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Abstract

In this thesis we present parallel implementations of one local (convoluf.ion) and one
global (regular moment extraction) image processing technique on a multi-transputer
sj’stern. Issues relevant to implementation design, including computational algorithm
selection, initial data pass, and tbpologlyr selection are discussed. Linear speedups in
the convolution implementations are observed whereas the efficiency of the regular

moment programs decreases as the number of transputers increases. Analysis of the

implementations including parallel time complexity.functions and observations about -

data passing and topology selection is given. Two theoretical performance models

based on the implementations closely match empirical timing results.
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Chapter 1

Introduction

One of the great scientific challenges of the 1990’s seems to be keeping pace with
man’s ever increasing appetite for computational power. It. seems that as soon as
new, faster computers become available, new applications are found that make them
seemn inadequate. In addition, in recent years it has become increasingly ob.vious that
the era when orders of magnitude improvement in processor speed can be expected
is coming to an end. The laws of physics dictate that there is a limit to how powerful
traditional single processor computers can be. The only solution to the problem seems
to be to use computers with more than one processor. This is known as parallel
processing. While many advances have already been achieved iﬁ this area, it is clear
that man has only begun to discover the potential of parallel computing.

The T800 transputer is a VLSI processor marketed By INMOS Ltd. Tra.néputers
can be used individually or linked together into reconfigurable networks. Applica-
tions can be programmed on these networks using special transputer programming
languages such as Parallel C. These networks form relatively inexpensive and flexible
parallel computers. Transputers are often mounted in bda.rds which are connected to
host computers. The B008 motherboard, also released by INMOS, can house up to
ten T800 transputers.

One area of computer science that can benefit from the computational power




of parallel processing is image processing. Image processing deals with the trans- |
formation and analysis of pictures. Real-time image processing applications require
operations to be executed on the thousands of pixels that make up imé.ge frames
many times each second. One operation commonly performed in such applications
is feature extraction. Feature extraction is the act of finding distinguishing features
or measures in images. Features can be either local or global. Convolution, which
involves the passing of a mask over an image i3 a local feature extraction process.

Statistical regular moments, on the other hand, are global image features.

1.1 Thesis Objective

The feasibility of transputer based image processing systems has been discussed in -
[13, 19]. The objective of the thesis is to develop efficient p‘ara.llel implementations
of the image processing techniques of convolution and regular moments on a B008
motherboard containing nine T800 transputers programmed with Parallel C. Our
main criterion for judging the efficiency of an implementation will be its exeéution
time. Its memory requirements will also be considered. Special attention will be given
to implementation performance as image size and number of processors increases.
We acknowledge that just as moments and convolution are only examples of hima.ge
processing techniques, using the B008 and Parallel C is only one method of computing
with transput_érs. Therefore, we would like to abstract from the special considera-
tions of our chosen image processing techniqués and transputer model and give some
attention in our research to the more general issue of efficient image processing on
transputers. Specifically, we would like to discover some principles and ideas that are
applica.ble to any transputer based image processing application. Ideally, our research
might lay the foundation for a generic efficient image processing system on message

passing, distributed memory multiprocessor systems.




An alternative approach to the research is to use the reconfigurability of trans-
puter netﬁorks to find the best implementations for regular moments and convolution
on certain topologies commonly found in parallel computing (e.g., ring, mésh, binary
tree). In this approach, transputérs become an experimental model for image pro-
~ cessing on parallel computers. We believe, however, that transputers are appropriate
themselves for image processing and that the issues related to their use for image pro-
cessing applications are sufficiently interesting and challenging to merit investigating

image processing on transputers for its own sake.

1.2 Strategy

Multi-transputer programming is sufficiently complicated to challenge even the best
programmer. A starting point is necessary from which para.ilel programs can be de-
§eloped. Qur approach is to begin by ifnplementing more traditional, single process
‘programs on a single transputer in Parallel C. Next we will program multi-process pro-
grams and run them on a single transputer. These programs will be finally converted
to run on multiple transputers. When desigﬁing the multi-transputer programs, we -
intend to take into consideration the following issues: 1) topology selection; 2) data

passing techniques; and 3) parallel computational algorithm selection.

