DATA STRUCTURES AND KNOWLEDGE
REPRESENTATION FOR
AUTOMATED NAME PLACEMENT

by
Lisa Mullin

TR93-076 April 1993

This is an unaltéred version of the author's
M.Sc.(CS) Thesis

Faculty of Computer Science
University of New Brunswick
P.O. Box 4400
Fredericton, N.B.
Canada E3B 5A3

Phone: (506) 453-4566
Fax: (506) 453-3566

DATA STRUCTURES AND KNOWLEDGE REPRESENTATION
FOR
AUTOMATED NAME PLACEMENT

by
Lisa Mullin

A THESIS SUBMI'I*I‘ED IN PARTIAL FULFILLMENT OF
'I‘H.E REQUIREMENTS FOR THE DEGREE
Master of Science in Computer Science
in the Faculty
of

Computer Science

This thesis is accepted.

Dean of Graduate Studies
THE UNIVERSITY OF NEW BRUNSWICK

March, 1993
© Lisa Mullin, 1993

ABSTRACT

This thesis contains the result of an investigation into the design and implementation
of a computer-assisted system to deal with the particular problem of point name placement
on EMR Canadian topographic maps. Software was written to correlate the names
database, National Geographic Names Data Base, to the features database, National
Topographic Data Base. This software was tested on the names and features of one
1:250,000 map sheet, NTS21G. This test showed that of 309 point names in the map
sheet area, 169 (55%) were matched to identifiable features. Of these 169 matches, only
20 were found to be placed on the map sheet. Sixteen names of villages were found on
the map, but no matching feature was found in the features database. A novel object
based quadiree spatial data structure was ciesigned, tested and implemented. A prototype
name placement system called NAPLES was designed, and a portion 6f it was
implemented. This prototype makes use of tﬁe quadtree structure to detect interference

ang overlap of names with features, grid lines, and other names.

ACKNOWLEDGMENTS

I would like to thank Dr. Brad Nickerson for suggesting the topic of name
placement and supervising my thesis. Thanks also to Kirby Ward for the technical help he

provided during my thesis work.

This work was supported in part by a grant from the EMR/NSERC Research

Agreement Program, agreement number 288 5 92.

This thesis is dedicated to the memory of Barbara Wunch. She was a special friend
to all of her peers while being both an employee and student at UNB. Barb was very

interested in my graduate studies progress and her enthusiasm is greatly missed.

TABLE OF CONTENTS
ABSTRACT
LIST OF FIGURES
- LIST OF TABLES

CHAPTER 1. INTRODUCTION
1.1 Background
1.2 Literature Review
1.3 Thesis Objectives

CHAPTER 2. DESIGN CONSIDERATIONS
2.1 Initial Constraints
2.2 Rule Extraction
2.3 Data Correlation
2.4 The Knowledge Base
2.5 The Spatial Data Structure
2.6 Prototype Architecture
2.7 Font Issues

CHAPTER 3. IMPLEMENTATION

3.1 Data Correlation Example
3.1.1 Data Extraction
3.1.2 Data Matching
3.1.3 Interactive Matching

3.2 The Knowledge Base

3.3 A Quadtree with Objects
3.3.1 Memory Management
3.3.2 Modified Construction Operation
3.3.3 Modified Union Operation

CHAPTER 4. PARTIAL RESULTS FOR NTS21G

CHAPTER 5. CONCLUSIONS
5.1 Summary
5.2 Future Work

REFERENCES

Appendix A, The Complete Match Table

v

e N SN

11
18
24
26
33
36

39
39
39
41
46
49
50
50
51
55

64

70
70

73

74

76

'~ TABLE OF CONTENTS
Appendix B. The Possible Matches for Bliss Island

Appendix C. The Match Results for NTS21G
Appendix D. The Initial Knowledge-Base Attempt

Appendix E. The Construct Algorithm Source Code

- 86

91
98

101

LIST OF FIGURES

Figure 1. A sample of the EMR Canada NTS21G 1:250 000 map sheet. 1
Figure 2. Examples of names placed "near” linear features [from Imhof, 1975]. 3
Figure 3. An example of area name placement [from Ahn, 1984]. 4
Figure 4, Sample of the names file. _ 9
Figure 5. Sample of the map features file 10
Figure 6. Examples of name positioning of small areas [from EMR, 1987]. 15
Figure 7. Examples of area name placement {from EMR, 1998]. 16
Figure 8. Grid Data Structure [from Nickerson, 1987]. 20
Figure 9. Extra cells searched when there is no match. 21
Figure 10. An architecture for data correlation. _ 23
Figure 11. Possible curved point name placements [from EMR, 1988]. 25
Figure 12. Method of interconnection to form a feature. 29
Figure 13. A sample shoreline feature. 30
Figure 14. The expanded coordinates for the shoreline feature. 30
“Figure 15. Plot of the expanded shoreline feature. _ - 30
Figure 16. The pieces of run length code for the sample shoreline feature. 32
Figure 17. The combined run length code for the sample shoreline feature. 32
Figure 18 A suggested system architecture for NAme PLacement by Expert System. 36
Figure 19. A sample of the required fonts for names [from EMR, 1988]. 37
Figure 20, The parameters for extracting NTS21G features. 40
Figure 21. Sample of the map features file after adding the bounding boxes. 41
Figure 22. Parameter file for NTS21G.PAR matching. 41
Figure 23. The matching example for map sheet NTS21G. 43
Figure 24. A sample of the sorted possible features for "Bliss Island". 44
Figure 25. "Bliss Island" possibilities generated by labeling software. - 46
Figure 26. The numbering scheme for the select software. 47
Figure 27. An architecture for extracting EMR data. 48
Figure 28. Modified construct algorithm. 53
Figure 29 Standard quadtree union algorithm [Samet, 1990]. 56
Figure 30. Modified quadtree union algorithm. 57
Figure 31. Update algorithm. 58
Figure 32. Sample union of two quadtrees. 59
Figure 33. Quadtree generated for a few EMR features, ' 63
Figure 34. Zoom in four levels on the EMR test features object quadtree. 66
Figure 35. Zoom in five levels on the EMR test features object quadtree. 67
Figure 36. A portion of the paper map test area. 68

LIST OF TABLES

Table 1. Sample of the names to features look-up table.
Table 2. Sample of feature width look-up table.
Table 3. Sample font look-up table.

19
29
38

CHAPTER 1.

INTRODUCTION

1.1 Background

The task of name piacement on topographic maps is a delicate process which con-
tinues to be a time consuming effort for cartographers. The aesthetic aspect of the task
plays an important role in de‘_(crmining the correct placement of each name. An example of
name placement on Canadian map sheet NTS21G is shown below in Figure 1. Unfor-
tunately, there are no algorithms which work consistently; experienced cartographers use
heuristic rules of thumb with many exceptions in placing names on maps {Imhof, 1975].

These considerations have hampered cartographers from using computers to automate this

Process.

Figure 1. A sample of the EMR Canada NTS21G 1:250 000 map sheet.

This thesis explores the possibility of automated name placement for production of
topographic maps. This automation will involve an expert system for implementing the
cartographic rules and a spatial data structure for determining the name placement. This
research was initiated with a literature search followed by the design work. The design
was performed in phases, some of which was done concurrently because of the inter-

dependencies of the various aspects of the problem.

1.2 Literature Review

The name placement problem has been studied for many years. Qur research effort
began with a literature search of automated name placement. This search produced many
interesting papers, but only those which provided us with an apﬁroach useful for our

research efforts are included here.

Yoeli discussed the ideas of automated name placemént and the associated problems
over twenty years ago [Yoeli, 1972]. He broke the problem down into three
classifications; points and small areas, lines or bands, and areas. He also proposed a grid
structure for name placement, which had ten possible placements and associated priorities

for each.

Another significant contribution to the area of name placement research was from
Imhof three years later [Imhof, 1975]. He was concerned with the rules and conventions
for name placement and he gave some examples of good and poor name placements. One
example of a rule Imhof proposed was "While type lines should not cling to their objects,

they should not be too far from them, nor should the names cross their objects.”[Imhof,

1975]. The illustrations which accompanied this rule for names near linear features is -

show in Figure 2.

poora 148 poor

Wgood . | :

49 good —_—J 50 pooP e |

Figure 2. Examples of names placed "near” linear features {from Imhof, 1975].

Since then some attempts at automating the name placement process have been
made [e.g. Hirsch, 1982; Ahn, 1984; Lacroix, 1984; Doerschler and Freeman, 1992;
Johnson and Basoglu, 1989; Ebinger and Goulette, 1989; Jones, 1989]. Each of these

efforts have been concentrated in one specific area of automated name placement.

Hirsch [1982] focused on the spatial search technique requirements of point name
placement. He had studied the work of Imhof and Yoeli and atiempied to place point
names based on Yoeli's pr'oposed point name positions. Hirsch used point—in—polygon.
methods for detecting three categories of overlap. The types of interference considered

were names with names, names too close to another point, and names outside the map

3

border. The map features themselves were not considered by Hirsch; his work focused

exclusively on the map names.

The problem of automated name placement is an interest of professor Herbert
Freeman. He has supervised various theses in specific aspects of this area of research.
Three students whose research is worth noting are Ahn [1984], Doerschler {1987}, and

-Lacroix[1984}.

~ Abn's [1984] work resulted in the development of a Fortran program for automated
name placement. Ahn's goal was to iJroduce_ a non-interactive system which could place
names based on general principles, general rules, and specific rules. Ahn also studied
methods of placing area names within a feature. He considered uSing curve fitting along
the area skeleton. An example of his contribution to area name placement is shown in

Figure 3.

Figure 3. An example of area name placement [from Ahn, 1984].
4 .

Lacroix [1984] proposed an improved area name placement algorithm. This work
attempts to improve previous efforts at area name placement by placing more emphasis on
hairing names parallel to the baseline when possible. Lacroix subdivided the area rules into
three categories of rules which include lettering, baseline, and centering rules. Lacroix

also extended the research to include the placement of sea names.

Doerschler and Freeman [1992] gave consideration to the required spatial data
structures for dense maps and produced a system for this purpose. The spatial data
structures which they studied included a grid with the cell size set to one-fifth the smallest

font size and k-d trees. Their results for dense street maps are impressive.

Ebinger and Goulette [i989] prototyped a non-interactive system for automated
name placement. Their work was done for the United States Bureau of Census, and
therefore, a recursive algorithm which required human intervention was not feasible
because of the number of various maps required. In the system they developed, the strict
rules for map labeling were relaxed. If necessary, the label sizes were aliered, the map
scale was chaﬁ;ged, and names could be suppressed as required. They were looking for a
practical solution which relaxed the aesthetic requirements of cartographic name

placement.

Another person who worked with the problem of automated néme placement was
Jones [1989].' Jones's work is somewhat unique in that his development was done in
Prolog. His algorithm for interference detection is raster based and works on the principle
of overlap tolerance. If a group of names cannot be placed within the desired tolerance,

then the tolerance is increased and backtracking is done.

5

Johnson and Basoglu [1989] used neural networks to study the problem of name
placement. Their use of the neural network technology has, however, been restricted to
the generation of the production rules to be used by the name placemenf system. Their
tool is to be used by cartographers to generate the rules for labeling which they want
implemented. Their concehtration on the rule gathering process seems to be quite novel

10 this area of research.

Through the literature search it is evident that, although the main problem has been
researched for quite some time, solving all of the component problems would be extremely
difficult. It is also apparent that there is no definitive way of approaching the problem.
Each person who has worked in the area has tried something different. It is also apparent
that much of thé research done has merit, but some have limitations which remain to be

Oovercome.

1.3 Thesis Objectives

The objective of this thesis is to investigate the potential for using a knowledge base
and data structures for automated name placement. This task was initially outlined in five
objectives, as follows:
1 To discover methods for representing rules about name placement which do not fall in

the IF... THEN... category of rules used in most expert systems.

2 To investigate the use of a rule-based expert system for antomated name placement

using the rule representation discovered by the first objective.

3 To discover a data structure suitable for the integration of the names and their

geographical features.

4 To investigate ways in which names can be astomatically matched with their associated

geographical features.

5 To develop a prototype expert system for name placement using names and topographic
data from the National Topographic Data Base for the Fredericton, New Brunswick

ai‘ea.

CHAPTER 2.

DESIGN CONSIDERATIONS

The entire name placement problem, consisting of area, linear and point name
placement, was considered. A decision was made to focus this research effort on the
placement of point feature names since considering all three types of name placement
would be beyond the scope of a thesis. The design of a prototype was the goal, but there
were many stages of design to be addressed. The design can be divided into the following
phases: initial constraints, rule extraction, data correlation, name structure, spatial data
structure, and prototype architecture. These aspects of the thesis were considered
globally. The detailed design of eéch phase was then carried out with the global picture in

mind.

2.1 Initial Constraints

When this thesis was started, the initial constraints were defined. Some of these
parameters were inherent because of the association with Energy, Mines and Resources in
Ottawa. The proposed research was to study EMR specifications in-order to determine if
automated name placément could assist cartographers working with Canadian topographic
data. The initial constraints include the data to be used, the rules to be used, the quality of |

design to be done, and the computer platform to be used.

The data for this thesis consists of the names to be placed on a topographic map and
the features which are on these topographic maps. This data is from two diirision_s of
Energy, Mines and Resources, Canada. The names information is contained in the
National Geographic Names Data Base (NGNDB) [EMR, 1989]. A portion of this
database has been extracted for the 1:250,000 map sheet of Fredericton. This file of

names for the Fredericton map 21G contains 3,108 names. This file is in alphabetical
8

- order within region and each record of the file corresponds to one name. A sample from
the names in New Brunswick showing five of the nihe fields in the file is found in Figure 4.
The fields not shown in the figure correspond to information such as the region code,
gazetteers map and two other possible locations associated with the name [EMR, 1989].
The generic code is the classification used in the NGNDB which associates a name with a
type of feature. For example, generic code 2300 indicates that the name belongs to an -

island. The latitude and longitude shown here are an approximate location of the name on

the map,
Name (Generic Unique Latitude Longitude
Code Key
Barkers Island 2300 DBABS 455800 663600
Barkers Point 3 ~ DBABRT 455700 663700
Rarlow Broock 601 DBABV 454600 663400
Rarlows Bluff 1625 DBABW 452000 660500
Barnaby Head 1601 DBABZ 450700 663200
Barnes Island 2300 DBACF 450000 665400

Figure 4. Sample of the names file.

The EMR map features data is contained in the National Topographic Data Base
{NTDB) [EMR, 1987]. A portion of this database can be extracted into a file for particu-
lar map sheets. 'Each line of this ASCI map features file may contain either a graphic
characteristic command or graphic generation command in the first few bytes of the
record. The graphic characteristic commands are descriptions which will be associated
with all the features to follow until a new characteristic command is.encountered.
Examples of such commands are:

ASC/ graphic group number - the EMR code for the features
LAC/LC =color - the color of the features

The graphic generation commands are used to list the (x,y) co-ordinate pairs which
make up the features. These points are specified in the UTM (Universal Transverse
Mercator) coordinate system. Two of these command are:

LST/OP,X1,Y1,..Xn, Yy - line string command
CUR/X1,Y], Xp, Y - curve command

When a graphic generation command is specified, the co-ordinate pairs are listed in
order with a comma as a delimiter. When a series of co-ordinates require more than one
record in the file the continuation line must have either blanks or the continuation com-

mand CON/ in the command area.

The file containing the features data for one 1:250 000 map sheet for the Frederic-
ton area, map number 21G, is about 8 megabytes in size. An example listing of part of
this file is shown in Figure 5. This example describes the centre-line coordinates of

wooded island shorelines as indicated by the graphic group number 5790.

ASC/5790

LAC/LC=74

LST/OP, 629829,4998263,629816,4998287,629766,4998331,629722,4998330,
629722,4998305, 629792, 4998256, 629829,4998263

LST/OP, 629769,4998486,629662,4998529, 629581, 4998540, 629537, 4998565,
629487,4998571, 629468,4998539, 629487, 4998489, 629525, 4998452,
629613,4998403,629695,4998385,623745,4998411,629769,4998486

Figure 5. Sample of the map features file.

Another initial constraint concermns the name placement rules of this thesis. The
rules used are taken from the EMR Standards and Specifications [EMR, 1987]. This
document contains the standards and specifications used in labeling topographic maps by

the cartographers at the Canadian Centre for Mapping in Ottawa. Although the English
10

description of many rules is relatively simple, the conversion from English rules to expert

system rules is not trivial.

The type of design proposed for the prototype was determined in the initial stages of
this endeavor. The goal of the research is to develop a prototype based on a production

quality design. This means that this design quality is an issue in all stages of the thesis.

When this thesis began, the question of computer platform was addressed. Since
IBM and compatible microcomputers are prevalent in industry, the 'prototype to be
developed was geared 1o this platform. The volume of data involved and the memory
available on a microcomputer were analyzed and thé decision was made to use a
microcomputer platform, However, since some software was already available on the
IBM mainframe, software related to the work already done would remain on the

mainframe.,

These constraints are firm and are a guide to the design and implementation of the
name placement system. Working with this foundation gave the thesis direction from the

start,

2.2 Rule Extraction

One of the underlying problems to be addressed is the representation of rules which
do not fall in the IF... THEN... category of rules used in most expert systems. The rules in
the EMR Canadian Standards and Specifications on name placement [EMR, 1988] were
extracted and examined. We had to ensure that each rule could somehow be incorporated
into the design., The rules were broken down into the classes specified in the standards

document, with our emphasis being on point name placement.

11

The first set of rules in the EMR Canadian Standards and Specifications [EMR,
1988] are the general rules. These rules are "rules of thumb” or generalizations used by

cartographers. Each of these rules were considered and the following was determined:

R1. "..the interior horizontally placed names are parallel to the base cord" [p.2/8]

This rule would indicate that the priority for name placement should always attempt
to place the name horizontally and parallel to the base cord. On a topographic map, the
base cord is the straight line from the lowe_r left hand side to the lower right hand side of
the neat line. The base cord is the straight with respect to the neat line and not the map

sheet; therefore the names may have to be slightly slanted before, they can be placed.

R2. "Labels and elevations should be read parallel to the map base."” [p.2/8]
The map base is the bottom of the actual paper map sheet. Placing labels and
elevations parallel to the map base will simply indicate that these labels are not curved at

all.

R3. "Avoid placing a name where it will run parallel to, and overprint a grid line.
Raise or lower the type to clear the grid line." [p.2/8]

This rule has two implications for the design of a prototype. The first concern is that
collision of a name with a grid line must be detectable. This rﬁeans that the spatial data
structure adopted must maintain information indicating which pixels make up the grid
lines, The ability to determine that a name is running parallel to a grid line must also be
detectable. This has to be handled by writing a special search routine to determine if a

name overlaps a grid line.

12

R4. “In no case will type be allowed to totally obscure a map feature.” [p.2/8]

This rule is very straight—forward; if a name overlaps a map feature then it will have
to be moved. This rule also indicates that the collision of a name and a map feature will
have to be detectable and the information indicating where the map features are in the

spatial data structures must be maintained.

R5. " ...the feature to which the type belongs should be easily recognized." [p.2/8]

Having the feature to which a type belongs being easily recognizable is not easy. It
is a rule of thumb which cannot easily be obtained and cannot easily be measured. This
rule requires consultation with a cartographer to explain more explicitly what this rule

implies.

R6. "Names are most easily read when horizontal" [p.2/8]
This rule also indicates that the name placement priorities will always begin by trying

to place a name horizontally, but they will be parallel to the base cord as indicated by R1.

