input[I, w*, ¢ ,D], output [V, error]);
IF (error < ¢) RETURN(w"), EXIT; -
n = T(5, Vs, n);
8 == W — 7V e}
d=s — W,
wp =W
w* =8+ ud;
p=T(y,6,n);
END;
j=j+1
UNTIL (error << OR j >= M)
RETURN(w*);
END.

Figure 4. Parallel Tangent Backpropagation Learning Algorithm.
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