1.3 Thésis Structure

The second chapter gives the reader a broad introduction to parallel processing. Em-
phasis is given to transputers and Parallel C. Chapter 3 introduces image processing,
focusing on our transputer based image processing system and the techniques of regu-
lar moments and convolution. Chapter 4 gives timing results for our single transputer
implementétions. Chapter 5, the longest in the thesis, gives timing results for and an-

alyzes our eight multi-transputer programs. Performance modelling for two of those



implementations is presented in Chapter 6. The thesis ends with a conclusion which

sumrnarizes our work and discusses some possible avenues for future research.



Chapter 2

Parallel Processing

2.1 Introduction

The computational power of any traditional, single processor computer is largely de-
.termined by three factors: the speed of its CPU, the speed and extent of its main -
memory and the speed and size of the channel between its CPU and main memory.
The last factor, the classic "Von Neuman botfleneck’ is the most restrictive to today’s
single processor computers [6]. Parallel computers, computers which incorporate par-
allel processing, circumvent at least one of the above restrictions. In this chapter we
discuss para.llel. processing. It should be noted that parailel processing is an extremely
diverse, complicated branch of computer science. A comprehensive examination of
it would likely fill several volumes. Our approach in this chapter is to introduce the
reader to its most important aspects, paying special attention to the ones needed to -
understand the research we later present. For more information about a given topic,
the reader should consult the listed reference. _

We begin the chapter with an examination of the various types of parallel ar-
chitectures. Next, parallelization techniques of sequential algorithms are discussed.
Some useful terms and definitions related to parallel processing are discussed in the

following section. A section devoted to transputers follows these definitions. Parallel



C, the language we have used to program the transputers, is next described. Some

concluding remarks close the chapter.

2.2 Parallel Architectures

There is a bewildering number of different kinds of computers in the 1990’s. Great
differences exist in architecture and technology from one machine to another. While
advances in computer technology seem to occur virtually every day, (consider, for
example, recent breakthroughs in chip design and makeup) the architectures them-
selves have been relatively unchanged. In this section we attempt to describe the
various architectures of current computers and give examples of machines that use
them. There are four main factors to consider when classifying the architecture of a
parallel computer. The first is how many data streams it has. The second is whether
or not the computer’s processors can execute different instructions at one time. The
computer’s memory type is also relevant. Lastly, how a parallel computer’s proces-
sors communicate with each other must be considered when classifying it. We next

describe each issue in more detail.

2.2.1 Data Streams

The processors of a parallel machine can either access data through the same path
or can have their own path to data. In the first case, the parallel machine is said to
be a Single Data Stream machine. Those machines whose processors have their own

path to data are called Multiple Data Stream computers.

2.2.2 Imstruction Streams

If a computer can execute only one instruction at once, it is referred o as a Single

Instruction Stream machine. QObviously, all single processor sequential computers



are single instruction stream machines. Some multiple processor machines contain
many simple processors which all perform the same action at the same time {Single
Instruction Stream Multiple Data Stream machines). Others ha.vé more 'sobhisticated
processors which can do different operations simultaneously. The latter are called

Multiple Instruction Stream computers.

2.2.3 Memory Type

Some parallel computers have a single memory which is accessed by all of its proces-
sors. These machines are said to be sha.red memory machines. On the other hand,
the processors of some machines have their own memory space. They are called dis-
tributed memory machines. It is possible for both types of memory to be found in

one parallel computer.

2.2.4 Communication Method

If the processofs of a parallel computer communicate and share data by means of
a central shared memory, the computer is referred to as a tightly coupled machine.
If, on the other hand, its processors communicaie directly with each other thrbugh
communication links, without a shared memory, the parallel machine is Ioosely cou-
pled. In the former case, the processors must be carefully controlled so that memory
contention is resolved and no processor can access data that another is altering. In
the latter case, the computer’s processors can run independently and asynchronously,
‘but must have message passing capability for communication [25]. |

The above four factors can be combined to get many kinds of parallel machines.
Conventional single processor, single memory computers are classified as Single In-
struction, Single Data (SISD) machines. Most arrays of VLSI processors are Single
Instruction, Multiple Data (SIMD) distributed memory computers. Vector super-

computers are also usually SIMD machines. Transputers, as we shall see, are loosely




coupled Multiple Instruction Stream Multiple Data Stream (MIMD) computers.