R7. " Inorder of precedence, black names of cities and towns, park boundaries,
Indian reserves, railroad identifications, various labels and border materials
are affixed immediately after the grid." [p.2/8]

This rule can be handled in one of two ways. The first is to separate the different
levels of precedence as a preprocessing step and then handle one level at a time in the
placement process. The second approach is to allow the rule-based system to determine

~ which names are in the specific levels of precedence and handle them accordingly.

R8. " ..care must be given not to separate specific and generic parts of names to
the point where the eye does not readily relate them” {p.2/8]

This rule will have to be handled when the name is generated. This rule has not been
considered in depth, but determining a measure of acceptable "separation” will be

required. It would seem that the separation will depend on the font being used.

13

Black labeling on topographic maps is used for most names. All of the general rules
for name placement apply to the black type. The black labels can be divided into the three
classes; points, lines and areas. These classes have specific rules, but the only black rules

considered here were the ones pertaining to point features.

Point rules are labeling rules associated with points on a map. These rules are
divided into two sets; names of point features, and actual symbols. These two types are
treated separately. Point features are placed in a similar manner to symbols because the
name is placed with respect to a point on the map. However, these names have specific

rules associated with their placement.

Two of the rules from the EMR Canadian Standards and Specifications on name

placement of point features [EMR, 1988] are:

R9. " Names of point features such as towers, small islands, capes, heads, or bluffs
shall be positioned as follows:
- to the right and 1 mm higher than the centre of the feature or
- to the left and 1 mm higher than the centre of the feature or
- to the right and 1 mm lower than the centre of the feature or
- to- the left and 1 mm lower than the centre of the feature" [p.2/9]

This rule sets the order of precedence for point name placement. This rule indicates
that the names of points should be placed in the above order. It also indicates that the

distance of 1mm from a feature center must be calculated when placing a name.

R10. " Where a number of small islands and points are to be named, it is
permissible to abbreviate Island to "I" and Point to "Pt", to avoid crowding,
otherwise they will be spelled out in full" [p.2/9]

Determining that a region is crowded is not a simple task. The word crowded will

have to be defined as a certain percentage of the neighboring pixels being occupied. The

14

initial thought was to try to place an island or point name and then determine if the region

is crowded.

Symbol rules correspond to the small symbols used on topographic maps to
designate buildings or points. These symbols have their own set of rules found in the
section CARTOGRAPHIC SYMBOLS in the EMR Canadian Standards and

Specifications [EMR, 1988]. These rules are not considered in this thesis.

The current research is concentrated in the area of point feature name placement.
Since many small areas are handled in the same manner as point features, area features of
less than twenty five square millimeters are also being considered. Examples of these
small areas with appropriate labeling are SilOWﬂ in Figure 6. From this figure it should be
noted that only the first three examples have been considered since the fourth case is

treated as an area name placement.

1om _ 1mm

- i
1mm
Echo Lake Wilson Lake Lac Charette Lac Georges

Figure 6, Examples of name positioning of small areas [from EMR, 1987].

Areas on the map have rules specifying where a name is to be placed based on the
size and shape of the area. In order to demonstrate these rules and show how they differ
from point and linear name placement the following examples are included in EMR

Canadian Standards and Specifications [EMR, 1988].
15

{\
}
Lac la Blanche
Bale des Atocas ' :

Figure 7. Examples of area name placement [from EMR, 1998].

Many black lines on a map are not labeled at all, but some are labeled with text. An
example of a labeled line on a map is a boundary. These lines are labeled similar to

streams, but they are generally handled separately.

16

Brown labeling on a topographic map corresponds to contours. The rules for
~ contour labeling indicate that contour numbers should read uphill and index contours are
to be given preference. The contours must also not interfere with other nearby lettering
and not all numbers are shown; a pattern which shows the lowest, highest and some in-

between elevations is used.

The blue water type rules are used to determine how bodies of water should be

labeled. These bodies of water are divided into five classifications:

- a. Large Bodies of Water, Oceans, Gulfs, Bays
b. Medium and Large Lakes (5 cm and larger)
¢. Small Lakes (uptoScm)

d. Double Line Rivers, Streams

¢. Single Line Streams

The rules for the blue type names are specific to one of the above classes. The size
of the area or the characteristics of the body of water on the map dictate the name

placement rules used. The only class of bodies of water that were considered in this thesis

were ponds since they are labeled similarly to point features.

The rule extraction phase of the design was critical. Each rule was considered in the
design to insure that it could be accommodated in the prototype. The rule extraction was
done as one on the initial stages of the research and every subsequent stage of the design

took the rules extracted into consideration.

17

2.3 Data Correlation

Matching the names in the National Geographic Names Data Base to their
associated features in the National Topographic Data Base is an important step of the
preprocessing fequired for antomated name placement since the two databases do not
have a close correspondence. The only way to correlate the names and data is by
-exhaustive search, The location of the name in the NGNDB is only an approximation and
does not match the NTDB exactly. Unfortunately, the generic codes used to determine
what type of feature the name is associated with do not correspond to the graphic group
numbers representing the feature types since these two databases are from different

divisions of EMR.

The first step to matching the names to features was to ekfract the necessary data.
Two programs had already been written in PLI on the IBM mainframe. The first program
extracts all of the names in a specified region and did not require any changes. The second
program was designed to extract up to ten different types of features in a specified region.
This program was changed so that all of the features in the region could be extracted. The

details for using these programs are found in Paine and Mullin [1992].

The next step in matching the names from the EMR namés database to EMR
features was to generate a look-up table of generic codes for names which correspond to
graphic group numbers of features. Since this data is intended to be used for all of
Canada, many of the name codes are duplicated; one for the English name code and one
for the French version. The codes for the features are also more specific than those of the
names. These two considerations resulted in a table which is not a one-to-one mapping
from the names to features, A portion of the names-to-features look-up table is shown in

Table 1. From the look-up table we can see that the generic code 113 matches both

18

graphic group numbers 4120 and 4450. The completed table has 46 point feature name

generic codes with their corresponding graphic group numbers (see Appendix A),

Table 1. Sample of the names-to-features look-up table.

Graphic
Generic Group
Code Language Meaning Number Meaning
113 E - Pest Office 43120 Post Office to Scale
4450 Pogt Office
119 E Trading Post 4132 Trading Post to Scale
4133 Trading Post
120 E Fort 4310 Fort to Scale
4311 Fort Symbol
125 F Bureau de poste 4120 Post Office to Scale

. 4450 Post Office

To aid the matching of EMR names to EMR features, a search algorithm has been
designed and implemented. These results can be divided into three categories; single

match, multiple matches, and no matches.

This algorithm first places all of the extracted features into a grid overlay structure.
This overlay structure divides the map sheet into many smaller sections. The humber of
sections in the grid is a parameter for the user to determine. The data structure for the
overlay consists of a two-dimensional array of linked lists. The nodes of the linked lists
contain data for each feature which is in the grid cell. When the name search is carried
out, only the necessary cells are searched. While this is being done, the offset of the
position of the feature from the start of the file for each feature is recorded so that the
feature can easily be accessed later if matched to a name. After all of the features for one
map sheet are placed in the grid structure, the names are read sequentially. The name
generic code is then searched for in the look-up table and the matching graphic group

numbers are obtained. If no matching features are in the look-up table, then the feature is
19

not considered to be a point. If there are matching graphic group numbers for a generic
code, then the grid cell in which the name is located is searched for matching features, The
name and zll of its matching features, i.e. features of appropriate graphic group numbers in
the vicinity of the approximate name pdsition, are written to a file. A diagram of this grid

overlay data structure is depicted in Figure 8.

X map feoture
$1 2 3 mbar
Y, m numbar,

' » '_hl j 3—-]..
g fir R IERTIC
e i 2 {
thom) £ @i [13,m et | (e : 'l EEE E
- H H H (3
(1.« 13 |2 S, et} I 1 : " :
5 S OEOE
_——— Arrgy of pointers

e -

o M

] 1 t

]] 1] 1
i i) 1
1 1]

LM' —;;ﬁ s et 31 10.3) Finked Ii:ﬂ of featurgs
s == intersecting each grid celi
g \ fmai)| (w2}

TR CE

' ! N\ 110 o)

g fE,h i3

X mini Yenin! 9
Grid overiaid on map data

Figure 8. Grid Data Structure [from Nickerson, 1987].
When the name to feature correlation is done there are several cases 10 be consider.
There may be one feature which matches a name, several possibilities for a name or no
features which match a name. Each case was considered in the design of the correlation

process.

20

The first case considered was one matching feature found in the appropriate grid cell
of the name being processed. It was assumed that this feature is a match and the match is

recorded in a file.

Finding no matching feature for a particular name can be divided into several cases
based on the type of name in question. For the purposes of this thesis, only point names
with no matching feature have been examined. Some names will not appear on small scale
maps because the NGNDB contains all names with.no consideration of their use on maps.
For example, a small town which appears as an area on one map scale may appear as a
point on another scale if present at all. However, if no matching feature is found for a
point name in .the initial grid cell , three additional grid cells are searched. These three grid
cells are the three closest to the position of the name. A diagram showing an example of .
the three additional cells searched for when a match is not found in the initial cell id shown

“in Figure 9. The name position in the figure is indicated by the X. If these additional

searches do not yield matching features the name is eliminated from further processing.

Figure 9. Example of extra cells searched when there is no match.
If muitiple features are found as being possible matches for a name, the user is re-
quired to determine which feature is to be selected as a match. To help the user with the

selection, the list of all matching features is sorted in increasing distance from the centroid

21

of the feature to the placement associated with the name. This list of features also

includes the area of the feature on the map sheet in millimeters squared.

“Once this stage of the correlation work was designed and implemented, it was
apparent that more tools could be beneficial to aid the user in matching the names to
features interactively. Two additional utilities were built which dealt with plotting the
name and feature data. The first addition was the ability to generate HPGL (Hewlett
Packard Graphic Language). which could be plotted. The other tool generated was
software which would allow the user to browse a map sheet on the CRT and display the
labels. This display tool does not have the names positioned as on a map but just
displayed horizontally at the approximate position in the names database. The ability to
zoom in and out on data for a map sheet seemed to be a tool which would be used

extensively.

Since the research in this thesis has been limited to point features and small area
features which can be handled as points, little consideration has been given to area or line
names which do not have_ matching features. Most of the area and linear names are
currently not matched because the look-up table has only been cdmpleted for points. The
searching algorithm implemented will generally be feasible for areas and lines once the

look-up table is extended.

Design and implementation of a data correlation tool consumed a large amount of
time. The task of design was substantial because it assumed that a totally automated
algorithm is not possible. An architecture for the complete matching process is shown in

Figure 10.

22

Grid cell . Match

Names on one Features on one definition table

map sheet map sheet

Match
software
(match.exe}

Possible
matches for
names and
features

Sort
User

software
Interaction (sortfeat.exe)

Sorted
features
for names

Proximity
lubelling
software
for plotting

HPGL file
to plot

Figure 10. An architecture for data correlation.
23

As can be seen from the architecture for data correlation, the process is quite
involved and requires substantial interaction by the user. The steps to follow in the .

complete matching process is further discussed by means of an example in chapter 3.

2.4 The KnoWledge Base

The approach used for the design of the knowledge base is the use of a priority
scheme for name placement which interacts with a quadtree-based spatial data structure.
The three components of the knowledge base are the priority scheme, the names frame

structure and the rules from section 2.2.

The priority of the next relative position to try for each point name is held ina
structure in the knowledge base. There are eight possible positif;ns which may be used;
the first four are horizontal while the lower priority positions are curved. The sequence of
priorities looks like:

(HRU HLU HRD HLD CRU CLU CRD CLD).
where: | '

H =Horizontal C = Curved

R=tothe Right L = to the Left

U= Up | D = Down

This structure indicates that the most favored position for a point name is horizontal,
to the upper right of the feature being labeled. It should be noted tﬁat other placements
are optimal for area and line features. If no horizontal placement is possible, one of the
four curved placements can be used. A diagram of the possible curved positions is shown

in Figure 11.

24

Figure 11. Possible curved point name placements [from EMR, 1988].

A frame structure for the names isincluded in the knowledge base design. The
hame, generic code and location slots of the frame structure will be taken from the input
passed to the expert system while the remaining slots are used during the placement
process. The placed-at slot contains the quadtree coordinates of the curreﬁt placement,
The other necessary information for the name are its font-type, font-size and orientation,
During the placement process, some of the slots correspond to boo'lean flags will be
determined. The “crowded” flag indicates if the region around a name is crowded with a
value of either true (t) or false (f). The other slots determined during name placement are
the Current-placement-position code and three overlap detection flags. The final siot of
the frame structure contains a linear quadtree representation for the name. In this
fepresentation, G corresponds to gray, B to black and W to white, This means of
recording the position of each name is essential in the placement process since the ability
to remove names and try other placements is required. The frame structure for each name

being placed looks like the following:

25

(name-placement
(name Nashwaaksis)
(generic-code 200)
(location 455900 663900)
(placed-at 34567 25001)
(font-type Century-Text-Roman)
{(font-size 8)
(orientation 2.6)
{crowded f)
(current-placement-position HRU)
(overlaps-grid-line)
(overlaps-map-feature f)
(overlaps-existing-name f)
(gt-rep GGGBWGB...B))

When a name is positioned, a call from the expert system will invoke a C function
which determines the placement of the name based on the presenf configuration of the
name in the frame structure, The characters of each name will be placed in the quadtree
data structure which is used to detect overlap. Calls to the C functions are also required to
return any new information to the frame structure, in particular overlapping and crowded
conditions. The system rules can then be used o make decisions about whether or not the
current name placement is acceptable, 1f the next position should be tried, or if some
alternative action is required. The procedures will be data driven such that the names being
placed cause rules to fire automatically. A forward chaining expert system shell called

ART-IM [Inference, 1991] was considered for top level construction of the rules.

2.5 The Spatial Data Structure

Another major aspect of this thesis was determining an appropriate spatial data
structure for the name placement process. This structure must be capable of holding the
raster representation of the features, grid lines, and names while maintaining a list of

objects which intersect each pixel. This structure is necessary so that detection of

26

~ collisions can be done to find appropriate name placements which do not have names

overlapping other names, features or grid lines.

A quadtree is a spatial data structure that recursively divides the space into four
quadrants. These subspaces are generally labeled northwest, northeast, southwest, and
southeast. Each node of the structure contains pointers to the four children, an ancestor
pointer and the color of the node. The three possibilities for colors of the nodes are white
for unoccupied leaf nodes, black for occupied leaf nodes and gray for interior nodes. This
structure seemed to be appropriate except fc_or one problem. In a typical quadtree, the
concept of origin of an occupied pixel is not a consideration. However, in order to
determine which objects a name has collided with, the object information of the existing
black pixels must be maintained. This information is also required when the a name is to

be moved.

The quadtree implemented in this thesis maintains the object information for each
black node. Pointers to the objects to which the occupied leaf nodes belong are
maintained in the structore. This information is képt in small linked lists that are added to
the occupied leaf nodes. These linked lists contain two pieces of information. The first
component of the linked list node is one character describing the type of object in this
node. The three possibilities are "{" for a feature, " g" for a grid line, and "n” for a name.
The other component of the linked list node is the graphic group number for features, a

code for grid lines indicating horizontal or vertical orientation, and a unique key for each

name.

The process of placing a name requires interference detection of the name being

placed with features, grid lines and other names which have already been placed. With the

27

object information being maintained in the quadtree structure, overlaps can easily be
detected and the interfering objects can be identified. This is necessary since different

rules apply depending on what object the name is in conflict with.

Before name placement can begin, the raster representation of the features must be
generated, since name placement rules are based on having the name placed with minimal
interference with the map features, This part of the problem has been solved with a series
of steps. These steps are to (1) expand the points of a feature, (2) build fun length code
for features, (3)_ build quadtrees for the features and (4) form a union of the quadtrees into

one large feature quadtree.

The first step of the process requires turning the center line coordinates of the fea-
tures into connected strips of specific widths. The widths for feature types are found in a
look-up table. Since the width specifications found in EMR [1988] are in millimeters, the
same units appear in the look-up table file. A sample of this width table is shown in Table
2.

28

Table 2. Sample of feature width look-up table.

Code Description 'Width in

mm

2020 Road A (Paved Divided) _ 0.89
2030 Road B (Paved Undivided - not elevated - 2 lanes) 0.5

2040 Road C (Paved Undivided - not elevated - 1 lane) 0.25
2050 Road D (Gravel Undivided - 2 lanes) 0.55
2060 Road E {(Gravel Undivided - 1 lane} 0.4

2070 Road F (Unimproved) 0.25
2080 Road G (Track - Cart/Tractor} 0.17
2090 Reoad H (Trail) 0.15
5010 Shoreline Lake 0.12
5780 Shereline Island 0.12
5790 Shoreline 0.12

The general method of generating lines of specific widths is by generating circles of

this diameter in succession. Since this is not a feasible alternative for our processing, the
decision was made to form the features by a series of rectangles with interconnecting
triangles as shown in Figure 12. The three vertices of the triangle have been circled here

to indicate the interconnection.

Figure 12. Method of interconnection to form a feature.

Figure 13 represents the centerline coordinates of a shoreline. Figure 14 illustrates

the expanded version of this shoreline feature into connected rectangles, BOX, and
29

triangles, TRI. The BOX consists of the eight coordinates making up the four corners of
the rectangle and TRI lists the three coordinate pairs for the small triangles. The diagram

~ in'Figure 15 shows how these coordinates would be expanded.

ASC/B750

LAC/LC=z=74

LET/OP,629829,4958263,629816,4998287,629766,4998331,629722,4988330,
629722,4998305,625752,4598256,629829,4998263

Figure 13. A sample shoreline feature.

ASC/ 5780 _ :
BOX 629827 4998262 629814 4998286 629817 4998287 629830 4958263
BOX 629815 4998285 629765 4998329 629766 4998332 629816 4958288
TRI 629816 4998287 629816 4998288 629817 4998287
BOX 629766 4998329 629722 4998328 629721 4998331 629765 4998332
TRI 629766 4998331 629765 4998332 629766 4998332
BOX 626723 4998307 629793 4998258 629790 4998253 629720 4998302
TRI 629722 4998305 629720 4998302 629721 49398331

BOX 629791 4998258 629828 4998265 629829 4998260 629792 4998253
TRI 629792 4998256 629792 4998253 629790 4998253
TRI 629829 4998263 629830 4998263 629829 4998260

Figure 14. The expanded coordinates for the shoreline feature.

Figure 15. Plot of the expanded shoreline feature.

30

At this point the UTM coordinates are converted to quadtree coordinates, The con-
version could have been done sooner in the processing, but this is a more appropriate
point since the coordinate expansion in UTM coordinates is more accurate than expansion

of converted points. The equation used for this transformation is :

(3 Te -1310)

d

[2], .

where: (xq,yg) = the lower left hand comer of the map sheet,
¢ = number of pixels per meter for the quadtree (choser-i as 20,000 here),

d = map scale number (e.g. 250,000).

For each rectangle and triangle of the feature a run length code is generated. Run
length code is a representation for raster images which groups similar pixels into one-
dimensional blocks. These blocks are usually ordered vertically, with the three elements
being the vertical value, the initial colored pixel and the ending colored pixel. These
smaller pieces of run length code are combined into run length code for the entire object.
This step eliminates any overlaps in the generated rectangles as well as producing a more
efficient representation to be used in the generation of a quadtree for the object. Figure 16

-shows all of the run length code generated for the shoreline feature presented earlier in
Figure 13. As you can see, there is some overlap in the run length code; for example, RUN
1205 4079 4080 is duplicated. The run length code is sorted and condensed in Figure 17
by extending runs and eliminating duplicates. Here you can see that the runs: RUN 1203
4080 4081, RUN 1203 4076 4078, RUN 1203 4077 4080, and RUN 1203 4080

4081 are combined to form: RLC 1203 4076 4081.