2.3 Parallelization Techniques

A parallelization technique is a method of doing a problem on a parallel computer.
The three major ways of doing problems on parallel machines are data parallelism,

instructional parallelism and processor farming. In this section, we discuss each.

2.3.1 Datéa Parallelism

The conceptually simplest parallelization technique is data parallelism. In the data
parallelism method, each of many processors executes the same instructions on part

of a large amount of data. This is the technique used by vector supercomputers.

2.3.2 Instructional Parallelism

In contrast with data parallelism, in instructional parallel programs the processors
work together to perform a computation on the same data. The processors usually .
execute different operations on the data. The best example of instructional parallelism
is pipeline processing. In this case, each processor in a line of processors performs a

separate action on the data and then passes it to the next processor in the line.

2.3.3 Processor Farming

Another common approach is processor farming. In farming, a central supervisory
'farmer’ processor dynamically allocates tasks for several 'worker' processors. The
workers perform the tasks they are allocated and send the results back to the farmer.

The process continues until all necessary work is done.



2.4 Terms and Definitions

In this section, we present some of the terms and definitions associated with pa.rallel.

processing.

2.4.1 Speedup

The speedup of a parallel implementation with P processors is defined to be the
time taken for the task on one processor divided by the time taken on the parallel

implementation. The concept of speedup is formalized in Equation 2.1.

S(P)=T(1)/T(P) | (2.1)

A linear speedup for an implementation is preferred since it usually indicates that
the implementation has overhead directly in proportion to the number of processors,
However, in many practical implementation's, the overhead usually increases more
than linearly as the number of processors increases, resulting in speedup curves which

flatten out as the number of processors increases.

2.4.2 Efficiency

E]

The efficiency of a P processor parallel implementation is defined as the speedup of

the implementation divided by P. Equation 2.2 expresses efficiency in formal terms.

E(P) = S(P)/P (2.2)

The efficiency of an implementation can never exceed one. Implementations with
efficiencies close to one are preferable. However, an inefficient implementation of one
parallel algorithm may still be faster than an efficient implementation of a slower
paralle] algorithm. It is a measure of how well the implementation uses the hardware,

and not how good the algorithm used by the implementation is.



2.4.3 Parallel Processor Cost

For a P processor parallel implementation, this is defined as the product of the time
taken for the task and P, the number of processors. This is stated symbolically in

Equation 2.3.

C(P)=T(P)+ P (2.3)

This measures the unit cost of the parallel implementation.

2.4.4 Granularity

There are three types of granularity, problem granularity, task granularily and com-
puter granularily.

Problem Granularity

The granularity of a problem refers to the size of the parts into which it may be
subdivided for parallel processing. A problem is said to be fine grained if these parts
are relatively small, large grained if they are large.

Task Granularity

The granularity of a task or process measures the amount of computation that can

be performed without required communication/synchronization with other tasks.

Computer Granularity

Computer granularity measures the ratio of the number of processors on a parallel
machine to their fower. A large grained parallel machine has a few very powerful
processors. Most supercomputers are large grained. On the other hand, a fine grained
cémputer has numerous slower, simple processors. A VLSI chip with many processors

is a good example of a fine grained parallel machine. Best results usually are achieved

10




when the granularity of the desired problem is close to the granularity of the machine

upon which it is to be executed.

2.5 Transputers

In 1984 INMOS Ltd. of Great Britain began development of a VLSI processor based
on a novel idea. Until then, most programming languages had been designed to run
on a given computer architecture (usually SISD). INMOS’s idea was to design its
processor to implement an existing parallel programming language. The processor is
called a transputer (an acronym for TRANSistorized comPUTER). The language is
called OCCAM. OCCAM and its successor OCCAM 2 implement the Communicating

Sequential Process model of parallel computation.