31

AsC/ 5790

RUN 1203 4080 4081
RUN 1204 4080 4080
RUN 1205 4079 4080
RUN 1205 4079 407%
RUN 12066 4077 4078
RUN 12067 4076 4077
RUN 1208 4075 4076
RUN 1208 4075 4075
RUN 1205 4079 4080
RUN 1208 4072 4075
RUN 1209 4074 4075
RUN 1208 4075 4075
RUN 1208 4075 4075
RUN 1202 4077 4077
RUN 1203 4076 4078
RUN 1204 4074 4077
RUN 1205 4073 4075
RUN 1206 4072 4074
RUN 1207 4072 4072
RUN 1206 4072 4072
RUN 1207 4072 4072
RUN 1208 4072 4072
RUN 1202 4078 4078
RUN 1203 4077 4080
RUN 1202 4077 4078
RUN 1203 4080 4081

Figure 16. The pieces of run length code for the sample shoreline feature.

i ASC/ 5790
RLC 1202 4077 4078
RLC 1203 4076 4081
o _ RLC 1204 4074 4077
| RLC 1204 4080 4080
g RLC 1205 4073 4075
5 RLC 1205 4079 4080
RLC 1206 4072 4074
RLC 1206 4077 4078
RLC 1207 4072 4072
RLC 1207 4076 4077
RLC 1208 4072 4076
RLC 1208 4074 4075

Figure 17. The combined run length code for the sample shoreline feature,

32

For each of these features a separate quadtree (S) is built. Each of thesé quadtrees
will contain ail of the traditional quadiree nodes as well as the linked list nodes. The
linked list nodes are added to each black leaf node of the features so that the object
information is maintained. A universal quadtree (U) w111 also be maintained as the union

of the individual quadtrees for the features.

The algorithm for constructing a quadtree is a recursive algorithm which builds the
tree from the bottom up [Samet, 1990]. All of the pixels in the space are given a node in
the tree and the lower levels are pruned if the four children are of the same color. For a
general bit map with random coloring this seems to be a good algorithm. For map
features and names it is extremely inefficient. Most of the features on a topographic map
cover only a small portion of the map sheét and therefore only a small portion of the

quadtree.

The standard algorithm for constructing the quadtree of a feature has been modified
to make use of the bounding rectangle of the features. At this stage, each feature is
represented in run length code. Since this code is sorted, getting the bounding rectangle is
done by taking the first and last values for y. The left and right limits are found by looking
for either the lowest beginning x or the largest ending x in the feature. The quadtree with
objects and the steps leading 10 it can handle area, linear, and point features since all of the

features are required for any type of name placement.

2.6 Prototype Architecture
The design of a prototype for semi-automated name placement on EMR

topographic maps was achieved. This prototype consists of all the steps required for name

33

placement of point features. An architecture, shown in Figure 18, for the problem of

automated name placement has been developed.

The first aspect of the name placement architecture is data correlation. This phase
begins by the extraction of the required names and features which appear on the map
sheet. These are saved as two separate files. The names are then matched to features in
an attempt to find the one feature corresponding to eéch name. At this point user

interaction is required to determine which of the multiple matches are correct.

Once the data is correlated, the features can be placed in the spatial data structure.
The grid lines are added to the spatial data structure at this time as well. At this point, the
names can be placed. This is done by reading each name into the knowledge base and
then placing them into the data structure. When all of the name placements are complete,

the results are written to a file,

The following sequence of steps are from the architecture of the NAPLES
prototype, and result in placement of the names: |
L. \Extract the features
Extract the names
Match the names to features

Insert the features into the quadtree

Read the names into the knowledge base -

2
3
4
5. Insert the grid lines into the quadtree
6
7 Place the names

8

Save the resulting plaoed. names as a disk file

34

A more detailed algorithmic summary of the specific steps proposed for automated

point name placement are as follows:

5.2
53
5.4

5.4.1
54.2

6

Generate the run length code for the features
Generate the run length code for the grid lines
Enter the features into quadtree U
Enter the grid lines into quadtree U
For each name do
Determine the most appropriate position for the name
Generate run length code for this name at this position
Determine and remember adequacy of this placement
While placement 1s not adequate do
Choose next best position for the name
If no more available positions, then place at the best
placement position encountered, and exit while loop

. End While

. End For

~ Save the complete name structure as a disk file

35

Names vs

EMR code
table
Partially
Matched
Match
Match set of _
Names for names to names with names to
features features
one map features
sheet
Draw Quadtree
Features features with Matched
for one and grids objects set
map in QT
sheet Q

Placed
names

with fonts,

prientation,
etc,

nlacement

Figure 18. The system architecture for NAme PLacement by Expert System.

2.7 Font Issues |
In order to do precise name placement, the font requirements are quite extensive. A

package that can display a name in a specific font with a specific size is not necessarily

suitable for use in ant antomated name placement system. In order to generate the raster
run length code for a name, the actual font definitions must be accessible so that a bit map
containing the name can be generated. Many systems for name placement [e.g. Jones, 89]
use bounding boxes rather than a raster representation for the names interference
detection. |

36

A few of the 28 point feature fonts required for name placement on Canadian

topographic maps are shown in Figure 19.

Villages 500 to 2000
pepulation

Villages or settlements,
up to 500 population

Settlements or localities

Abandoned settlements
or localities

Settlements different
from place names

Small Islands (up to 5 cm)

Capes, Heads, Points, Rocks

Smaller Mountains
{(between 1 cmand 5 cm)

Smallest mountains, Domes
Hills, Peaks, Ridges (up to
1cm)

* Canyons, Plateaus, Gorges,
Passes, Gullies, Flats, Necks,
Bluffs, Plains, Valleys,

8 pt u/1 Century Text
Roman=FT1

7 pt u/1 Century Text
Roman=FT 1

6 pt u/1 Century Text Roman = FT 1

6 pt u/1 Century Text Roman = FT 1
6 pt1/¢ CG Trade Condensed = FT 37

6 to 12 pt CAPS Century Text
Roman=FT1

6 to 8 pt u/l Triumvirate
Roman = FT 11

6, 7 pt u/l Triumvirate Light
Roman = FT 16

6, 7, 8, pt CAPS Triumvirate
Roman = FT 11

6 pt u/I Triumvirate
Roman = FT 11

6 pt u/lto 20 pt CAPS
Triumvirate Roman = FT 11
(Large features in CAPS)

Ottawa

Orawa

Onawa

Ottawa
{abandonsd)

OTTAWA

OTTAWA

Kettls Isiand

Kattle lsland

"Rocky Poinl

MOUNT RODERICK

MOUNT RODERICK

Cusaon Peak

CINDER FLATS

Ragers Pans

Figure 19. A sample of the required fonts for names [from EMR, 1988].

For NAPLES, software was written [Arendtsz, 1992] to return a bounding box for

the string representing the place name. This software uses Windows 3.1 fonts which

closely match one of the above required fonts. The look-'up table used for the fonts is

given below in Table 3,

37

Table 3. Sample font look-up table.

Index Facename Pitch Family

0 Tms Rmn VAER_PITCH FEF_ROMAN
1 Helv VAR_PITCH FF_SWISS
2 Courier FIX_PITCH FF_MODERN

The representation of names using their required fonts will require moré work
before names can be incorporated into the full implementation of the prototype. Without
the raster representation of the names with the appropriate fonts, overlap detection is
limited to determining the amoﬁnt of overlap of the name’'s bounding box with other

objects.

The Idesign aspects of this thesis were substantial. The components which were
given the most detailed design were the data correlation and the data structure. It would
seem that the two components which require further detailed design before
impleméntation can be completed are: the conversion of the rules to a computer

representation, and the generation of names in the raster form of the appropriate fonts.

38

CHAPTER 3.

IMPLEMENTATION

The implementation for this thesis was divided into three main portions. The first
part dealt with data correlation and the associated test with one map sheet. The second
part of the implementation was constructing the knowledge base. 'I'he_ khowledge base
was started but was not pursued since it was decided that this thesis would concentrate on
the spatial data structures for name placement. This was a decision based on.timin g and
priority of implementation was given to the data structure, The considerations for the
spatial data structure included memory management as well as new algorithms for this

particular implementation.

3.1 Data Correlation Example
The implementation of the data correlation phase is best described by considering a
example of the entire process of section 2.3. Data correlation is required to match names

with their appropriate features.

3.1.1 Data Extraction

The matching process begins in TSO on the IBM mainframe. There are two PLI
* programs; one to get the required names and one for the features. The name extraction
program requites bhly the window coordinates of the area to be extracted in degrees. In
this example, these programs were used to extract the NTS21G map sheet information,
and the names parameters were 680000,460000,660000,450000, meaning to extract
names within the bounding box of (46°N, 68°W) to (45°N, 66°W). The featﬁre extraction
program requires more parameters. The parameters for the NTS21G test are shown in
Figure 20. The first line indicates how many different graphic group nﬁmbers are to be

39

extracted. When all features are to be extracted a special case is vsed, so this number is 1.
The second part of the parameter lists the graphic group numbers to be extracted. If the
graphic group number specified is a -1, then all features are extracted. The third part of
the parameters is the window for extraction specified in UTM coordinates, the coordinate
system of the features database. The ﬁnél parameter is a flag. If this flag is a 0 then the
features extracted must completely fit within the window bounds in order to be extracted;
a 1 indicates that features partially within the window should also be extracted. The
output for this exzimple includes two files containing over 3000 names and over 8
megabytes of features. QOnce files were generated, they were transferred to an IBM PS/2
workstation for direct use.

1

-1

577434,5094316,736453,4987112

1

Figure 20. The parameters for extracting NTS21G features.

The NTDB data i$ lacking bounding boxes, and there is a need for extracting
subsets for exﬁeﬁmental work. Another PLI program was written in order to add a
bounding box to each feature extracted. The boundin ¢ box lines in the file have the
following format:

BOX/ smallest x, smallest y, largest X, largest y

The previous sample of the file shown in section 2.1 with the boundin g boxes added

might look like:

.40

A8C/ET90

LAC/LC=74

BOX/ 629722,4998256,629829,45888331

LST/OP,529829,4998263,629816,499828?,629766,4998331,629722,4998336.
©29722,4998305,625752,45998256,62982%,4998263

BOX/ 629468,4498385,629769,49%8571

LST/OP,62976%,4598486,629662,499852%,629581,4938540, 629537, 4998565,
629487,4998571,629468,4958539,629487,4998489,628525,4998452,
629613,4998403,629695,4998385,629745,4998411,628769, 4998486

Figure 21. Sample of the map features file after adding the bounding boxes.

3.1.2 Data Matching

Matching software has been implemented to aid in the matching of names to features
and is documented in Mullin [1992]. This software consists of a series of eight Microsoft
C programs. For the purpoées of illustrating the algorithm of mﬁtching a name to its
associated featare, 1 will use the example of the NTS21G map sheet data and the name

"Bliss Island".

The names of two files are expected to have the same file name with the extension
NMS for the names and DAT for the features data. The match program also requires a
parameter file as shown in Figure 22, This file has the same file name with the extension
PAR.

MATCH . TBL

25
45:00:00 ~68:00:00 46:00:00 -66:00:00

Figure 22. Parameter file for NTS21G.PAR matching.

41

The first line contains the name of the look-up table for maiching generic codes to
graphic group numbers as described in section 2.3. The next lihe is the number m used in
the matching algorithm; m indicates that an m by m grid structure is to be used as shown
in Figure 8. The largest possible grid structure is 50 by 50. The last line in the parameter

file contains the latitude and longitude ranges of the map sheet.

When the matching process is carried out, the files shown in Figure 23 will be
created. The resulting matched file from the first process will have the extension MAT.
The other file whjch.is produced by the matching process has the extension NAM. It con-
tains a truncated version of the names in the EMR names input ﬁle (NTSZ21G.NMS),
which has a record length of less than 80 characters. This allowé the file to be printed

easily and is not actually necessary for the data correlation.

42

Names on one
map sheet
(NTSZ1G.NMS)

Features on one
maup sheet
(NTS21G.DAT)

Grid cell
definition

{NTS21G.PAR)

Match
table

{match.tbl)

Match
software
{match.exe}

Possible
matches for
names and

features
{NTS21G.MAT)

Final Sori

Matched soffware
Set {sortfeat.exe)
{NTS21G.MAT}

Sorted
features
for names
{NTS21G.S0R)

Proximity
labelling
software
for plotting

HPGL file
to plot
(BLISS.ALL)

Figure 23. The matching example for map sheet NTS21G.

43 .

If there are multiple matches, as with the name "Bliss Island”, then the resulting

match file may not be sufficient. The portion of this file which is associated with Bliss

Island is found in Appehdix B. To help the user with multiple matches the sortfeat.exe

program can be used. A sample of the NTS21G.SOR sorted features which correspond to

the name can be found in Figure 24. A plot of them is given in Figure 25. The user can
either sort the entire file of matches for NTS21G by typing sortfeat nts21g.mat, or the

name in guestion can be isolated by editing the file and copying only the data for the name

in question to a new file as in this example.

2300 Bliss Island 450100 665000 670722 4986868

1 Centroid 670172 4987485 Dist 826.552m TIndex 5 Area is 14.97491

2 Centroid 671643 4988350 Dist 1744.868m Index 2 Area is 0.07978
3 Centroid 671068 4988595 Dist 1761.319m Index 3 Area is 34366.89313.
4 Centroid 671154 4985055 Dist 1863.758m Index 22 Area is 55590.57773
5 Centroid 669522 4988549 Dist 2065.372m Index 4 Area is 0.36794
6 Centroid 668485 4987983 Dist 2499.479m Index 9 Area is 0.34288
7 Centroid 671557 4989263 Dist 2536.385m Index 16 Area is 0.24862
8 Centroid 668284 49876408 Dist 2547.831Im Index 12 Area is 1.75970
9 Centroid 670682 4989417 Dist 2549.314m ZIndex 18 Area is 0.34429
10 Centroid 668664 4988474 Dist 2610.479m Index 8 Area is 0.13542
11 Centroid 668461 4988289 Dist 2670.461m Index 10 Area is 0.33284
12 Centroid 668118 4987936 Dist 2814.505m Index 13 Area is 0.25502
13 Centroid 670588 4989708 Dist 2843.160m Index 1% Area is 0.33023
14 Centroid 668516 4988896 Dist 2996.535m Index 11 Area is 0.32239

15 Centroid 671273 498999%5 Dist 3175.174m Index 17 Area is 34361.79988
16 Centroid 669335 4989750 Dist 3198.38%m Index 20 Area is 0.20752
17 Centroid 669129 4989657 Dist 3211.88B0m Index 6 Area is 27855.10225
18 Centroid 670088 4991258 Dist 4435.545m Index 7 Area is 27913.34115

19 Centroid 666117 4989270 Dist 5193.807m Index 21 Area 1is 0.48578
20 Centroid 665435 4985364 Dist 5496.761m Index 1 Area is 2.76578
21 Centrold 665175 4986380 Dist 5568.425m Index 15 Area 1is 3.54822
22 Centroid 666312 4990391 Dist 5644.433m Index 23 Area is 227176.47009
23 Centroid 665138 4989092 Dist 6010.593m Index 14 Area is 0.308498

Figure 24. A sample of the sorted possible features for "Bliss Island”.

Once a user has used the matching and sorting software, manual matching is re-
quired to determine which of the multiple matches is correct. Software has been provided

to aid in this task. In order to plot the names and features, labeling software is available.

Three labeling programs have been implemented. The first is called labels.exe. This
program can be used to produce a file containing HPGL code to be displayed on the
screen by the select.exe program. The second program, labnames.exe, will take part of |
the matched data and produce a file containing the labels for the names in HPGL which is
sent to a printer. The final labeling tool is labfeat.exe. This program takes part of the
sorted features data, for example the sorted features which are possible matches for Bliss
Island, and produces a file containing the labels f1, £2, ...fn which correspond to the
feature numbering scheme of the sorted list. These labels are then combined with the
features a marker for the name, along with the centroid of the nearby features numbered in
sorted order by increasing distance from the name. An example of this was done using the
labfeat.exe and labnames.exe with the Bliss Island possible features and the result was
saved in the file BLISS.ALL. It should be noted that the +1 in Figure 25 corresponds to
the position fm: the name "Bliss Island”. From Figure 25, it can be determined that the

name "Bliss Island” probably refers to feature 1 of the sorted list in Figure 24.

45

122

Figure 25. "Bliss Island" possibilities generated by labeling software.

There may be many matches to be inspected by the user and it may not be
worthwhile to plot each one. The select software described next, allows the user to

eliminate many of the possible matches by looking at the region on the CRT.

3.1.3 Interactive Matching
The ability to display a map with its associated names is provided by the select
software. Since the feature file is very large for one map sheet, the map is divided into 16

smaller windows. This division means that as the user zooms in and out looking at the

46

map, an average of 0.5 MB of data is read by the program. These 16 smaller windows are
generated by the extraction software. A script generator program written in PLI creates a
script which calls the extract program once per window to generate the input files for the
extract program. Zooming is done by splitting the extracted data and names into 16
smaller files. These subdivisions are numbered as depicted in Figure 26. The bounding
boxes allow the program to avoid parsing lines of input which are not displayed on the
screen. These addition of a bounding box and splitting the data into smaller portions

greatly improved the performance of the select software on the IBM PS/2 workstation.

13 114 |15 116 .

Figure 26. The numbering scheme for the select software,

The select.exe program begins by displaying an overview of the entire map. The
zooming can be done by use of the mouse. To zoom in on a grid the left mouse must be
used. To back up a level the right mouse is used; however if the user wishes to leave the
application, the escape (Esc) button will work when the features are being drawn on the
CRT. In order to display the NTS21G map sheet the user will type select nts21g. The
sequence of steps used to generate the input files is given in Paine and Mullin [1992].
Figure 27 shows that there are 16 plus 1 feature files and 16 name files. The one extra

feature file is an overview of the entire map sheet, and it contains only a few feature types

47

and does not contain any names. There are also 17 parameter files giving a total of 50

input files.

i

Figure 27. An architecture for extracting EMR data.

A summary of the steps which should be done in order o match the EMR names to

the EMR features is as follows:

48

a) use the select.exe software to determine if the names extracted should be
on the mzip sheet at this scale

b} use the match.exe software to find possible matches

c) sort the features with the sortfeat.exe software to determine as many
matches as possible referring to the original map sheet.

d) for the remaining names having more than one possible match identified
in step ¢), plot the features and names on the printer and compare them to

the original map sheet to find the remaining matches.

A test for the points on the NTS21G map sheet was carried out. The results of this
experiment, which took a few weeks to complete, resulted in the. classification of 309
point nam.es. The exercise involved matching the names to features, sorting, plotting,
using the select software and consulting the NTS21G map sheet in order to determine

correct matches. The findings of the matching experiment are found in Appendix C.

3.2 The Knowledge Base

The knowledge base was considered but was not developed. The names frame
structure was implemented in ART-IM [Inference, 1991]. Two simple rules were tried;
one to determine that a name had not been placed and another to detect that the name for
an island had been placed in a crowded area. These rules, however, do not call the C
function to act on the rules; they simple print a message indicating that the situation hﬁs

“been detected. This early test implementation can be found in Appendix D.