2.5.1 Communicating Sequential Processes

Communicating Sequentié.l Processes (CSP’s), were proposed in.1978 by Hoare [11].
A CSP is one of at least two simulta.neously‘.executing processes which communicate
and synchronize themselves by means of niessa.ge passing through channels. The
processes successively perform an operation on data and pass the altered data on fo

the next process through the channel connecting them.

2.5.2 Transputer Networks

It is possible to use transputers by themselves, but they are computationally most
effective when many are connected together into a network. In the latter case, the
transputers are usually placed in a board such as the IMS B008 (see Section 2.5.7)
that is connected to a host computer. A special transputer called the root is connected

to the host and can access its monitor, disk drive and keyboard. Transputer networks

11




form loosely coupled pé.ral_lel machines implementing the MIMD distributed mem- .

ory parallel architecture. This makes them ideal for implementing both data parallel
and instructional parallel algorithms. Since rnosf. such networks contain rel-atively few
transputers (usually less than 128), and since each transputer is quite powerful compu-
tationally, they are considered to be relatively large grained machines. The networks
are created by connecting pairs of the high speed bidirection links on each transputer
together. These links are used for data communication and synchronization between
the two connected transputers. Many different network topologies can be formed in
this way. Once created, these networks can be programmed using OCCAM?2 or an-
other transputer programming language such as Parallel C. Special operating systems

(e.g. HELIOS) are available that are designed for transputer environments [21].

2.5.3 The IMS T800 Transputer

Released in October 1988, the T800 is a powerful transputer currently available from
INMOS. It has up to 4 Megabytes of RAM and a clock rate of 30MHz. The T800 has
a 32 bit CPU and a 64 bit floating point unit. Its four bidirectional links send data
at a rate of 2.35 Mbytes per second. Its peak performance is rated at 2.25 MFLOPS
for a 30MHz clock rate. Graphics support is available.

2.5.4 The IMS C012 Communication Device

The C012 performs parallel to serial and serial to parallel conversions back and forth
from the main host bus to the root transputer on the B008. The IMS S708B device

driver is a program on the host which assists in this data transfer.

2.5.5 The IMS C004 Link Switch

The C004 is a crossbar switch used to reconfigure the BO08 motherboard. It has 32

link ports which can be connected together for this purpose.

12




2.5.6 The IMS T222 Network Configuration Transputer

This 16 bit t:a.ﬁgputer is responsible for resetting the C004 crossbar switch in order

to change the topology of the BOO08.

2.5.7 The IMS B008 Motherboard

The B008 has ten slots for TRAMS or TRAnsputer ModuleS. The first slot contains
the root transputer. Each slot has four link connections which are joined to the links
of the transputer placed in the slot. The ten slots are permanently connected into a
pipeline using two of the links of each slot. The other two links are connected to a
C004 crossbar switch. .The notable exception is the first slot. Its first link is connected
to a C012 communication device. The second link is connected to a T222 network
configurer. Its third link is connected to the second slot. The fourth and final link is
connected to the C004. Figure 2.1 shows the B008 conﬁguration. |

During network reconfiguration, the C004 gets the information about how to con-
nect its links from a network configuration program which executes on the T222.
The program receives two host files containing Module Motherboard Software (MMS) -
code. The first file describes the B008 hardwa.fe and its hardwire (permanent) connec-
tions. The second lists the softwire (temporary) link connection information needed
for the new f'opology. Using this information, the program sends the C004 the low
level linking commands necessary to complete the topology and reset the B008. Net-
work configuration is done by executing the énconfig command on the two MMS files.

This causes the iserver to s_end the information in the files to the T222.

2.5.8 The IMS T9000 Transputer

The eagerly awaited T9000 transputer is the céntrepiece of the next generation of
transputer technology currently in development at INMOS. It features an order of

magnitude improvement in link and processor speeds. Its most interesting new aspect

13
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though, is its virtual channel p.rocessing capability. This will automate the routing
of data packets. Previously the programmer had to perform this in software. Latest
estimates indicate that the technology will be available in the summer of 1993.

-~

'2.5.9 Optimal Transputer Programming Model

In order to exploit the full potential of the multi-transputer parallel model, the fol-
lﬁwing method can be used to program each transputer. One asynchronous routing
process is dedicated to control each unidirectional transputer link. In addition, one
or more asynchronous processes are created to perform all computation on the trans-
puter. The routing processes control data flow to and from the transputer and to and
frqni the computational processes. The computational processes are anélogous to
procedures in a conventional single processor program. They act as Communicating

Sequential Processes. Each one performs a separate computational task, then passes
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the resulting data to the next computational process or to a routing process and then
terminates. Data communication and synchronization among all the processes is
achieved by means of soft channels. These-uni'directiona.l channels between processes
are analogous to the hard transputer link channels which connect transputers. Just
as any two transputers which must communicate must be connected by a link, so too
must any two processes which communicate be connected by a soft channel. Routing
processes may be connected to each other or to computational processes. Obviously, |
the computational processes must also be connected by a chaanel. Figure 2.2 gives
a schematic diagram for this method of programming a transputer. The use of this
programming method not only enables paralle] transputer implementations to run as

fast as possible but also makes it easier to avoid deadlock in data passing operations

Jumco 4

between transputers.

Router
- 1 g ——
Routs
“Link 1 Link 3
Router 3 Router 6
Comp 2
Router 4 ' ’Roulor -

o]

Figure 2.2: Optimal Transputer Prog}amming Model
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2.6 Parallel ANSI C

Just as OCCAM 2 evolved from OCCAM, Parallel ANSI C evolved from an earlier
language developed by 3L Ltd. It is a superset of ANSI standard C, which in turn
standardized and improved upon Kernighan and Ritchie's C. Its additional features
allow for parallel processing on transputers using the CSP model. Parallel ANSI C

programs consist of one or more source files and an optional configuration source file.

These are described below.

2.6.1 Source Files

Parallel ANSI C source files are quite similar to ANSI C source files. They have the ¢

file extension usual for C programs. In addition, each must include a masn() function

returning an int. The similarities end there, however. lju_ring compi.la.tion, each

source file is either linked with the full or the reduced library of functions to produce

a linked unit process binary. (See Section 2.6.3 for a description of the compilation

procedure.) There must be one linked unit connected to the host in each Parallel C

progi‘am. Linked units connected to the host must be linked with the full library.
They may access the command line parameters argv and arge. Such ﬁnits may also

use the entire io library including such functions as printf and fgete. Other linked

units cannot ﬁse these functions.

Within e#ch source file, local synchronous and asynchronous processes can be
created and run at high or low priority. Parallel C allows for the creation of local
'soft’ channels for communic.ation and synchronization between these local processes
as in the CSP model. The get_param() function can be used to map a soft channel
onto a connection between two linked units defined in the interface statement in the
configuration source file of the implementation as described in Section 2.6.2. In the
case of programs consisting of more than one linked unit (or, equivalently, more than

one source file) the units can be connected for data communication. The units may
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also be configured to run on a network of transputers. The last two operations are

accomplished by means of configuration source files.

2.6.2 Configuration Source Files

Each multi-transputer implementation requires a configuration source file, These
files, which have the extension cfs, can be compiled and used with the linked unit
process binaries to produce an executable file for the entire implementation. Each
configuration source file contains C-like code that describes both the implementation’s
hardware (transputer) and software (linked unit process) configurations and the map-
ping between them. First of all, a description of the current transputer topology is
given. This includes the types of all the transputers used and the links that are con-
nected between them. Next, all the linked unit processes in the implementation a.nd
their parameters are given. The pa.rirneters are listed in a special interface statement
after the name of the linked unit. Input and output channels can be among these
parameters. These roughly correspond to transputer links and can be connected to-
gefher in the configuration source file. The memory requirements of each linked unit
must also be given. Optiona.lly, a memory ordering and the execution priority of the
unit .ca.n be added. Lastly, a process-to-processor mapping description is given. This
sirnply states which linked units run. on which transputers. In the general case, L
linked unit processes can be placed on P transputers. The only restriction is that two
connected processes cannot be placed on different transputers if there is no available

- connected link between the transputers for the processes to use for communication.