49

3.3 A Quadtree with Objects

The implementation of the design for a spatial data structure was carried out. This
stage of the thesis can be divided into three major tasks. The first barrier to be overcome
was the management of memory. Once the memory was accessible, new construction and

union operations for quadtrees with objects were implemented and tested.

3.3.1 Memory Management |

The actual generation of the quadtree for automated name placement has been done
using Microsoft C version 7 and the Software Development Kit version 3.1 [Microsoft, |
1992]. It was run on an IBM PS/2 model 90 workstation, which_ included an Intel

486DX, 33 MHz with 16 megabytes of RAM.

in erder to generate quadtrees that can represent the entire map sheet, a very large
stfucture must be built. Most of the conventional DOS C compilers are not designed to
deal with such large structures. In order to implement the structure designed, the decision
was made to use 32-bit pointers. This capability is not part of s_tand_ard Microsoft C7, but
a dynamic link library (DLL) has been provided. The functions in the WinMem32.DLL
allow the programmer to allocate units of memory of up to 16 megabytes at once, create a
pointer to the memory, release a pointer to the memory and release the memory. There is
a limit however, on the number of times you can allocate space. By running a small
program containing a loop to allocate nodes, I found the maximum number of possible
handles to be limited to just over 2000 . For this reason, allocating one quadtree node per
call is not feasible. The allocation is done by allocating a large number of nodes with one
call and offsetting into the region to access specific nodes. When the nodes for one handle

are full, another one is allocated.

30

Maintaining the allocated memory was also a consideration. Using the Win32 DLL
and the Windows environment has made the memory management quite easy. In order to
access allocated memory, a pointer to the desired quadtree node must be established.

This causes that particular segment of memory to be moved into the current segment.
When you are finished with the node, the pointer to the node is released so that the current
page is "unlocked" and can be paged. The windows memory manager pages the allocated
space to the virtual memory of the machine whenever necessary. This paging seems to

work very well and the time to create a quadtree with 3049 nodes is only 35 seconds.

Appendix E contains a description of the code used to generate nodes for the object

quadtree.

3.3.2 Modified Construction Operation
In the CONSTR algorithm of Figure 28, a type called pair has been used. Pairisa
structure which contains two pieces of information: the color of the node and a pointer to

a quadtree. The definitions of pair, qtree, and link are:

type
pair: record
color:(B,W,G);
point: qtree
end;

type
gtree: ->tree;

tree: record
color: (B,W,G);
NE, NW, SE, SW: gtree;
parent: qtree;
Ilist; ->link
end;

51

type _
link: record
code_letter: (f,g,n);
code_number: integer;
next: ->link
end;

52

function CONSTR{n, X, vy, ASC_code:integer):pair;
{ Construct a quadtree from an image of 2**n by 2**n which has an
erigin of (0,0) being the SW corner }

var
p: arrayl(l..4} of pair;
par: pair;
r, q: Jtree;
ievel, i: integer;

begin
if {n=0) { process the pixel }
begin
if IMAGE(X, ¥) = 0
par.color := 'W!'
else
par.color := 'B';
par.peint := null;
end i
else .
begin { process the non-pixel }
level :=n - 1;)
{ NW corner }
if ((xmin <= x-2**level) and (ymax >= y-2**level)
pll} := CONSTR{level, x-2**level,y,ASC_code);
else

pll].cclor = "W';
{ NE corner }
if { {xmax »>= x-2%*level) and {ymax >= y-2**level}
pl2]1 := CONSTR(level, x,y,ACS_code);
elgse
pl2].¢color = “W*;
{ SW corner }
if { {xmin <= x-2**level} and (ymin <= y-2**level)
pl3] := CONSTR{level, x-2**level,y~2**level, ASC_code};
else .
pl3].color = "W";
{ 8E corner }
if { {xmax »= x-2**level) and {ymin <= y-2**level}
" pld] := CONSTR(level, x, y-2**level);
else : :
pid].color = "W";

pl2].color) and

{p{l].color pl3].celor}) and

{pll].color pid4].celor} }

par := plll { All children of same type }
else :

if (pl{il].color

Figure 28. Modified construct algorithm. (pg 1 of 2)

53

begin {create a non-terminal GRAY node }

new (g} ;
: for i := 1 to 4 do
% begin
| if pf{il.color = *G* {link pl[i] to its parent}
; begin -
case 1 of
1l: g->NW = pl[i]l.point;
2: g->NE = pl[i].point;
% 3: g-»SW = pli].point;
i 4: g-»SE = pli].point;
% end; {case}
? end;
else
begin
newi{r)j;
: r-»>color := pli].color;
; if { r->ceclor = "B*)
E AddBlack (r,ASC_code) ;
; r->NW := r-»NE := r-»8W := r-»>8E := null;
\ case 1 of '
% 1: ¢g->NW = r;
: : 2: g-»NE = r;
§ ' 3: g->8W = r;
% ' ' d: g-»>8E = r;
E : end; {case}
r->Parent := g;
end S
end {for i = 1 to 4 }
g-»color = "G";
par.point := g;

par.color :="G"
end { create a non-terminal gray node }
end {for non-pixel .}
return{par) ;
end; { CONSTR }

Figure 28. Modified construct algorithm, continued. (pg 2 of 2)

As you can see from Figure 28, the bounding box is used to allow pruning of the
branches from the top ddwﬁ rather than bottom up. In this implementation, the bounding
box of a feature is stored in the global variables xmin, xmax, ymin, and ymax. The
modified CONSTR algorithm also needs one additional function. The routine AddBlack
simply allocates a linked list node containing the graphic group number and attaches it to

the black quadtree leaf node r.

This modified quadtree construction takes sﬁbstantially less time than the original
algorithm. For a test case which has data from the NTS21G map sheet, 3049 quadtree
nodes were generated using this algorithm for a quadtree with fourteen levels. If the same
data were used with the otiginal algorithm, then over 268 million nodes would be
generated for the fourteenth level nodes, v\raith millions of interior nodes as well. This is
because the original quadiree construct algorithm visits each pixel to determine its color,
Visiting vast regions of the map which are not in question to unnecessarily determine that
they are white adds substantial time and space requirements to the problem. In the test
case mentioned above, the whole tree was generated using the modified algorithm in 35
seconds. Using the original algorithm, after over an hour of processing the construct

routine was still working on the first quarter of the quadtree.

3.3.3 Modified Union Operation
The standard union of two quadtrees is a simple algorithm. The resulting quadtree
contains all of the black nodes in either of the original quadtrees. This union algorithm is

shown in Figure 29. In this union, the resultant quadtree will be U.

35

QTUnion{S:qtree, var U: gtree);

W then retﬁrn;
B then return;
B and U -> ¢olor = W then U -> ¢olor = B

if 8 -» color
if U -» c¢olor
if 8 -» color

n a8 n

else if 8 ~» color = B and U -» color = G then U := 5
else if 8 -» color = G and U -» color = W then U := 8
elge if § -» color = G and U -> color = G then
begin
QTUnion(s -> NW, U -> NW};
QTUnion(s -> NE, U -> NE};
QTUnion(g -> SW, U -> SW);
QTUnion{s -» SE, U -> SEB};
end;
end;

-Figure 29. Standard quadtree union algorithm [Samet, 1990].

“In order to form a union two objéct quadtrees S and U, the quadtrees for each of the
spaces must first be generated. The quadirees are then Lraﬁefsed, blackéning any node of
U which is black in S. Since the quadtree must also maintain the object to which the
nodes belong, this will also reslt in adding linked lists to exisﬁng black nodes of U and
possibly adding new black nodes. Using this algbrithm, the resultant quadtree may include
interior gray nodes which have four black children if the children are from different

features.

The quadtree for the entire space is initially null or empty. The features are added
into the structure one at a time, by generating a q.uadtree representation for the feature and
adding it to the existing guadtree. The addition of a new feature to the existing quadtree
is accomplished by doing a modified union on the two quadtrees. The union has been
implemented so that if the union of quadtrees S and U is formed, the resultant quadtree
will be U, the universal quadtree. The pseudo-code for the algorithm used in order to

form the union of two quadirees is shown in Figure 30.

56

OQTUnion (S:qtree, var U; gtree);

if &€ -» color = W then retfturn
else if 8 -» color = B and U -> color = B then
Update{U, S-> link list)
elge if § -» ¢color = B and U -> color = W then
U -» color = B
Update{U, 8-> link list}
elgse if 8 -> color = B and U -» celer = G then
“begin
Update (U -> NW, 8-> link list}:
Update{U -»> NE, S-» link list};
S-»
g-»

Update(U -» SW, link list);

Update{U -> SE, 8-> link list);
end;
else if & -» color = G and U -> color = W then
U := 8
elge if 8 -» color = G and U -> color = B then
begin '
Update (8 -> NW, U-> link list};
Update (S -> NE, U-> link list};
Update (s -» SW, U-> link list};
Update{s -» SE, U-> link list);
U := &;
end;
else if 8 -> color = ¢ and U -> color = G then
" begin '
0QTUnion (s ~> NW, U -> NW);
O0TUnion(S -> NE, U -> NE);
| OQTUnion (S -> SW, U -> 8W};
5 00TUnion(s -» SE, U -> SE};
; end; '
i end;

i Figure 30. Modified quadiree union algorithm.

The modified union makes use of the routine Update which copies a linked list of
one node to the end of the linked list of another node. In this routine the node which is to
get the additional information has been labeled D and the node with the required

information is E. The pseudo-code for this routine is shown in Figure 31.

57

Update{var D_head: gtree, E_head: 1list);

if D_head -»> color = 'B' then _
copy the black linked list of E te the linked list of D

else if D_head -> color = 'W' then
begin
D_head -> color = ‘B’
copy the black linked list of E te the linked list of D
end
else
begin

Update{D_head -> NW, E_head};
Update (D_head -> NE, E_head};
Update (D_head -»> SW, E_head};
Update (D_head -> SE, E_head)};
end
end;

Figure 31. Update algorithm.
Figure 32 is the modified quadtree union. This diagram has two quadtrees, S and U,

and the resulting quadtree U when the two are combined. For this example, it is assumed

that S and U represent different types of features.

58

{a) Space of § {b) Space of U

Z

4
4
N\

L

(c) Quadtree S

B

b

L) L1 -1 L ~ . 8 E 3

(d) Quadtree U

[0 I L L3 L] fd
N Y M E U Y] B JRupd

59

'“‘b.
B

(e} Space of 5§ union U

oid
\\ //

o

(f) Quadtree S union U

m
i
L FE J L [31 |] L 11 Lt £ 04 L 1 mEm
E] B} L] V] Ul B b M OE] B B M
E] B

Figure 32. Sample union of two quadtrees.

60

Figures 32(a) and 32(b) are the spaces on which we want to form a union. The
resulting combined spacé is shown in Figure 32(e). The slanted fill lines in thé object
indicates which space the pixels belong to. We can see that when the union of two spaces,
some of the pixels will be black since they were black in S, some of the pixels will be black
since they were black in U, and some of the pixels will be black since they were black in S

andinU. -

Before the union can be formed, the two quad'trees with objects must be generated.
These quadtrees are shown in Figures 32(c) and 32(d). These quadtrees have the object
information maintained in linked lists descending from the black leaf nodes. When the
union of S and U is formed Figure 32(f) is generated. From this.diagram we see that some
of the black leaf nodes have one node in the linked list and some have two. The black
quadtree nodes with two nodes in the linked list indicate that the pixel was black in both S
and U. It should also be noted that one of the interior gray nodes in the last subdivision of
Figure 32(f) has four black leaf nodes but has not been pruned. This is done because the
objects to which the individual pixels belong must be maintained. This is important since
it is essential that we can determine what objects are occupying specific pixels. In
particular, the hame placement rules dealing with interference resolution hinge on being

able to determine what the name is in conflict with.

The names to be placed will be added to the spatial data structure. This will be done
by first generating the appropriate run 1en gth code for the name in a preprocessing step.
This run length code is based on a bit map for the name with the appropriate font and has
a lower left hand corner anchored at an origin of (0,0). When the name is placed, this run

length code is shifted into the appropriate quadtree coordinate frame. During the name

61

‘placement process a quadiree S for each name will be built and then the union of the name

quadtree with the universal gunadtree U will be formed.

Each name has a unique number associated with it. This number is simply assigned
in sequence when the name is read into the knowledge base. This unique number or‘key is
required in order to differentiate one name from another. When a name is placed, but the
placement is found to be unacceptable, then the name will have to be removed from the
quadtree. If there are two names occupying the same. black pixel, removing one of the
names from the U should in no way impact the representation of the other name in U.
Without a unique key, there is no way of determining which of the black hodes belong to

“each name.

Detection of interference for a name being placed is easily handled with the spatial
data structure designed in this thesis. Not only is interference detectable, but a means of
determining what specifically is in conflict with the name being placed is also possible.
When a name is placed, i.e. the union of its quadtree S with U is formed, an overlap may
be detected. Overlapping is triggered when a black node of the name quadtree S is added
to the linked list of anode in U which is already black. Since the key for the name is
added to the end of the linked' list, then traversing the list to find what is in conflict with

the name can be easily done.
A name can overlap a feature, a grid line or another name which has already been

placed. In order to determine if the name placement is satisfactory, the knowledge based

system is required. The rules in the knowledge base could determine that the placement is

62

satisfactory, the name just placed should be moved, or that another name in conflict should

be moved.

The implementation of the quadtree with objects for an entire map sheet on the
platform chosen took substantial effort but the results look promising. The quadtree can

maintain all of the required information and the time for generation is reasonable. The

memory management problems encountered are limitations which were dealt with, but will - |

not be a limitation of future microcomputers as it seems that 32 bit pointers will become

the norm and the software will be geared to these pointérs.

63

CHAPTER 4.

PARTIAL RESULTS FOR NTS21G

Although the names have not been placed, the EMR data for some features from the
- map sheet NTS21G has been placed into the object quadiree structure. The diagram in
Figure 33 is a. representation of the entire map sheet space for a few features. The
quadtree generated for these features resulted in 3049 nodes, 1585 white, 765 black, and
711 gray. The quadtree diagrams of Figures 33, 34, and 35 have been generated using the
quad2ps software [Balakrishnan, 1992]. This software generates a postscript file from a

linear quadtree representation,

64

Figure 33. Quadtree generated for a few EMR features.

65

These two regions are then enlarged in Figures 34 and 35 by manually
changing the linear quadtree to eliminate top levels of the quadtree, Figure 34 has been
altered to have the first four levels of the quadtree not shown. This output is then

changed to eliminate one more level to show only the south east features in Figure 35.

E .

| . | | ﬁ:
4 ;

: .

- Figure 34. Zoom in four levels on the EMR test features object quadiree.

66

The shoreline feature introduced in Figure 13 section 2.5 as an example is present in
the test case shown in Figure 35. It appears on the right side near the top of the long

shoreline shown below.

Figure 35. Zoom in five levels on the EMR test features object quadtree.

67

Figure 36 shows a portion of the paper map version of area around these features.

This is shown as approximately 6 times larger than scale (i.e. 1 cm on the original map =6

¢m here),

Figure 36. A portion of the paper map test area.

The features shown in this section comprise eight features from the actual test data.
Only eight were shown because the testing of the quadtree for map features was
concentrated on this sample. These features were chosen because they were relatively

close together, allowing the quadtree to be enlarged for closer inspection. In order to test

68

actual data, each step of the quadtree generation must be inspected. Working with large

volumes of data was not done for these results, as validation is very time consuming.

69

CHAPTER 5.

CONCLUSIONS

The investigation into the design and implementation of data structures and an
expert system to deal with name placement on EM.R Canadian topographic maps was
carried out. The goal of the research was to determine how an expert system can best
interact with the spatial data requirements of the name placement problem. A detailed
design for a Name Placement by Expert System (NAPLES) prototype was done. A series
of programs were written to perform many of the preliminary processing steps necessary
for the two databases involved. An appropriate spatial data structure was developed

which allows object subtraction and overlap identification to be done.

5.1 Summary
The five objectives for the thesis will now be examined to determine what exactly
was accomplished by this research effort and what the contribution of this work is to the

problem of automated name placement.

The first objective was: "To discover methods for representing rules about name
placement which do not fall in the IF... THEN... category of rules used in most expert
systems.” This goal was considered in great detail. The rules from EMR were identified
and written down in a form which can be incorporated into NAPLES. Some of the rules
of thumb can be implemented quite easily, but some of them will require further expert
knowlédge into exactly what to do in specific situations rather than in the general case.

These rules, however were not implemented in an expert system.

"To investigate the use of a rule based expert system for automated name placement

using the rule representation discovered by the first objective" was the second goal. This

70

rule based expert system was designed and its use does seem encouraging. This work,

however was limited to point names.

The third goa! was: "To discover a data structure suitable for the integration of the
names and their geographical features.” This objective became one of the two inajor focal
points of the thesis. A novel object-oriented quadtree structure which supports the
subtraction or set difference operation has been designed, built, and tested. Tests were
done using real EMR data to show insertion into an object quadtree of depth 14. The
structure currently has features inserted into it, .but all that is needed in order to add names
is the raster representation of the name in the proper font. This object quadtree forms the.

basis for implementing the full NAPLES system.

The fourth objective was: "To investigate ways in which names can be antomatically
matched with their associated geographical features.” This was a large undertaking in the
research effort. The two different databases (i.e.. the names database and the features
database} did not have a close correlation. Initial design of an appropriate algorithm for
matching names to features did not include sorting, plotting and displaying the data. A
complete suite of preprocessing software to correlate the names and features has been
produced. This software is essential for any production name placement to insure that
names which are supposed to appear on a particular map are not missed.

The final objective of this thesié was:" To develop a prototype expert system for
name placement using names and topographic data from the National Topographic Data
Base for the Fredericton, New Brunswick area.” A prototype for complete production.
quality, semi-automated name placement was designed, and a good portion of it was

implemented. The rule-based system and name fonts still have to be addressed in order for

71

the prototype to be complete. The data from Energy, Mines and Resources was used in
the prototype, and the prototype does demonstrate that at least semi-automated name

placement is possible for Canadian topographic maps.

Besides the initial objectives of the thesis, the difficult memory management
problems for producing very large quadtrees were overcome. This memory management
solution can be incorporated in various other applications in which large data structures

are inherent,

This research also produced two additional findings. The first finding was that there
are a substantial numbers of names which cannot be matched to a feature, do not appear
on particular map scales, or which appear without the associated feature being displayed.
Initially the expectation was that most point names would match a feature; however, only
20 of 309 point names were matched, as shown in the test results in Appendix C. The
second realization was how big the problem of automated name placement really is. The
work completed thus far indicates that the task is substantial and will continue to be a

research area for a number of years.

There are various merits of this research which constitute a contribution to the name
placement area of research. The first contribution is that the data used in this thesis is
genuine cartographic data for Canadian topographic maps. Many systems for automated
name placement do not use real data because of the added complexity it imﬁoses. Another
achievement of this thesis is that the work was all based on the genuine cartographic rules
used in production. Very few research efforts have been geared to the Canadian data and
rﬁles. The final contribution of this thesis is the design and implementation of a spatial

data structure which is appropriate to the name placement problem. This data structure is

72

an object quadtree which allows the names to be inserted and subtracted while detecting
interference. Although not all of the objectives were meet, all indications are that
computers can, and will be used to aid in the time consuming task of name placement in

the future.

5.2 Future Work
The above accomplishment represents a significant first step in accomplishing the
original objectives. To make NAPLES into a workable name placement prototype, the
following work needs to be done:
1. Extend the current rule base to include area and linear rules.
2. Design and implement methods for the interaction of the names frame
structure with the object quadtree. |
3. Build a tool for CRT and printer display of the results.
4, Consider using the full raster representation of the name instead of a
bounding box for determining overlap and feature intersection.
5. Add integration with the Stati_stics Canada database of populations for

determining font size and to assist the matching of names to features.

73

REFERENCES

Ahn, J.K., "Automatic Map Name Placement System”, report IPL-TR- 063, Electrical,
' Computer and Systems Engineering Dept., Rensselaer Polytechnic Institute, Troy,
NY, 1984.

Arendtz,]., "GenFont Developer's Guide", User Bulletin 130, UNB Al Laboratory,
Faculty of Computer Science, April, 1992.

Balakrishnan, R., "Quad2ps User's Guide", User Bulletin 132, UNB AI Laboratory,
Faculty of Computer Science, November, 1992.

Doerschler, J.S., "A Ruled-Based System for Dense-Map Name Placement”, report SR-
0035, Center for Computer Aids for Industrial Productivity, Ruters - The State
University of New Jersey, New Brunswick, NJ, 1987.

Doerschler, 1.S. and Freeman, H., " A Ruled-Based System for Dense Map Name
Placement”, Communications of the ACM, vol. 35, no. 1, 1992, pp. 68-79.

Ebinger, L.R., and Goulette, A.M., "Automated Names Placement in a Non-Interactive
Environment", AUTQ CARTO 9, Ninth International Symposium on Computer-
Assisted Cartography, Baltimore, Maryland, April 2-7, 1989, pp. 205-214,

EMR, "Approved Names of Canada", Peter Revie, Topographic Mapping Division,
Canada Centre for Mapping, Ottawa, Ontario, October, 1989.

EMR, "Digital Topographic Data Distribution Information", Software Section, Systems
Engineering Group, Topographic Surveys Division, Energy, Mines & Resources,
Surveys & Mappings Branch, 162-615 Booth Street, Ottawa, Ontario, May, 1987.

EMR, "Standards and Specifications", Topographic Mapping Division, Canada Centre for
Mapping, Ottawa, Ontario, First Edition, 1988.

Hirsch, S.A., "An Algorithm for Automatic Name Placement Around Point Data”, The
American Cartographer, vol. 9, no. 1, 1982, pp. 5-17.

Imhof, E., "Positioning Names on Maps", The American Cartographer, vol. 2, no. 2,
1975, pp. 128-144,

Inference Corporation, "ART-IM Programming Language Reference”, Inference
Corporation, 550 N Continental Blvd., El Segundo, California, 1991.

74

Johnson, D.S., and Basoglu, U., "The Use of Artificial Intelligence in the Automated
Placement of Cartographic Names", AUTOQ CARTO 9, Ninth International
Symposium on Computer-Assisted Caﬂography, Baltimore, Maryland, Apnl 2-7,
1989, pp. 225-230.

Jones, C.B., "Cartographic Name Placement with Prolog”, IEEE_qunm@_anhm_&_
Applications, Sept. 1989, pp. 36-47.

Lacroix, V., "An Improved Area-Feature Name Placement”, report IPL-TR- 064, Image
Processing Laboratory, Rensselaer Polytechnic Institute, Troy, NY, 1984.

Mullin, *Matching EMR Names to Features", User Bulletin 124, AT Laboratory, Faculty
of Computer Science, March, 1992.

Nickerson, B.G., "Automated Cartographic Generalization for Linear Map Features”,
Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY, May, 1987.

Paine, C. and Mullin, L., "Extracting Data Subsets from Spatial Map Datasets at UNB",
User Bulletin 112, AI Laboratory, Faculty of Computer Science, January, 1992.

Samet, H. "Applications of Spatial Data Sﬁuctmes", Addison-Wesley Publishing
Company, Reading, Massachusetts, 1990.

Yoeli, P., "The Logic of Automated Map Lettering", The Cartographic Journal, vol. 9,
no. 2, 1972, pp. 99-108.

75

Appendix A. The Complete Match Table

The listing below is the complete match table used in this thesis. The lines which
begin with ;;; are comment lines. These comments lines were added so that the table could
be structured in a similar format as the original list of generic codes. These generic codes
have been separated into various types and a comment appears before each indication the
new type. The fields in the table are the generic code, a one letter language code (E =
English and F = French), the NGNDB description, the ASC code and the NTDB
description. If the ASC code is a * then the generic code was not considered in this thesis.
A -1 was used to indicate that no corresponding feature was found for a point name. One
reason this occurred in the data is because towns and villages are classified based on
population. The population statistics data for Canada was obtaiﬂed from Statistics
Canada; however the data has not been incorporated into this thesis. As can be seen from

the descriptions, there is no one-to-one correspondence between names and features. -

:++1 Populated *
;31 Incorporated *
1 E City *
2 E Town 1351 Boundary Town

1352 Boundary Town Tint
1353 Boundary Town Unsurveyed
3 E Village 1354 Boundary Village
1355 Boundary Village Tint
. 1356 Boundary Village Unsurveyed
4 E Metro Municipality 1309 Boundary Metropolitan Area
1310 Boundary Metropolitan Area Tint
1322 Bndry Metrop Area Unsurveyed

PopPlace Outside Canada
Municipalite

5 E Inc Village Municipality *
6 E Inc Community *
7 E Undesignated Municipality *
'8 E Borough *
9 E Separate Town *
10 E New Town *
11 E Hamlet *
iz E summer Village *
E *

F *

76

15
16
17
18
19
20
21
22
23
24

b L B e B o B e B v B s B oo B

Cite

Resort Municipality
Organized Hamlet
Regsort Village
Northern Hamlet
Northern Settiement
Northern Hamlet
Municipality

Vilie (2)
Cite-jardin

;; Unincorporated

100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
116
116
117
118

119
120

121
122
123
124
125

126
127
128
129
130
131
132
133
134

135

I x o = s s I Tt T 3 B e B =3 R o B

mmmoe

=

=

mmmE e

ja B s B e e e B My e e

]

Hamlet

Village

Police Village
Rural Village
Settlement

Compact Rural Community
Depot :
Resort

Locality

Lieu-dit

Railway Junction
Railway Point
Station

Post Office

Landing

3iding

Depot

Abandoned Locality
Railway siding
Trading Post

Fort

Community

Dispersed Rural Community

Hameau
Localite
Bureau de poste

Ville (1}
Jonction
Arret
Gare

Bureau de poste militaire

Centre de villegiataire
Weather Station
Hutterite Colony
Railway Stop

Ville miniere

£ o % ¥ * % * o+ % ® F % % F F F % * * * ¥ * * ¥

1.
=3
Bt
<

4120
4450

* F o+ & A % &

2500
2501

*

77

Post Qffice to Scale
Post (Office

"Railway Siding

Rallway Siding Abandoned
Trading Post to Scale
Trading Post

Fort to Scale

Fort Symbol
A Point with no Feature
A Peoint with no Feature

A Point with ne Feature
Post Office to Scale
Post Office

Railway Stop _
Railway Stop to Scale

136 F Voie d'evitement

137 E Colony

138 E Junction

139 E Trailer Park

140 E Abandoned Community

141 E Customs Point

142 E Townsite

143 E sSummer Post Office

144 E Flag Stop

145 E Tent-Trailer Park

146 E Indian Community

147 E Indian Settlement

148 F Poste

148 E Mobile Home Community
150 F village nordique

151 F Centre de ski

152 E Ranch

153 E Mining Settlement

154 E Vac or Seasonal Settiemt
155 E Cannery

156 E Indian Village

157 E Summer Report

i58 E Former Post Office

160 F Village forestier

161 ¥ Village naskapi

162 F Statien de chemin de fer
163 F <tablissement amerindien
164 F <tablissement noteilier
165 F «tablissement saisonnier
166 F Faubourg

167 F Parc de maison mobiles
168 F Poste de traite

169 F Ville miniere

170 P Gare ferroviaire

171 F Bureau de douane

172 F Arret ferroviaire

173 F <tablissement

174 F Village

175 F Village cri

$ +1Unincorporated Urban

200 E Urban Community

201 E Neighbourhood

202 E Suburban Community
203 E Indusrtial Park

204 E Industrial Area

205 F Secteur residentiel

* o b= o o+ % F 4 X X X * O X ¥

* % |

2 Point with no Feature
Trailer Park

Customs Symbol - Flag

Boundary Indian Resgerve
Boundary Indian Reserve Tint
Bndry Indian Reserve Unsurveyed
Boundary Indian Reserve
Boundary Indian Reserve Tint
Bndry Indian Reserve Unsurveyed

Cannery to Scale

Cannery

Boundary Indian Resgerve
Beundary Indian Reserve Tint
Bndry Indian Reserve Unsurveyed

Customs Symbeol - Flag

A Point with no Feature

A Point with no Feature

A Polint with no Feature

A Point with no Feature

206 E Subkdivision *
207 F Parc industriel *
208 E Urban Renewal Area *
209 E Industrial siding *
210 F Quartier urban *
211 F Paubourg *
212 F Ensemble residentiel *
213 F Quartier *
;13 Water Features *

*

:;+8tanding Water

Pii " BSurrounded by Land * .
$53 E Pond 5280 Tundra Ponds
£E620 Pond

5621 Pond Key
_ 5626 Pond Alkali

854 E Ponds : 5280 Tundra Ponds

5620 Pond

5621 Pond Key

5626 Pong Alkali
982 F Pond : 5280 Tundra Ponds

5620 Pond

5621 Pond Key]

5626 Pond Alkalil
983 F Ponds 5280 Tundra Ponds

5620 Pond

5621 Pond Key

5626 Pond Alkali

:::4 Terrain Features *

;1 :Elevated Shoreline Features *

1600 E Cape : *

1601 E Head -1 “A Point with no Feature
1602 E Isthmus

1603 E Peninsula *

1604 E Point -1 A Point with nco Feature
1605 E Promontory *

1606 E Headland *

1607 E Foreland *

1608 E spit *

1609 E Points *

1610 E Heights *

1611 E Land *

1612 E Coast *

1613 E Arch *

1614 E Bank *

1615 E Cliff 6190 Cliff
1616 F Cote *

1617 E Dune *

1618 E End *

1619 E Hummock *

1620 E Neck *

1621 E Nose *

1622 E 8and Point *

1623 E Seaside *

-]
pt =}

1624 F Tete *
162% E Bluff *
1626 E Bill * .
1627 F Pointe _ -1 A Point with no Feature
1628 F Presgu'ile- *
1629 E Cap *
1630 E Caps *
1631 F Peninsule *
1632 E Bend *
1633 F Falaise *
1634 F Nez *
1634 F Rive *
1636 PR Coastal Plain *
1637 E Corner *
1638 E HNess *
1639 E Deilta *
1640 F Promontoire *
1641 E Cliffs *
1642 F Capes *
1643 E Bluffs *
1644 E Heads *
1645 E Hummocks *
1646 F Falaisges *
1647 F Pointes *
1648 F Langue de terre *
1649 F Arches #*
1650 F Cotes *
1651 E Blow Me Down *
1652 F Berge *
1653 F Segment de cote (2) *
1654 F Hauteurs *
1655 F Cap *
1656 F Caps *
;i:;Terrain Surrounded by Water *
2300 E Islang 5780 Shoreline Island

5783 Shoreline Island in Intermit Lake
5790 Shoreline Izland Wooded
5871 Shoreline Island Swampy
. 5980 Shoreline Island Marshy
2301 E Islands 5780 Shoreline Island
5783 Shoreline Island in Intermit Lake
5790 Shoreline Island Wooded
5871 Shoreline Island Swampy
5980 Shoreline Island Marcshy
2302 F Isle 5780 Shoreline Island
' 5783 Shoreline Island in Intermit Lake
5790 shoreline Island Wooded
£971 Shoreline Island Swampy
5880 Shoreline Island Marshy
2303 F Isles 5780 Shoreline Island
5783 Shoreline Island in Intermit Lake
5720 Shoreline Island Wooded
5871 &Shereline Island Swampy

80

2304 E Rock
2305 E Rocks
2306 F Archipelage
2307 E Islet
2308 E Islets
2309 F Pinnacle
2310 F Pinnacles
2311 F Atcell
2312 F Cap

2313 F Cay

2314 E Key

2315 E Nubble
2316 E Thrum
2317 E Thrumcap
2318 E Meonument
231% E Group
2310 F =»>lette
2321 P »le

2322 F »les
2323 F »lot
2324 F Archipel
2325 F Monument
2326 F Carre
2327 F Caye
2328 F Rocher
2329 E Rock Pile
2330 F Roches
2331 E Crab
2332 E Thrums
2333 F Rochers
2334 F >»lots
2335 F Cayes

: ;16 Man Made Features

; ;7 ;Resource Related

4100 E Forestry Camp

4101 E Generation Station
4102 E 0ilwell

4103 E Mine

4104 E Mines

4105 E Drill site

4106 E Quarry

4107 E Mining Camp
4108 E Mining Property

5980
2460

* * % % % * % £ * * * *

*

3
18
[y
<

1415
1750

- 7489

7490

* & ® ¥

1410
1415
1790
7489
7490

*

= * F * * * * * * * * *

Shoreline Islanéd Marshy
Rock

Boundary Monument
Astronomic Monument

Set Up Monument

Historic Monument to Scale
Historic Monument

Boundary Mcnument
Astronomic Monument

Set Up Monument

Historic Monument to Scale

"Historic Monument

Well ©0il,gas (250,000}
0il Well
Mine

ouarry

4109
41190
4111
4112
4113
4114
4115
4116
4117
4118
411%
4120
4121
4122
4123

[B ML It M (s MR v I o O v B e s s B B c I

Pits

Carriere

Camp forestier
Domaine forestier
Pepiniere

Fit

Pipe Line

Boom

Centrale hydro
Mine Site

Station forestier
Carrieres

Depot forestier
Centre <ducatif forest
Mine

;1 Trangportation Related

4300
4301
4302
4303
4304

4305

4306
4307

4308
4309
4310
4311

zs B ea R o B s B o

E
E
E
E

Seaplane Base
Portage

Road

Trail
Concesgsion

Ferry

Ford
Bridge

Causeway
Landing Strip
River Crossing
Lock

X % F B A % K % % ok F ¥ ® ¥ F
Ly
O
Poe

[T L
o O
(e]
[l =]

*

*

1373
1374
1375
2220
2225
2230
2181
2182
2183
2184
2185
2186
2187
2180
2181
2192
2183
21594
2185
21%6
2210
2211
2212
2213
2214
2215
2216
2217
2820

*
*
*

82

Electric Facility

Seaplane Bage
Road H Portage

Boundary Concession Line
Beundary Concession Line Tint
Bndry Concesgsion Line Unserveyed

Ferry

Ferry Symbol

Ford

Bridge {Roadway, Rallway)

Brg {(Rcadway, Railway) - One Side
Bridge {(Roadway, Railway) -~ Arch

Brg {Roadway, Railway)} - Covered

‘Bridge (Roadway, Railway) - Draw
Bridge (Roadway, Railway)} - Lift
Bridge {Roadway, Railway} - Swing
Bridge {Roadway)

Bridge {(Roadway} - Arch

Bridge {Roadway} - Covered
Bridge {Roadway} - Draw

Bridge {Roadway)} - Floating
Bridge {Roadway) Lift

Bridge (Roadway} Swing
Footbridge

Bridge (Railway)

Bridge (Rallway) One Way
Bridge (Railway) Arch

Bridge {Railway} Covered
Bridge {(Railway) Draw

Bridge {(Railway} Lift

Bridge (Railway) Swing

Bridge {Roadway) One side

4312

4313
4314

4315
4316
4317
4318
4319

4320
4321

4322
4323

4324
4325
4326

4327

4328
4329
4330
4331
4332
4333
4334
4335
4336

HHEEA

o]

EHEH

12

mamhmm e

Locks

Harbour
Airport

Breakwater
Canal
Landing

Port

Railway Yard

Railway Spur
Spur

Quali
Aeroport

Base d'hydravions
Beoat Landing
Dock

Wharf

Port de plaisance
Highway

Rang

Steamer Landing
Maintenance Canmp
Aerodrome

Arret

Bassin portuaire
Pont

Locks to Scale
Locks

Airport Runways _
Airport Runways and Taxiways
Airport Taxiways

Alrport

Alrport {250,000)

Railway Yard

Railway Yard Abandoned
spur

Spur Abandoned

spur

Spur Abandoned

Airport Runways

Airport Runwaye and Taxiways
Alrport Taxiways

Alrport

Airport (250,000}

Dock
Dry Dock
Wharf

Wharf to Scale

Bridge {(Roadway, Railway)

Brg (Roadway, Railway) - One Side
Bridge {Roadway, Railway) - Arch
Brg (Roadway, Railway) - Covered
Bridge {Roadway, Raillway) - Draw
Bridge {Roadway, Railway) - Lift
Bridge (Roadway, Rallway) ~ Swing

Bridge (Roadway)

Bridge (Roadway) - Arch
Bridge (Roadway) - Covered
Bridge (Roadway) - Draw
Bridge (Roadway) - Fleocating
Bridge (Roadway) - Lift
Bridge {(Roadway) - Swing
Footbridge

4337

4338

4339
4340
4341
4342
4343
4344

4345
4346
4347
4348
4348%
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371

4372

[ea i e e B e 2o B v ML S

LT By s B e e M= e s e Bl B o B . O s O s I e O e 5 s e s [o i 0 R

by

Debarcadere

Route

Airfield

Winter Recad

Path

Portage

aAirstrip

Road Intersection

Corner

Lift Lock
Marine
Terminal

Road Bend
Crossing
Deepwater Terminal
Road Corner
Road Cut

Road Corners
Road Cut
Tresgtle

Piers

Rallway Cut
Railway Track
Trails

Chemin

crib
Auteoroute
Pier

Pistle

Canal
<changeur
Embrachement ferroviaire
Port

Cote (1)

Pont couvert

Pontg

 F % % 4 £ A& F * ¥ % % % F * o * * * F £ * * %

2211
2212
2213
2214
2215
2216
2217
2820

*

2184
2214
2181
2182
2183
2184
2185
2186
2187
2180

84

Bridge
Bridge
Bridge
Bridge
Bridge
Bridge
Bridge
Bridge

(Railway}
{Railway}
(Railway}
{Railway}
{Railway)
{Railway}
{Railway}
{Roadway)

Road H Portage

Intersection
Intersection Traffic Circle

One Way
Arch
Covered
Draw
Lift
Swing
One Side

Brg {(Roadway, Railway)
Bridge (Railway) - Covered
Bridge (Roadway, Railway)
Brg {Roadway, Railway)}
Bridge (Roadway, Railway)}
Brg {(Roadway, Railway)
Bridge (Roadway, Railway)
Bridge {Readway, Railway)
Bridge {Roadway, Raililway)

Bridge

{Roadway}

- Covered

- One Side
- Arch
- Covered
- Draw
- Lift
- Swing

4373

4374
4375
4376

4377
4378

E Tunnel

Hyrobase
Pont naturel
E Marina

F Portage
F Carrefour

2191
2192

. 2193

2194
2195
2196
2210
2211
2212

2213

2214
2215
221¢
2217
2820
2178
2179
2180

4537
4538
2091
2132
2133

Bridge
Bridge
Bridge
Bridge
Bridge
Bridge

(Roadway}
(Roadway}
{(Roadway}
{Roadway)
{Roadway}
{Roadway }

Footbridge

Bridge
Bridge
Bridge
Bridge
Bridge
Bridge
Bridge
Bridge
Tunnel
Tunnel
Tunnel

Marina
Marina
Road H

{Railway}
{Railway)
{Railway)
{Railway)
{Railway}
{Railway)
{Railway)
{Roadway)
Railway