2.6.3 Program Compilation and Execution Processes

The compilation process for Parallel C programs is quite complicated. The following
is a simplified version of what occurs. First of all, each source {c) file must be

compiled using the icc command. The resulting transputer object code files are given
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the extension tco. Next, the linker program tlink resolves all external references in
these object files, It links the object files with the necessary libraries and produces
a single linked unit for each with extension lku. In the case of multi-transputer
programs, the network configurer icconf then compiles the configuration source file of
the implementation into a binary configuration data file having extension ¢fd. In the
last stage of compilation the implementation code is collected into a single bootable
binary file with extension btl. This is the job of icollect, the code collector. For single
transputer programs, icollect generates a bootable file by simply adding bootstrap
code to the single linked unit. However, in the case of multi-transputer programs, the
collector uses the information in the configuration data file to combine all linked units
into a bootable. In either case, the bootable contains all transputer executable code
and information for passing it to the transputers in the network. The iserver writes
the bootable file to the boot link of the root transputer and execution begins. In

Figure 2.3 there is a flow chart diagram of the compilation and execution processes.

2.7 Remarks

When complemented with a toolkit supplied by INMOS, the B008 containing T800
transputers programmed with Parallel C forms a complete parallel programming en-
vironment. Its greatest advantage is its flexibility. Its MIMD architecture dictates
that both data parallel and instructional parallel algorithmé can be implemented.
Another positive characteristic is its relative inexpensiveness. Its major disadvan- -
tage, on the other hand, is that a great deal of training and ba.ckground knowledge
is required to learn how to use it properly. Multi-transputer prégrarnming is a phal- |
lenging, complicated exercise even to an experienced sequential prog’rammer. Once

mastered, however, it can be used to efficiently program a wide variety of applications.
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Figure 2.3: Parallel C Compilation Process
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Chapter 3

Image Processing

3.1 Introduction

In this chapter we introduce image processing, concentrating as in Chapter 2 on the
areas needed to understand this thesis. Image processing has been undertaken for
nearly three quarters of a century. Computers were not used extensively for the task
before the 1960’s despite the fact that their .;.bility to execute instructions quickly on
a large amount of data made them well suited to it [9]. Image processing encompasses
areas such as image enhancement and pattern recognition. Image enhancement in-
volves the improvement of the quality of images for human observation. Its techniques
include histogram equalization, crispening and smoothing. Pattern recognition, on
the other hand, attempts to place visual patterns into one of many possible classes.
To do so, distinguishing features or measures are first extracted from each pattern.
These features are used to determine which class the pattern best fits. The fea-
tures can be either local or global. Qur work focuses on the two feature extraction
techniques of convolution and statistical moments.

‘The chapter proceeds as follows. First we describe how images are represented in
.computers. Image processing equipment is discussed in the next section. A section

about imagé processing systems comes next. We devote one section to each of the
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two feature extraction techniques implemented in our work, convolution and regular
moment extraction. Some remarks about the algorithms used in our work conclude

the chapter.

3.2 Digital Representation of Images

Images must be converted to digital form for storage and processing on computers.
This digitization occurs in two ways, spatially and in brightness, First, images must
be sampled at a finite number of points in space. Usually, this sampling is done on
square N X N grids where N is equivalent to a power of 2. Ea;ch sampled point is
referred to as an image pixel. The pixels are assigned a discrete intensity value called
a grey level which approximates the image brightness at that point. These values are
usually non-negative integers that range fromOtol —1 wifh_I again usually being
equal to a power of 2. The résolﬁtion of a digital image refers to the number of pixels
it has. The greater the number of pixels, the higher the resolution will be.