Roadway

to Scale

Portabe

Intersection
Intersection Traffic Circle

The following abbreviations have been used:

Bndry = Boundary
Brg = Bridge

" forest = forestier

“hydro = hydroelectrique

Inc = Incorporated
Metro = Metropolitan
Pop = Populated
Settlemt = Settlement

Vac = Vacated

85

Arch
Covered
Praw
Floating
Lift
Swing

One Way
Arch
Covered
Draw
Lift
Swing
One Side

Appendix B. The Possible Matches for Bliss Island

2300 Bliss Island - 450100 685000 670722 4986868

ASC/5790 '

LAC/LT=0

LAC/L&=0

LAC/LC=74

L&T/OP, 6§65347,4985514,665334,4985520, 665259,4985495, 665191, 4985488,
665160,4985462, 665129, 4985412, 665142, 4985362,665124,4985306, 665124,
4985256, 665149,4985250,665212,4985275,665324,4985295,665385,4%85390,
665423 ,4985396,665467,4985340,665469,4985184,665438,4985121, 665432,
4985084, 665470,4985059, 665532, 4985085, 665601, 4985148,665725,4%85205,
665762,4985275,665773,4985412,665791,4985469, 665784,4985531, 665709,
4985555, 665671, 4985555, 665609, 4985511, 665566, 4985466, 665529, 4985453,
665453,4985490, 6653?2 4985502,665347,4985514

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=T4

LST/OP, 671681, 4988358, 671669, 4988390,671625,4988389,671594,4988351,
671601,4988320,671626,4988308,671663,4988327, 671681, 4988358

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OP, 670915, 4988676, 670815,4988675,670772,4988656,670741,498860%,
670754, 4988568,670836,4988506,670849,4988450,670837,4988400,670750,
4988293,670720,4988211,670646,4988129,670660,4988023,670722,4988024,
670790,4988075,670871,4988100,670%21,4988132,671026,4988258,671101,
4988296, 671156,4988334,671187,4988429,671243,4988442,671283,4988467,
671548,4988551,671579,4988607,671560,4988645,671515,4988701,671471,
4988744,671421,4988750,671420,4588793,671464,4988844,671461,4989094,
671429,4989125,671373,4989112,671280,4989073,671155,498%8060, 670962,
4988951 ,670581,4988%27,671019,4588902,670982,4988852,670964, 4988808,
670977,49688783,671015,4988739,671041,4988646,671016,4988621,670591,
4988620, 670915, 4988676

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=T74

LST/OP, 669616,4988550,669590,4988600,669546,4988631,669496,4988624,
669391,4988517,669392,4988492,669461,4988455,669591,4988525,669616,
4988550

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OF,669331,4987123,669332,4987073,669345,4987010,669395,4987004,
663488,4987093,669581,4987106,669619,4987115,669668,4987201,669653,
4987226,669755,4987258,669805,4987271,669861,4987272,669912,4987222,
669912,4987147,669900,4587084,669976,4987029,669989,4986985,670014,

86

4986948,670115,4986949,670183,4987006,670270,4%87051,670288,4987126,
670344,4987145,670363,45887133,670444,4587127,670525,4987147,670593,
4987198,670661,4987273,670748,4987349,670797,4987487,670971,4987576,
6§71094,4987703,671100,4987771,671137,4987815,671161,4587866,671148,
4987903,671117,4987934,671092,4987940,671079,4987952,671053,4988065,
£71040,4988077,670991,4988045,670891,498796%,670824,4887862,670743,
4987849,670706,4987811,670687,4987780,670637,4987767,670582,4%87716,
670526,4987628,670414,4987558,670353,4987495,670278,4987463,670210,
4987388,670192,4987350,670142,4987337,670066,49387348,670004,4587329,
669966,4987348,669947,4587385,670014,4987536,670102,4%87568,670126,
4987637,670188,4987700,670174,4587800,670124,4587849,670079,4987355,
670035,4987998,669916,4988016,669860,4987990,669811,498789G,669761,
4987846, 669680,4987820,669618,4987769,669563,4587700,669476,4%987630,
669415,4987505,669415,4987448,669428,4987411,669397,4987361,669354,
‘4987317,669356,4987173,669331,4987123

AgC/5750

LAC/LT=0

LAC/LS=0

LAC/1C=74 :

LST/OP,669472,4989168,669447,4989143,669391,4989105,669348,49838017,
669299,4988985,669281,49885%03,669144,4988852,669125,4988827,669108,
4988720,669071,4988639,669048,4988476,668998,4988419,668517,4988394,
668861,4988355,668824,4988355,668805,498835%2,668810,4988461,668847,
4988512, 668897,4988562,668933,4988675,668926,4988725,668851,4988724,
668789,4988686,668758,4588723,668775,4988880, 668830, 4988943,668811,
4989019, 668973,4989050,669028,4989163,669083,4989233,669077,4889276,
669033,4989289,668853,4985162,668784,4989199,668758,4589230, 668758,
4989298, 668795,4989336,668833,4989305,668895,4989300,668982, 4985363,
669038,4989439,66%049,4589501,669099,498%570,662186,4989621, 669460,
4985649,669542,4989669,669615,4989819,669683,4585864,663813,4930046,
669818,4990090,669849,4990172,669830,4990196,669755,4990196,669699,
4990176, 669630,4990169,669586,4990144,669574,4990094,669556,4390056,
669538,4990044,669412,4990074,669305,4990123,669224,4990115,669174;
4990077, 669187,4990040,669257,4989991,669344,4989985,669363,4589961,
669333,4989910,669295,4989897,669245,4589897,669165,4989736,669003,
4989744,668767,4989636,668729,4989654,668703,4989692,668703,4585760,
668758,4989855, 668869, 4989974,668893,4990043, 668955,4990138,669080,
4990145,669117,4990158,669148,4990190,669187,4990278,669203,4590359,
669146,4990390,669121,4990414,669139,4990477,669114,4%30508,663076,
4990514, 669045,4990539,669019,4990632,668992,4950788,668541,495086%,
"668953,4990913,665009,4590976,669020,4991063,669057,4931158,6653068,
4891270,669123,4951346

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OP,669123,4991346,669290,4991522,669346,4991611,669363,4591711,
669400,4991774,669443,4991868,669429,4991980,669516,4992087,669546,
4992131,669577,4592194,669564,4952294,669562,4992400,6695593,4592432,
669625,4592395,669663,4992364,669712,49923585,669737,4952452,665768,
4992502,669817,4992534,669905,4992554,669942,4992591, 669938, 4932630,
670029,4992630,670111,4992593,670149,4992481,670181,4992475,670212,
4992500,670236,4992551,670273,4992589,670305,4952564,670318,4952508,

87

670300,4992426,670313,4992364,670376,4992346,670395,4992302,670402,

4992246,670384,4992183,670385,4992108,670398,4991990,670437,4991921,
670469,4991750,670471,4991634,670380,4991321,670369,4991227,670326,

4991114, 670315,49%0983,670254,4%90876,670243,4990751,670199,49%0744,
670149,4990718,670176,4990594,670338,4980658,670387,4990696,670399,

4990802, 670417,4990827,670454,4990840,670530,4990778,670611,4990848,
670654, 4950848,670680,4990824,670705,4990749,670720,4990555,670689,

4990524,670639,4990492,670596,4930423,670559,4950391,670472,4990384,
§70441,4990359,670404,4990258,670349,4990177,670338,4990076,670281,

4990057,670251,4990007,670239,4989951,670214,4989925,670145,49839925,
670045,4989949,669876,4989959, 669833 ,4989915,669790,4989827,669772,

4989771, 669686,4589614,669612,4989538,669569,4989456,669513,4989375,
669502,49859243,669472,4989168

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74 :

LST/OP, 668729,4988492, 668667 ,4988429,668629,4988416,668598,4988440,
668604,4988465, 668660,4988522, 668697, 4988535, 668729,4988492

ASC/5790 :

LAC/LT=0

LAC/LS=0

LAC/LC=74)

LST/OP, 668521, 4988058, 668502, 4988052, 668384, 4987976, 668366,4987926,
668385, 4987907, 668504, 4987908, 668553,4987921,668578,4987971, 668540,
4988052, 668521,4988058

ASC/BT790

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OP, 668517,4988365, 668480,4988364,668436,4988345,668418,4988295,
668369,4988238,668363,4988213,668376,4988176,668407,4988170,668519,
4988265, 668568,4988321,668561,4988353,668517,4988365

ASC/5790 :

LAC/LT=0

LAC/LS=0

LAC/LC=14

LST/OP, 668511,4988977,668449,4988895,668450,4988801,668482,4988771,
668519,4988790, 668562 ,4988853, 668587,4988922, 668573,4988990, 668517,
4988983, 668511,4988877

ASC/5730

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OP, 668125, 4987667, 668075,4987623, 668063 ,4987579, 668076,4987554,
668164,4987499, 668209,4987436,668309,4987437,668371,4987463,668421,
4987451, 668458,4587476,668501,4987546,668495,4987571, 668457,4987614,
668449,4987758,668405,4987795,668330,4987794,668280,4987768, 668199,
4987768, 668162,4987699, 668125, 4987667

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74

88

LST/OP, 668121,4987973,668041,4987929,668010,4987897,668041,4987866,
668225,4987899, 668209,4987949,668171,4987999,668121,4987973

ASC/5790 '

LAC/LT=0

LAC/LS8=0

LAC/LC=74

LST/OP, 665202 ,4989126,665221,4989107,665227, 4989057, 665203,4989026,
665097,4989024, 665046,4989043,665027,4989068, 665033,4989099, 665095,
4989124, 665126,4989150,665176,4989157, 665202,4989126

ASC/5790 :

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OP, 664936,4986479,664874,4986403,664825,4986309,664839,4986234,
664827 ,4986197,664796,4986146,664809,4986128,664909,4986066, 664934,
4986060, 665034, 4986080, 665103 ,4986068, 665153, 4986094, 665239,4986219,
665282,4986264,665350,4986371, 665406,4986421,665449,4986428, 665512,
4986397, 665580,4986448,665617,4986498,665611,4986536,665510,4986603,
665459 ,4986630, 665403, 4986684 ,665359,4986652, 665341,4986602, 665310,
4986570, 665261, 4986532, 665237 ,4986438,665168,4986381,665112,4986368,
665087,4986393,665080,4986437, 664986, 4986504, 664948,4986492,664936,
4986479

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74

LET/OP,671628,4989252,671622,4989277,671577,4989314,671502,4989325,
671440,4989294,671466,4989244,671554,4989201,671597,4985208,671628,
4989252 '

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=T74

LST/OP, 671299,4990192,671219,4990085,671145,4990009%,671076,4989984,
671045,4989958, 671046, 4989871,671022,4989821,670979,4989758, 670991,
4985%745,671023,4989740,671135,4989759,671210,4989785,671234,4989817,
671190,4589885,671190,4989922,671245,4989967,671476,4989988,671520,
4990007, 671638,4990127,671612,4590152,671562,49%0151,671537,4950176,
671518,4990238,671473,4990269,671411,4990268,671299,4990152

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OP, 670776,4985406,670769,498944%,670707,498%9461,670650,4989486,
670606,4989479,670563,4989441, 670570, 4989385,670633,4989354, 670689,
4989342,670758,4989381,670776,4989406

ASC/5790

LAC/LT=0

LAC/L8=0

LAC/LC=74

LST/OP, 670504 ,4989703,670498,4989666,670536,4989628,670574,4989623,
670630,4989642,670691,4989749,670685,4989786,670653,4989798, 670603,
4989779, 670504,4989703

89

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74 - :

LST/OP, 669303 ,4989766, 669266,4989747, 669235, 4989703, 669247,4989691,
669304,4989691,669409,4989742,669440,4989768,665434,4989805, 669409,
4989817,669303, 4989766

ASC/5790

LAC/LT=0

LAC/LS=0

LAC/LC=74

LST/OP, 666107,4989260,666020,4989215, 666002, 4989171, 666027, 4989140,
666139,4989166,666226,4989211,666212,4989379,666174,4989410,666143,
4989404, 666125,4989360,666119,4989266,666107,4989260

ASC/57%0

- LAC/LC=74

LST/OP, 680000, 4985309,679993, 4985309, 679568, 4985293, 679368, 4985291,
678286,4985249,677261,4985226,677024,4985211,676523,4985206, 676242,
4585161,676017,4985189, 675792, 4985174 ,675461,4985171, 675067, 4985154,
674823,4985152, 674498, 4985136, 673936,4985124,673611,4985109, 673242,
4985105, 673036,4985090, 672504, 4985079, 671648, 4985039, 671235,4985041,
670885,4985025,670310,4985013, 670085,4984999,663698,4984995, 669360,
4984979, 668673,4984966, 668479, 4984951, 668116,4984548, 667585,4984924,
667097, 4984919, 666022, 4984871, 665729,4984874, 665360, 4984858, 665322,
4984876, 665272,4984920,665196,4984938, 665122, 4984518, 665041, 4984842,
664635,4984845,664628,4984907,664677,4984995,664726,4985033, 664758,
4985046

ASC/5790

LAC/LC=74 _

LST/OP,668001,4990734,667998,4990660, 668000, 4990585, 667994,4950522,
667889 ,4990440,667796,4990314,667773,4990145, 667755,4990082, 667629,
4990150, 667586,4990143,667555,4990130,667505,4990123,667467,4990111,
667411,4990129,667348,4990103,667237,4990033,667175,4989964, 667163,
4989883, 667120,4989838,667020,4989869, 666963, 4989856, 666889, 4989805,
666827,4989735,666734,4989703, 666697,4989653, 666659, 49589628, 666622,
4989627,666591,4989596, 666598, 4989533, 666580, 4989439, 666549, 4989426,
666436,4989469,666368,4989425,666293,4989430,666280,4989474, 666316,
4989593, 666309,4989637,666271, 4989686, 666152,4989729,666089,4985778,
666063, 4989815, 666001,4989840,666000,4989877,666025,4589909, 665974,
4989964,665918,4990008, 665843 ,4990007, 665811,4989994,665786,4990019,
665785,4990094,665816,4990194, 665853, 4990207, 665898, 4990095, 665942,
4590077,665992,4990083,666004,4990109,665953,4990164,665941,4990202,
666164,4990379,666157,4990391,666120,4990410,666001,4990409, 665926,
4990383, 665889, 4990389, 665838,4990426, 665775,4990525,665774,4390556,
665823, 4990663, 665829,4990726, 665878,4990770, 665934, 4990808, 665952,
4990852, 665952,4990921,665914,4990933,665796,4990888, 665758,4990925,
665739,4990968,665751,4991006,665782,4991038,665787,4991119, 665812,
4991144, 665849,4991163,665823,4991251,665835,4991294, 665866,4991345,
665853, 4991382, 665815,4991401,665715,4991406,665696,4991424, 665683,
4991468,665671,4991480,665614,4991480,665565,4991411,665477,4991410,
665465,4991385,665472,4991353,665510,4991322, 665517,4991241, 665586,
4991229, 665586,4991186

90

Appendix C. The Match Results for NTS21G

A few weeks of this thesis were spent doing a test matching the point names to their

associated features for the Fredericton, New Brunswick area map sheet NTS21G. A

summary of the results is shown below,

The results for the NTS21G map sheet were :

Names not matched / not placed: 124
Names omitted from the map: 149
Names placed on map but no feature: 16
Names placed on the map with a feature: 20
The total number of names: 309

The summary has the point names split into four categories. The first category

names were discarded without a matching feature. Many of these names correspond to

small islands. The next category are names with matching features, but which did not

appear on the 1:250 000 map sheet. Again some of these were small islands and some

were pond names. The third category of names were displayed on the map even though

no feature was shown. This seems to be the names associated with small villages. The

final category of names was the name on the map with matching features on the map; only

20 point names fell in this category. The file produced while doing this experiment is

shown below,

HF Peintg on the NTS21G 1:250 000 map

L

i 0 - name has been omitted on the map

i N - no matching feature found on map

il M - match found and name is to be placed on the map
HE P - no matching feature but name is on the map

O 1 Adam Island 450100 665400

91

OZZOOZZOZOZZZZZ'ZZZZZOOZOZO‘ZZZZZOZZZOZZZZZOOOO’USOZOZOZ

O =1 o N e L b

G

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33
34
35

re
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Alder Island
Anderscn Island
andys Pond

Apple Island
Ballantyne Pond
Bar Island
Barkers Island
Barkers Point
Barnes Island
Bagley Island
Beamg Island
Beans Island
Bearg Bath Tub
Becketts Pond
Bells Island

Ben Beachs Island
Big Isiand

Big Island

Big Island

Billy Island
Birch Island
Bird Island
Biack Island
Blacks Harbour
Bliss Island
Bodkin Island
Bradt Island
Breakwater Igland
Brothers, The
Burnt Island
Burnt Island
Burpee Island
Butler Islands
Butterfly Island
Camp Jersey Island
Camp Jersey Island
Cannonbkall Island
Canterbury

Carr Island
Catens Island
Cedar Islands
Cedar Islands
Clarks Pond
Clements Island
Club Izland
Cochranes Island
Collicott Pond
Colwells Wharf
Cooks Island
Coreys Island
Cork Station
Coxs Islands
Crocker Island

92

452100
451300
450400
455500
455500
450300
455800
455700
450000
453500
452200
450000
454000
453600
453600
453600
451000
453700
454400
454100
453300
450800
453800
450300
450100
454300
452000
455800
451800
451500
454300
455800
450800
454400
453100
453100
450900
455300
454300
452800
453000
454100
455600
455800
454800
450400
455200
454300
450300
454800
454100
451800
451100

665300
662000
664300
661600
660500
665000
663600
663700
665400
663400
660800
665600
673200
661200

672200

673000
664700
672500
671200
674800
670200
665800
673400
664700
665000
671200
664700
663600
660700
660600
673200
664800
672100
671200
670100
670100
664700
672200
673100
660700
672500
670500
660800
664200
673200
£64700
£72100
660500
665400
660600
665500
665000
671600

OCZOZZZO0O0E 0000 Z0NORZOTOEEZEOQOZZ 2020022202002 22222020000

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
6%
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
B6
87
88
89
=1
51
92
93
94
95
96
97
98
9%
100
101
102
103
164
165
106

Crow Island
Crow Island
Crow Island
Crow Igland
Cummings Island
Currie Island
Currieg Igiand
Currieg Pond
Daley Ponds
Deer Island
Denton Pond
Dibklees Island
Dicks Island
Dog Islands
Doherty Pond
Douglas Island
Doyle Pond

Duck Island
Duck Pondg
punphy Isgland

‘Eagle Igland
East Riverside-Kingshurst

¥nglish Island
Estabrocks Pond
BEstys Island
Fairvale

False Island
Fish Island
Flea Island
Flume Islands
Fosg Pond

Fox Island
Fredericton Junction
French Island
Frog Island
Frye Island
Fulton Island
Gagetown
Gagetown Island
Gardner Pond
Gilbert Igland
Goat Island
Goat Island
Googeberry Island
Grand Bay
Gragsy Island
Grassy Island
Grassy Islands
Grassy Islands
Gravel Island
Green Island
Green Island
Grimross Island

93

454800

450100
450700
451600
450300
453700
455900
453900
454000
451400
430000
455500
454300
450800
452200
455500
450300
455200
451200
453800
455800
450100
452200
450100
455400
453600
452500
451600 660500
450100 665600
450200 665000
452600 670100
663200
665000
663700
661800
674000
665100
661400
660300
660800
665500
661900
660500
660700
661600
661200
664800
660400
665300
672800
672900
665000
672700
661000

665600
662200
660500
665300
672900
664500
663700
663700
663300
665800
660900
673300
670000
672600
672100
665200
672000
664800
672400
664300
665200
660000
665700
661000
672200
660000

450300
454000
455500
455100
450300
455400
454700
454700
451700
455300
451600
451900
450800
451800
451000
453100
452200
452500
452800
450200
452500
454900

O 107 Gull Island 455700 661700
N 108 Gunters Whart 455000 661200
N 139 Halfmoon Pond 454100 663500
N 110 Halfway Island - 454300 673200
o 111 Harbour Island 453700 665800
N 112 Hardwcod Island 450100 665600
N 113 Hardwood Island 453600 673300
M 114 Hardweood Island 450700 870000
o 115 Hardy ZIsland 451200 660300
0 116 Harrison Igland 455400 661600
N 117 Hartts Island 453700 665100
0 118 Hartts Island 455800 664500
P 119 Harvey (Harvey Station P. 454400 670000
P 120 Harvey Station (Harvey Vi 454400 670000
N 121 Hatch Island 452700 665300
0 122 Head Island 450800 662800
‘0 123 Hills Island 450300 664500
O 124 Hog Island 450200 665200
6] 125 Heog Island ' 454200 660300
N 126 Hog Island _ 452700 672900
O 127 Hog Island 453300 660100
O 128 Hog Island ' 450800 655800
N 12% Holden Pond 454900 663100
N 130 Horse Island - 452200 672600
N 131 Horse Igsland 452500 664000
0 132 Hospital Island 450700 670100
0 133 Howards Island 450200 865000
(o} 134 Hoyt Island 450300 665500
© 135 Hoyt Nub 450300 665500
O 136 Huestis Island 454700 660600
0 137 Hunters Island 455600 661000
0 138 Indian Izland 451800 660700
0 139 Indian Island ' 455600 661800
N 140 Indian Pond 452100 671600
N 141 Jackknife Islands 453400 670600
s} 142 Jail Island _ 450400 665000
N 143 Jakes Pond 454400 663400
o] 144 Jameson Island 450200 665600
N 145 Jerry Pond 450900 664200 :
O 146 Jewett Island 455800 664200 5
N 147 Kelly Island 453600 665900 i
M 148 Kennebecasis Island 451900 660800
O 149 Keswick Island 455800 664900
Q 150 Killaboy Island 454300 660500
G 151 King Brook Iglands 452100 672600
N 152 Knight Pond 450900 664200
N 153 Layden Pond 460000 660200
N 154 Lindsay Island 453700 672800
N 155 Little Indian Island 453600 672700
O 156 Little Iszland 450100 465500
0 157 Long Island 450800 665800
M 158 Long Island ' 454000 660500
N 159 Long Island . 453700 672800

94

160 Leng Island . 452300 660200

M

N 161 Long Island 451200 664800
N 162 Long Island 454400 671200
N 163 Long Pond 451800 661800
N i64 Long Peond 455400 672100
o 165 Lower Musguash Island 454200 660500
O 166 Lower Shores Island 455800 664500
N 167 Luffs Island 453700 672300
C 168 MacDougalls Island 450800 865500
N 169 MacGougans Island 454000 663800
N 170 MacKenziesg Island 453800 672900
o] 171 Macs Island 450300 665600
o] 172 Man of War Island 4506200 665100
M 173 Manawagonish Island 451200 660600
M 174 Marshalls Island 455200 661100
o] 175 Mather Island 452500 660100
N 176 Matts Island 453900 664800
P 177 MchAdam 453600 872000
N 178 McAdam Pond 453500 672000
O 179 McAllisters Igland 454800 661100
N 180 McCulloughs Pong 451300 6703068
C 181 McGibbon Island 455800 664500
o] 182 McGraws Island 450300 665500
N 183 McLaughlin Pond : 454400 663200
o] 184 McVicar Island 451200 671100
P 185 Meductic 460000 672500
o] 186 Merrithews Island 455700 665000
0 187 Middle Island 451600 &60500
e} 188 Middle Island 455300 662500
N 189 Mill Island - 454900 673100
N 190 Mill Pend 452700 660000
N 191 Ministers Face 452400 660200
P 192 Ministers Island 450600 670200
0 193 Mink Island 450000 665600
O 194 Mink Island 450200 664900
0 195 Mink Island 450300 665200
O 196 Mitchells Island 455800 664900
O 197 Mohawk Island 450200 665400
N 198 Moon Pond ' 455300 672100
0 19% Moose Island 450300 664600
] 200 Morans Isiand 450200 665200
N 201 Morrow Pond 454500 663300
¢} 202 Mosquitco Island. 451200 672600
O 203 Motts Wharf 454400 650100
P 204 Mouth of Keswick {Keswick 460000 665000
O 205 Mowat Island 450000 665400
N 206 Munson Island 451200 664000
C 207 Murray Island 455800 664300
0 - 208 Musguash Tsland 451000 661400
N 209 Nackawic 460000 671500
N 210 Nan Island 454100 674800
M 211 Navy Igland 450400 670300
o 212 Nevers Island 454700 660600

95

0 213 Nevers Island 455800 654400
o} 214 New Ireland 450200 685800
O 215 New River Island 450700 663300
N 216 Northcott Island ' 454200 673200
N 217 Nova Scotia Island 454300 671200
O 218 Nub Island 450300 665500
O 21% Nubble Island 450000 665400
N 220 Nubblesgs, The 453600 673200
N 221 O0'Malleys Island 453600 672700
O 222 Oak Island 454900 661000
C 223 0dell Island 450800 870500
E 224 Oromocto 455100 662900
M 225 Oromocteo Island 455200 662900
0] 226 Oven Head Island 450500 665700
Q 227 Ox Island 455200 661700
0 228 Park Island 450500 654800
0 22% Park Islands 450500 664800
M 230 Parker Island 450200 665500
N 231 Parker Island 453600 673200
O 232 Parsnip Island 455800 664500
M 233 Partridge Island 450100 665600
o} 234 Partridge Island 451400 660300
o} 235 Peat Islang 450500 664700
M 236 Pendleton Island ' 450200 665700
e} 237 Penn Island 450600 663700
0. 238 Pig Island 453400 660100
N 239 Pine Island 453200 670200
N 240 Pine Island ' 454600 674800
o 241 Pines, Isle of 453000 680500
0 242 Pitt Island 455800 664500
N 243 Pleasant Pond 453900 672200
e} 244 Pocologan Island 450600 ©63400
8] 245 Princes Isliand 455700 £616090
0 246 Ram Island 452100 660800
0 247 Ram Island 455500 661700
0 248 Ram Island 455200 661600
O 24% Ram Island ' 455700 €63700
O 250 Reach Island 455500 662100
N 251 Ready Pond ' 451800 661600
N 252 Red Ledges 451200 664700
P 253 Renforth 452200 660100
O 254 Rickets Igland 451200 670900
O 255 Ring Island _ 455400 661200
N 256 Robinsons Peond 452300 664000
O 257 Rocky Island 452900 660600
O 258 Ross Island 455800 664200
N 259 Rothesay 452300 660000
N 260 Round Pcnd 451700 671800
N 261 Round Pond 451100 670100
o} 262 Rowans Island 451600 660500
0 263 Rush Iszland 453000 660500
P 264 Saint Andrews 450500 670300
0 265 Salkeld Islands 450600 663000

96

N
G
N
N
N
8]
o
N
0]
N
0]
o]
o
N
QO
P
P
o
O
M
o
o
o
N
N
o
N
P
0
N
M
0
N
0
N
0O
P
0
N
N
N
N
N
N

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
250
251
292
293
294
295

296

297
298
299
300
301
302
303
304
305
306
307
308
3os

Sam Orr Pond
Savage Island
Scovils Island
Seeley Pond

Ship Island
silver Island
Simpsons Island
Slugundy Ponds
Spectacle Island
Splan Pond

Spoon Island
Spoon Island
Spruce Island
Spruce Island
Spruce Island

St. George

8t. Stephen

Star Island
Stillwater Island
Sugar Island
Taylers Island
Thatch Island
Thatch Island
Thorne Pond
Three Tree Creek Pond
Thumb Isliand
Todds Island
Tracy

Tub Island
Turnover Island
Upper Musquash Island
Upper Shereg Igland
vVarney Island
Vernon Island
Waasis Pond
Walkers Island
Westfield

White Head Island
White Pond

Whites Island
Williams Island
Wilson Island
Wingdam Island
Works Island

97

451000
455500
454400
453900
453700
450700
450000
455200
450000
451500
451300

453700

451000
453200
450100
450800
451200
454100
451300
455900
451300
455000
455100
455800
454100
450300
453600
454100
450500
451500

454400

455800
453400
451000
454900
455500
452000
450100
454700
453700
453700
454500
453200
453100

670300
664600
671200
663400
670000
665100
665500
671100
670000
672000
671100
660400
664700
670200
665200
665000
671700
672900
662000
664800
660800
660900
662900
660500
663500
665500
673000
664100
664800
665100
660600
664900
672500
665000
663200
662000
661400
665200
663300
672200
672200
673100
672600
672500

Appendix D. The Initial Knowledge-Base Attempt

These following code is the initial attempt at the knowledge-base for automated

name placement. This code is has not been completed; it is just in its infancy.

; Lisa Mullin

; Rule-based system for name placement
; Initial Attempt

; Bugust 24, 1992.

...

LA I N A N B N A N SN A T T Y A SN R N A A N A A A A A A A R A A A A N A A A A A A

; Definition of global variables

{defglobal 7?*file* = {open “k:\\arf\\some.nms" ")}

; Definition of the slots to be used

i

(defschema name "name being placed*
{instance-of slot}
(cardinality multiple})

(defschema type *type of name being placed*
(instance~of glot))

{defzchema location *location of name being placed*
(instance-of slot) :
{cardinality multiple))

{defschema overlaps-grid-line "boolean for overlap with dgrid line"
{instance-of slot))

(defschema crowded "boolean for crowded condition®
{instance-of glot})

{(defschema overlaps-map-feature *“boolean for overlap with a map feature®
{instance-cof slot)}

{defschema overlap-existing-name *"boolean for overlap with an name®
{instance-of slot)}

{defschema current-placement-position *the current position"
{instance-of slot}}

98

(defgchema path-to-gt-node *“the path to the guadtree node*
(instance-cof slot}} :

(defschema positions "the 8 possible positions®
(instance-of slot})

} The Name Placement Schema ;

{defschema name-placement "the general hame placement structure®
{name)
{type)
{location)
{overlaps-grip-line)
{crowded)
{overlaps-map-feature)
{overlaps -existing -name)
{current-placement-position)
{path-to-gt-node))

.
¥

: Read the names into the schemas

;1 {defrule read-input-names

iii (declare{salience 1})

Pii=>

pis (while {not {(feof ?*file*}} do

Y (bind 7?line {read-line 7?*file*})

i (if{not (egual ?line *EOF*)) then

HE: (bind ?junk (string-subsgtring ?line 1 1)
HEH (bind ?junk (string-substring ?line 2 4)
- (bind ?junk (string-to-integer ?junk)
iii {assert

;iilclose ?*file*))

£ r

HEH test a new names

{defschema Fredericton
{instance-of name-placement
(name Fredericton)
(type 135)
{location 100 20))

{defschema Small-Island
{instance-of name-placement)
{name Small Island}
{type 1221)
{crowded €}

99

{locaticn $3 275})}

(defschema Gaspe
{instance-of name-placenment
{name Gaspe) '
{type 111)
{location 100 2000})

; Rule feor initial name placement ;

(defrule place-name
(schema ?name
{instance-of name-placement)
{current-placement-pegition 0)

(printout t *"Names to be placed "?name t}

; Rule for crowded islands

.
:

{defrule crowded-Island
{schema ?name
{(instance-of name-placement)
{name $7? Island)
{crowded t})

{printout t 'A crowded Island* ?name t})

100

Appendix E. The Construct Algorithm Source Code

The following pages of this appendix contain the source code used to construct a

quadtree with objects. The modules included are :

Module Page

Constr.C 102
AddBlack.C : 110
. Image.C _ - 114
LSpace.C . 116
PAlloc.C 118
PFree.C 120

QSpace.C 122

Of these modules, the ones which aré used for memory management are LSpace,
QSpace, PAlloc, and PFree. The first two routines , LinkSpaceAllocate and
QuadSpaceAllocate are used to allocate a large section of 32 bit memory. Although these
two are similar, they were done separately for simplicity. The routine PointerAlloc is used
to convert a 32 bit handle into a 16 bit address in the current segment of memory. This
implies that the memory will be paged at this point in order to have the desired memory
locations in the current segment. PointerFree id used to release the 16 bit pointer to the

current segment, thus allowing the memory manager to page the memory when necessary.

Only the main portion of the code is given here. The functions for interacting with

windows, opening files and reading data are not included for the sake of brevity.

101

i ittt ittt ittt

*
; * Module: CONSTR.c
% * Bystem: PS/2 Model 70
§ * MicroSoft QuickC
*
j * Purpose: Module to build a guadtree with objects.
; *
% * Programmer: Lisa Mullin
{ * Date : Sept 26, 1992. :
! * Detail: This module will build a gquadtree with objects. The algorithm
| * used iz a2 modified one which prunes the tree from the top
: * by using a bounding box for the feature. This routine
* makes use of 32 bit pointers.
*
*
B o e e e e e e e e e e = = = —————————— * /
[F mm e e e e e e e Include Files ----------- */

#include “windows.h*

#include <winmem32.h>

#include <stdio.h>

$include *quad.h*

$#include "gquadtree.h" _

it --—-————- e m - ——— Module Definitions ------ */

extern int debug, STOP;

extern long int nodes, test, wn, bn, gn, apowlmaxpow];
extern long int norle; '
extern long int CurrentiIndex, CurrentlIndexBlack;

extern long int xmin, xmax, ymin, ymax;

extern rlength rlcmaxrlcl;

extern FILE *outfile;

extern WORD wSel, wold, CurrentwSel;
extern WORD wSelBlack, CurrnetwSelBlack;
extern DWORD dwBuff, 01d0ffset, QuadsSize;

I¥ e e e Imported Functions ------ */
extern void AddBlacki{pair blk, int ASC_code}; /* in AddBlack.c */
extern veid FreeSpace(WORD wsel}; /* in Free.c */
extern int = IMAGE(long int x, long int vy); /* in Image.c */

extern DWORD PointerAlloc {WORD wSel, DWCORD dwOffget, DWORD Size):;
102

: /* in PAlloc.c */ .
extern void PointerFree(WORD wSel,DWORD dAwOffset); /* in PFree.c */

extern WORD OQuadsSpaceAllocatel(}; _ /* in Q8pace.c */
/* mmrre e e —————————— Exported Variables ------ */

/* none */

/* none */

/* ___ */
pair CONSTRUCT {n,X,y, ASC_code)
int n, ASC_code;
long int X, ¥;
{
pair par,pl4l, g,blk;
gtree *gquadtree, *r, *child;
int imag, level,i;
char $ZString2 {951 ;
char sz8tring3{451;
WORD ws8elChild;

DWORD dwOffzet, dwOffcetChild;
wsprintf{szStringB,“Construct“);
Cegt++;

if (n == 0) /* process the node */
{
par.wsel = 0;
par.dwOffset = 0;
imag = IMAGE(x-1,y-1};
if (imag == 0}
{ .

par.colour = 'W';

103

}

else
{
par.ceclour = 'B';
} .
}
else

{ /*n 1= 0 */
level = n-1;

/* initialize the children to null */
pl0].w8el = 0;
pl0].dwoffset = 0;
pll] .wSel = 0;
pll] .dwOffset = 0;
pl2).wsel = 0;
pl2].dwOffset = 0;
pl3].wSel = 0;
pl3].dwOffset = 0;

if { (xmin <= x-apow[level])} && {ymax >= y-apow[level]))
pi0] = CONSTRUCT(level,x—apow[levell,y,ASC_cdde};

else _ “
p{0].colour = 'W';

if { {xmax >= xX-apow[level]) && (ymax >= y-apow(levell)} }
pll] = CONSTRUCT{level,x,y,ASC_code};

elge : :

plll.colour = 'W';

if ({xmin <= x-apowllevel]) && {ymin <= y-apowl[level]) }

pl2] = CONSTRUCT (level,x-apow[levell,y-apowl[level],LASC_code):;
else

pl2].colour = 'W';

if { {(Xmax >= x-apowl[levell) && (ymin «= y-apow[level]l})
pl3] = CONSTRUCT (level,x,y-apow{levell],ASC_code);

else

pl3l.colour = 'W';

if { debug == 1)
{
fprintf{outfile,*The NW %d %1d \n",pl[0].wSel,p[0].awOifset);
fprintf{ocutfile,"The NE 2%d %14 \n",pfl].wSel,pll].dwoffset);
fprintf{ocutfile,“The SW %d %14 \n",pl[2].wSel,p[2].dwOffset);
fprintf{outfile,“The SE %4 %1d \n",pl3].wSel,p[3].dwCffset);

H .

if ({p[0).colour != '{'} &&
{pl[0].colour == pl{l].colour} &&
{pll]l.colour == p{2).colour} &&
{pf2].colour == p(3].colour} }

{

par.wsel = pl0].wSel; /* all children are the same */

104

par.dwOffset = p[0] .dwOLfset;
par.colour = p[0].celour;
H
else /* create a non-terminal GRAY node */
{ ' '
wold = wsel;
0130ffset = dwOffset;
CurrentIndex = CurrentIndex + 1;
if {CurrentIndex < NODES_PER_ALLOC)
dwOffset = CurrentIndex * QuadSize;
else
{
/* allocate another */
wesprintf{szStringz, *Allocate another now\n %1d4*,CurrentIndex);
MessageBox (NULL, szString2, szsString3, MB_OK);
wold = wsel;
Claoffset = dwOffset;
wSel = QuadSpaceAllocate(};
CurrentwsSel = wsel;
Currentindex = 0;
dwOffset = 0;
}
AwBuff = PointerAlloc(wsSel,dwOffgoet,Quadsize);
if (STOP == 1) . :
{
wesprintf{szstring2, "aAllocate problem 18\n %4 %14d",wSel,dwCffset);
MessageBox {NULL, szString2, szString3, MB_OK); '
}
quadtree = (QTREE) dwBuff;
q.wsel = wsel;
g.awOffeet = AwOffset;
nodes += 4;
for (i = 0; 1 < 4; i++4)
{ . .
if: {pl[i).celour == ' {") /* link pfil]l teo its parent */

{
gn++;
if { debug == 1)
{ Co

weprintf{szstring2, "Another gray %d\n *,gn);
MessageBox {NULL, gzString2, szsString3, MB_OK};
1

switch (i)

{

case 0
quadtree->wSelNW = p[0].wSel;
quadtree->dwOffsetNW = p[0].dwOffset;
quadtree ->» colour = pl0].colour;
wSelChild = pl0].wSel;
dwOffsetChild = pi{0).dwOffset;

' dwBuff = PointerAlloc (wSelChild,dwOffsetChild, Quadsize);
105

if {STOP == 1}
{
weprintf (gzString2, *Allocate problem 19\n %4 %1d4*,
wSelChild, dwOffsetChild);
MessageBox (NULL, szstring2, szstring3, MB_OK);
}
c¢hiid = (QTREE) &wBuff;
chilg->wSelFather = wSel;
chilg->dwoffsetFather = dwOffset;
PointerFree(wSeliChild,dwOffsetChild};
break;

case 1

quadtree->wSelNE = pll].wsel;
quadtree~>dwOffsetNE = pl[l].dwOffset;
wSelChild = plil] .wSel;

dwOffsetChild = pll].dwOffset;
quadtree -> colour = pl[l}.colour;