The resulting digital representation of the image is referred to as a grey level image.
Clearly, the greater the values of N and I, the more accurate the grey level image
will be. Howevef, as N and [ increase, the number of bits required to store the image
increases as N? log, I. In particular, the sto.ra.ge requirements for a 1024 x 1024 image
with 256 grey\.levels would be 1024 x 1024 x 8 bits or 1 Megabyte. This is acceptable
for storage ozi disk, but might be impossible for main memory storage in smaller
computers. More importantly, the processing time needed for most image processing

.te'chniques increases quadratically with the image size N. This may entail that the
system response time is too slow on some computers for large images. It is also
important to note that images with a relatively narrow dynamic range in intensity
‘values may not requife a large dynamic rangé of gfey levels. Figure 3.1 shows a
256 x 256 grey level image with 256 original grey levels. (The printed image has been

enlafged and may contain fewer grey levels.)
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Figure 3.1: A Grey Level Image

3.3 Image Processing Equipment

3.3.1 Cameras

Cameras convert the visual scene before them into an analogue TV signal such as the
RS-170. They use a two dimensional array of sensors which measure the brightness
of each part of the scene to produce frames of analogue voltage pulses. The frames
are stored in the camera’s frame gra.bbef. They are updated at least thirty times
a second. The information in the frames is modulated onto an analogue television
signal which is the output of the camera. Cameras that directly produce digital grey
level images also.exist. (See for example [22].) While usually quite expensive, they

serve to eliminate the need for the analogue to digital conversion of video signals

usually performed by digitizers.
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3.3.2 Digitizers

Digitizers convert the analogue voltage signals of image frames produced by most
cameras to grey level intensity values. Quantization errors (the difference between

the grey level and the actual brightness) usually occur in the process.

3.3.3 Monitors

Monitors are used to display video images. They take an analogue video signal and

output it to a raster screen.

3.4 Image Processing Systems

3.4.1 Need for Parallel Processing

Cameras usually produce at least thirty frames every second. Each frame in turn
consists of thousands or even hundreds of thousands .of pixels. Most image processing
techniques require operations to be performed on each of the pixels. For this reason,
real-time image processing is too computationally intensive for a standard, single
processor computer. The use of parallel processing seems to be the only way to

achieve real-time image processing.

 8.4.2 Our Multi-Transputer Based System

An IBM PS/2 Model 30 286 is the host computer for our image processing system. A
. CCD (Charge Coupled Device) camera is used to acquire images. It is connected to
the MATROX PIP 1024 video digitizer board [20, 15] located in the host. The PIP
is used to instantaneously store a frame from the camera in digital form. The B008
motherboard is also inside the host. It is qonnecte_d to the host’s 16 bit AT bus by

way of the C012 communication device. The host file system is used to store images.
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A CHESTER monitor (not to be confused with the host monitor) also connects with
the bost and is used to display images.

The ALHAZEN Image Acquisition System, a program running on the host, gets-
images from the digitizer and writes them to the host file system. Parallel C programs
executing on the B008 acquire these images from' the resulting binary, 8-bit ASCII
files stored on the host. The programs then perform an image processing task on the
images and output the result to files on the host. ALHAZEN can also be used to
 display images on the monitor, both those stored in the PIP digitizer and those in
files on the host. The S708B device driver runs on the host. It controls the transfer
of data from the host to the root transputer of the B008. Our multi-transputer based

image processing system is shown in Figuré 3.2.

= : Chester
Menitor
cco P AT {1File
Camera .| Pigitizer] i Bus [] system
Host Host
Computer Monitor
co12
| | 1
BOOS
Parait C

Figure 3.2: Our Multi-Transputer Based Image Processing System
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3.5 Convolution

Convolution has been extensively used in many areas of image processing. It involves
the passing of a mask or filter over the image. The features enhanced by convolution
are local ones. This means that they exist independent of the rest of the image.
Different types of masks can be used to extract different kinds of features. Some image
features extractable using convolution are lines, edges and points. Two commonly
used masks are the Laplacian and the Sobel. The convolution of two discrete two
dimensional functions f and g is defined to be

M-1N-1

fe(@,9) * ge(z,9) = D 3 fe(m,n)gelz —m,y —n) (3.1)

m=C n=0

.for z=0..M—1and y =0..N ~ 1, where f, and ¢, are extended versions of the
functions f and g, with additional zeros added outside the .chlqma.i_n of the functions
so that the convolution operation can be performed.