AWBULff = Pointerilloc{wsSelChild,dwOffsetChild,QuadSize):;
if {STOP == 1)
{

weprintf (szS8tring2, "Allocate problem 20\n %4 214",

wsel,dwOffset};

MeszsageBox (NULL, szStringZ, szsString3, MB_OK};
} .
child = (QTREE) dwBuff;
child->wsSelFather = wSel;
child->3wOffsetFather = dwOffset;
PointerFree{wSelChild, dwOffsetChlld),
break;

case 2

quadtree->wSelsSW = p[2].wSel;
cquadtree->dwOffsetsW = p[2]) . .dwOELset;
quadtree -> c¢olour = pl[2].colour;
w5elChild = p(2) .wSel;

AwOffsetChild = pl2].dwlifzetr;

dwBuff = Pointeralloc{wSelChild,dwOffsetChild, QuadsSize);
if {(STOP == 1)
{
wsprintf(sz8tring2,*Alloccate preoblem 1é6\n %4 %14*,
wSel,dwOffget};
MesgsageBox (NULL, szString2, szString3, MB_OK);
} .
child = (QTREE} dwBuff;
child-»>wSelFather = wSel;
child->dwOffsetFather = dwOffset;
PointerFree{wsSelChild,dwdffesetChild);
break;

case 3

106

quadtree->wSelSE = p[3].wSel;
quadtree->dwOffsetSE = p[3].dwCffset;
quadtree -> colour = p[3].colour;
wSelChild = p[3] .wSel;

AwOffsetChild = pl[3].dwOffset;

AwBUff = PointeraAlloc {wSelChild,dwOffsetChild,Quadsize);
if {(STOP == 1)
{
weprintf (szString2, "Allocate problem 16\n %4 %l4d*,
wsel,dwOffset);
MessageBox (NULL, szString2, szString3, MB_OK);
}
child = (QTREE) dwBuff;
child-»>wSelFather = wSel;
chilgd->dwOffsetFather = dwOffset;
PointerFree (wSelChild, dwCffsetChild};
break;
3
}
else /* create a maximal node for plil */
{
wold = wsel;
01d0ffset = dAwOffget;
CurrentIndex = CurrentIndex + 1;
if (CurrentIndex < NODES_PER_ALLOC)
dwOffzet = CurrentlIndex * QuadSize;
else
{
/* allocate another */
weprintf (szString2, "Allocate another now\n %14%, CurrentIndex),
MessageBox (NULL, szString2, szString3, MB_CK);
weld = wsSel;
01d0ffset = dwOffset;
" wSel = QuadSpacelllocatel);
CurrentwsSel = wSel;
" CurrentIndex = 0;
dwQffset = 0;
} .
GwBuff = PointerAlloc(wSel,dwOffset,QuadSize);
if (STOP == 1)
{ .
wsprintf (gz8tring2, “allocate problem 17\n %d %1d",wSel,dwOffset);
MegsageBox (NULL, szString2, szString3, MB_OK});

wsprintf(szstring2, "Current Index and Quadsize \n %14 %14",
CurrentIndex, QuadsSize};

MessageBox (NULL, szString2, szString3, MB_OK);

}

r = (QTREE} dwBuff;
r->colour = pli].colour;
r ->» wSelBlack = 0;

107

r -> dwOffsetBlack = 0;
if ((r-»colour} == 'B'}
{
bn++;
if { debug == 1)}
P]
wsprintf (szString2, "Another black %d\n *,bn);
MessageBox (NULL, s£zString2, szstring3, MB_CK);
}
blk.wSel = wSel;
blk.dwOffset = AwOffset;
PointerFree {wSel,dwOffset);
AddBlack{blk, ASC_code}; /* add the link list node */
dwBuff = PointerAlloc{wSel,dwOffset,QuadSize};
if {STOP == 1)
{
wsprintf {gzString2, *Allocate problem 17\n %4 %1ld",
wSel,dwCLfsetl) ;
MessageBox {NULL, szS8tring2, szString3, MB_OK};

MessageBox (NULL, szString2, sz8tring3, MB_OK};
) :
else

r = (QTREE} dwBuff;

if { debug == 1 }

{
fprintf(outfile,*Add nede at %4 314 %4 \n",

wSel, dwOffget, ASC_code);

fprintf(outfile, *Add new Black %4 %1ld\n",
r -» wSelBlack,r -» dwOffsetBlack);
fprintf{outfile, *BLACK \n"}:

}
}
elge
{
wWh++;
if { debug == 1)
(
wsprintf (szstring2, "Another white %d\n ",wn);
MessageBox (NULL, szString2, szString3, MB_OK};
fprintf {outfile, "WHITE \n*};
)
}
switch (i)
{
caze 0:

r->wselNW = 0;

r->dwOffsetNW = 0;

guadtree -> wSelNW = wSel;
gquadtree -> dwOffgzetNW = dwOffset;
break;

case 1:

108

r->wS8elNE = 0;
r->3dwOffgsetNE = 0;

quadtree -> wWSelNE = wSel;
quadtree -> AwOffsetNE = dwOffset;
break;

case 2:

r->wsSelsW = 0;

r->AwOffsetsW = 0;

quadtree -> wSelsW = wSel;
guadtree -> AwDffgetsSW = dwOffset;
break; '

case 3:
r->wselSE = 0;
r->dwOffsetSE = 0;
quadtree -> wSelSE = wSel:
quadtree -> dwOLfsetSE = awCffzetr;

-break;
}
r-»>wsSelFather = g.wSel;
r->dwOffsetFather = g.dwOffcet;
}
Y /* for 1 */
guadtree->¢colour = '(';
if (debug == 1 }

fprintf (outfile, *GRAY \n"};
par.wSel = g.wSel;
par.dwOffset = q.dwoffset;
par.colour = '('; '
} /* create a non-terminal GRAY node */
Y /* for non-pixel */
returnipar;;
} /* Construct */

109

/***_*****

* Module: AddBlack.c

* System: PS/2 Model 7¢

* Microsoft C7.0

* .

* Purpose: Module to add a linked list node to a black leaf node.

* .

* Programmer: Lisa Mullin

* Date : November 1, 1992.

* Detail:

*

*

T et = oy o o o o o e e e e ———— Vi
[e m e e e Include Fileg ----—------ */

#include <windows.h>

$include <winmem3z.h>

$include <stdio.h>

#include *guad.h*

tinclude *guadtree.h*

[* === e Module Definitiong ------ */

extern int STOP, debug;

extern long int CurrentIndexBlack;

extern FILE ‘*outfile;

extern WORD CurrentwSelBlack;
extern DWORD LinkSize, QuadSize;

f* e - Imported Functiong ------ */

_extern void FreeSpace (WORD wsel}); : /* in Free.c */
extern WORD LinkSpaceAlleocate(); /* in L8pace.c */ :
extern DWORD PointeriAlloc (WORD wSel, DWORD dwOffset, DWORD LinkSize); !
- /* in PAlloc.c */ ;

extern void PointerFree (WORD wSel, DWORD dwOffset); /* in PFree.c */

I mm e - Exported Variables ------ */

f* mm e Local Typedefs -----—----- */

/* none */

110

e Local Glocbal Variables -- */

void AddBlack(head, Code}
pair head;

int Code;

{

gtree *node;

black *blacknode, *r;
char szString2([95];
char sz8tring3[45];
int found;

WORD wsSel, oldwsSel; .

DWORD AwCffset, dwBuff, olddwCffset, dwQffsetBlack:;

wesprintf{szstring3, *Add Black"*)};
found = 0;
oldwsSel = 0;

dwBuff = Pointeralloc{head.wSel, head.dwOffset,Quadsize);
if (8TOP == 1)

{
waprintf {sz8tring2, "*Allocate problem 1\n %d %1d4*,wsSel,dwOffset};
MesgageBox {NULL, szsString2, szString3, MB_OK);
) .
else
{
node = (QTREE) dwBuff; /* get the quadtree node */
wSel = node -»> wSelBlack;
dwOffset = node -» dwOffszsetBlack;
. PointerFree{head.wSel,head.dwCifset};
} .
/* traverge the linked list locking for the save code */
while { (wSel != 0) && {(found == 0) && (STOP == 0} }
{

dwBuff = Pointeralloc(wsSel,dwOffset,Linksize);
if {s8TOP == 1}
{

111

waprintf(szString2, "Alloccate problem 2\n %d %14*,wSel,dwOffset);
MessageBox (NULL, szString2, szstring3, MB_OK};
} .
else
{
blacknode = {(BNODE} dwBuff;
if {(blacknode->type == 'f') && (blacknode->EMR_code == Code})}
{
found = 1;
}
if (debug == 1 }
fprintf{ocutfile, *In AddBlack passed %d and fcund = 34\n",
vlacknode->EMR_code, found} ;
oldwsel = wsel;
olddwOffset = gwGffszet;
wSel = blacknode -> wSelNext;
dwOffset = blacknode -> dwOfisetNext;
PointerFree{oldwsSel, 0lddwOffset);

} .
: /* if the code is not in the 1inked list add it */
if ((found == 0} && {8TOP == 0))

CurrentIndexBlack = CurrentIndexBlack + 1:
if {CurrentIndexBlack < NODEsS_PER_ALLOC_BLACK)
dAwOffsetBlack = CurrentIndexBlack * LinkSize;
else
{
/* allocate ancther */
wsprintf (szString2, *Allocate another now Black listin %14°,
CurrentIndexBlack) ;
MessageBox {NULL, szString2, szstring3, MB_OK);
CurrentwsSelBlack = LinkSpaceAllocate(};
CurrentIndexBlack = 0;
“GwOffsetBlack = 0;
}
dwBuff = PointerAlloc(CurrentwSelBlack,dwCffsetBlack,LinkSize);
if (STOP == 1)
{ _
wsprintf (sz8tring2, "Allocate problem 3\n 34 %1ld*,
CurrentwSelBlack, dwOffsetBlack, LinkSize);
MessageBox (NULL, szString2, szString3, MB_OK};

K

else

{ .
blacknode = {BNODE) dwBuff;
blacknode -»> type = 'f£';

blacknode -»> EMR_code = Code;
blacknode -> wSellNeXt = 0;
blacknode -»> dwCffsetNext = 0;
if { debug == 1)
fprintf{outfile, "Add BLACK t¢ end of list \n");
PointerFree{CurrentwSelBlack, dwoffsetBlack);

112

if (oldwSel == 0}

{
dwBuff = Pointeralloc{head.wSel,head.dwOffset,Quadsize);
if {(8TOP == 1)
. -
weprintf{szstring2, "Allocate prcklem 1I\n %d %14",wSel,
dwOffset);
MessageBox {NULL, szString2, szString3, MB_OK};
}
else
{
node = (QTREE} dwBuff;
node -»> wSelBlack = CurrentwSelBlack;
node -»> dAwoffsetBlack = AwOffsetBlack;
PointerFree (head.wSel, head.dwOffget) ;
}
}
else

{
dwBuff = Pointerallec{oldwsSel,olddwQffsetr,LinkSize);

if {8STOP == 1)
{ .
wsprintf (szString2, *Allocate problem 1\n %4 %14*,
cldwsel, clddwOffset);
MessageBox (NULL, s£zS8tring2, szstring3, MB_CK);
K
else
{
r = {BNODRE) dwBuff;
r ~>» wSelNext = CurrentwSelBlack;
r -> dwOffsetNext = dwOffsetBlack;
PointerFree(oldwSel, olddwOffset};

113

e m————— --

*

* Module: IMAGE.c

* System: PS/2 Model 70

* MicroSoft QuickC

*

* Purpose: This module return the value of 0 for a while pixel and a

* one for a black pixel at x,y.

*

* Programmer: Lisa Mullin

* Date :

* Detail:

*

*

*. ___ */
f¥ —mmmmm et e e e e e e Include Fileg -----———-w~ */

#include <windows.h>

#include <winmem32.h>

#include *qguad.h*

#include "quadtree.h*

o e Exported Variables ------ */

/* ___ */
int IMAGE (X,¥)
long int X, ¥
{
char 8z8tring2[95];
char szString3[45];
int j;

extern rlength rlcimaxrlec]:
extern long int norlc;
extern int debug, first_call;

114

int i;

if (debug == 1 }
{ .
weprintf (gzString3, “Image\n ");
weprintf(szstring2, *Process begins \n ");
MessageBox (NULL, szString2, szsString3, MB_OK);
H
i = 0;

if (¥y » rie[{norle-1j)).xr }
{

return{f);

}

else

{

while {{rlciil.r < y} && {i < norlc}) 1i++;

Cif ({rlefi}.r f= vy} }l {1 »>= noric})

{

returnid};

}

else

{ . .
while ({ric[i}.r == y) && (rlcli).xe <« X})} i++;
if {(rlcii]l.r == y} && {(rlc[i].xb <= X} &&

(rlcii] .xe >= X)}

{
- return{l};

}

else

{
return{0};

}

115

/* e e e e e st AR —————

*

* Module: Lspace.c

* gystem: PS/2 Model 70

* Microsoft €7.0

*

* Purpose: Module to allocate 32 bit memory for the linked lists.

* .

* Programmer: Lisa Mullin

* Date : Sept 6, 19%2.

* Detail:

e

*

T o v o v e e e e e e e e e e o e i A R T SR MR e M A A e e e e e e e = e e e e A - * /
/¥ mm e e m e m e Include Files -——-www--—--- */

$include <windows.h>
$#include <winmem32.h>
#include *quad.h*

#inciude “gquadtree.h®

extern int STOP;
extern DWORD LinkSize;

/* none */

/* none */

116

WORD LinkSpaceAllocate ()

{

char gzString2([%5]);
char szstring3[45];

LPWORD 1pSel;

WORD flag, Retvalue;
gstatic DWORD ver;
WORD wSel;

waprintf {szstring3, "Link Space Allocation*};

wesprintf (szString2, *Link Memory allocation \n %d \n %1d*
,Retvalue, {NODES_PER_ALLOC * Linksize)};

ver = GetWinMem3Z2Version();

if { ver < 0Ox0101}
flag {(WORD) 0;

else
flag

{WORD) GMEM_DDESHARE;
1psSel = &wSel;

Retvalue = Global32Alloc{ {(DWORD) (NODES_PER_ALLOC * LinkSize)}, lpSel,
{DWORD) (NODES_PER_ALLOC * LinksSize), flag};
if (Retvalue i= ()}
{
wsprintf (szString2, "Link Memory allocation problem\n %d \n %1d*
,Retvalue, (NODES_PER_ALLOC * LinkSize}):
MessageBox (NULL, szString2, gzString3, MB_ICONSTCP);
8TOP = 1; :
}

return{wsel) ;

117

/¥ __...........__....._.._________________.........__-._-____._________________. ______________

*

* Module: PAlloc.c

* System: PS/2 Model 70

* Microgsoft C7.0

* .

* Purpose: Module to allocate 16:32 bit pointer.

*

* Programmer: Lisa Mullin

* Date : Sept 6, 1%92.

* Detail:

*

*

e mMEE R mAS AR —E T —————————— */
I D T fatated Include Files -----—-=--w-~ */

$include <windows.h>
#include <winmem3Z.h>
#include *"guad.h"

#include "quadtree.h"

/¥ none */

/* none */

/* none */

/* none */

DWORD Pointerdlloc (WORD wSel,DWORD dAwOfLfset, DWORD Size)
{

char sz8tring2[95];

char szString3[45];-

WORD Retvalue;

DWORD dwBuff;
LPDWORD 1pBuffer;

weprintf (sz8tring3, *Pointer Allocation "}

lpBuffer = &dwBuff;

Retvalue = Globall6PointerA110c{wSel;dwOffset,1pBuffer,Size,0};
if { Retvalue != 0}

{
weprintf (szstringz,
"return value %4 \nwSel %d \noffget %1d \nsize %4+
,Retvalue,wsel,dwOfiset,Size);
MesgageBox (NULL, szString2, szString3, MB_ICONSTOP):;
STOP = 1; . :
}

return (dwBuff) ;

119

*

* Medule: PFree.c

* System: PS/2 Meodel 70

* Micrescft C7.0

*

* Purpose: Mcdule to free 16 bit pointer.

* ' .

* Programmer: Lisa Mullin

* Date : Sept 6, 1522,

* Detail:

*

*

B o e e e e e e e e e e e e e T e i Ak * /
/¥ m et Include Files «---wwwm--- */

$include <windows.h>
$include <winmem32.h>
#include "guad.h?*

#include "quadtree.h"

- /* none */

/* none */

/* none */

/* none */

void PointerFree (WORD wSel, DWORD AwOffset)

{
c¢har sz8tring2{%5];
char szString3{45];
WORD Retvalue;
weprintf {szString3, "Free Space");
Retvalue = GloballséPointerFree (wsel,dwOffget, 0);
if (Retvalue != 0}
{
wsprintf{szString2, "Pointer free problem\n %d*,Retvalue);
MessageBox {NULL, szString2, szString3, MB_TICONSTOP);
STOP = 1; :
}
}
[* e e End of PFree.¢ ------------—-m—mmmmmmcmmr e */

121

J¥ mmm e d e beesmsmmcssAmm———————————— e e e e e

*

* Module: QSpace.c

> gystem: PS/2 Model 70

* Microsoft C7.0

*

* Purpose: Module to allocate 32 bit memory for the quadtree nodes.

*

* Programmer: Lisa Mullin

* Date : Sept 6, 19%2.

* Detail:

*

¥

W o e = o o o ke A L AP TR P o —
J* e Include Files -----------

#include <windows.h>
$include <winmem32.h>
$include “quad.h*
$include “guadtree.h*

extern int STOP;
extern DWORD QuadsSize;

/* none */

122

WORD_QuadSpaceAllocate(}

{

char gz8tring2[95];
char gz8tring3[45];

LPWORD 1pSel;

WORD flag, Retvalue;
gtatic DWORD ver;
WORD wSel;

wsprintf (sz8tring3, "Guad Space Allocation"};
ver = GetWinMem32Versicn();
if { ver <« 0x0101}

flag {WORD) 0;

else
flag

H

{WORD} GMEM_DDESHARE;
lpsal = &wSel;
Retvalue = Gleobal32alloc{ {DWCRD) (NODES_PER_ALLOC * QuadSize}, 1lpSel,

{DWORD}) {NODES_PER_ALLOC * QuadSize}, flag};
if (Retvalue = 0)

{
wsprintf {szString2, "*Quad Memory allocation problemin. %4 \n %14
' ,Retvalue, (NODES_PER_ALLOC * Quadsize)};
MesgsageBoxX {NULL, gzString2, szsString3, MB_ICONSTOP);
STOP = 1;
}
return{wSel};
3
JF e m End of QSpace.¢ -=--s----o--mmmm oo m */

123

Candidate's Full Name:
Place and Date of Birth:

Permanent Address:

Schools_Attended:

Publications:

Yita
Lisa Mullin
Gaspe, Quebec, October 24, 1966.

647 York Blvd West
Gaspe, Quebec
Canada

1973 - 1979
Sacred Heart School

1979 - 1984
C.E. Pouliot Polyvalent

1984 - 1985
CEGEP de la Gaspesie

1985 - present .
University of New Brunswick

Mullin, L. and Nickerson, B.G. [1991], "A Knowledge-Based
System for Automated Name Placement”, Proceedings of the
4th UNB Al Symposium, Fredericton, N.B., Canada, Sept. 20-
21, 1991. :

124