The rea,dér can verify by examining Equation 3.1 that convolution requires many
multiplications and additions to be performed. For real-time applications, the proce-
dure may be computationally too intensive for a normal single processor computer.
Oné approach [3] involves using the Fast Fourier Transform (FFT) to compute the
Fourier transforms of f. and g., multiplying the transformed functions and taking the
inverse tra.nsfdrm of the result to get the convolved function. Qur approach to the -

problem is to spread the computation required over many processors.

3.5.1 Algorithm

The convolution algorithm involves many multiplications and additions. It is shown
~in Figure 3.3. F is a two dimensional N; x N; matrix 'storing the intensity function
of the image. G is an M x M matrix storing the function of the mask. C is the two
dimensional Ny x N, array storing the values of the convolved imnage function. It is

assumed that floor M /2 zero pixels have been added around the edgé of F.
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CONVOL(F,Ny,N:,G, M, ()
fort=0.N; -1
for 31 =0..N;—1

C(i,5)=0

fork=0.M~-1
forl=0.M-1

Cli,7)+ = F(s + k,j + DG(k, 1)

end for

end for

end for
end for

END

Figure 3.3: Convolution Algorithin

3.6 Moments

Statistical moments have also been widely used in image analysis. They are among
the most significant of global image features. Many important geometric attributes
of an image can be determined from its moments. Among these are its mass, spread
_ and centre of inertia. Papoulis’ uniqueness theorem {18] has established that no two
images can have the same set of moments. This property ensures that moments are
effective as a means of distinguishing among patterns. In addition, object features
called moment invariants, which do not change if a geometric operation (as defined
in Section 3.6.1) is performed on the object, can be derived from moments. Moments
are therefore a valuable tool for image analysis. The formula for calculating mgyz, the
(K, L)th regular moment of a discrete two dimensional function f(z, j),i' =1.N,7=
1.Nis

N N
mrL =, 9. 1 i f(,5) (3.2)

i=1 j=1
Central moments have also been frequently used in image processing. They can

be derived from the regular moments of an image or can be calculated directly using
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the formula

N N .
pre =3y 3 (i —D)X([G -9 fG,7) (3.3)
=1 7=1
with
- T | S Mn
T=—, y=—.
Moo gg

From Equation 3.2 it can be seen that moment calculation also requires a large
number of multiplications and additions. This entails that it is a slow process on most
sequential computers. There are at least two approaches to resolving this dilemma.
The first is to treat the image as a representation of a single object and to calculate
the moments of its boundary. Research indicates that much of the information en-
coded in an object’s moments originates in the boundary areas of the object. It is
therefore legitimate to calculate moment information only abbut the object boundary.
Calculation of the moments of an object boundary is usually less computationally in-
tensive than calculation of an image’s overall moments. Images are treated as binary
digital representations of a single object. The object’s boundary is determined. To
calculate the moments of the boundary, a special mathematical or geometrical tech-
nique is usually used. For example, Leu [16} first splits the object into triangles. The
moments of t\he triangles are then calculated. The overall object moments are then
calculated usi.ng the triangle moments. Another method is used by Li and Shen {14].
They propose. using Green’s theorem to calculate the moments along the boundary
of the object. The other approach to moment calculation is to find clever parallel
algorithms to calculate the overall image moments on many processors. This is our

approach in this thesis.

3.6.1 Moment Invariants

An object feature is said to be invariant if it does not change when the object un-

dergoes at least one of the geometric operations of scaling, rotation, reflection or
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translation. In 1961, Hu [12] proposed a set of invariant features based on moments.
He derived six moment invariants using algebraic invariants from regular moments.
They have been used in experiments to recognize planes [8] and ships [5]. In general,
moment invariants are derivable from the regular moments of an image. In addition
to their computatidnal intensity, they have the drawback of Being relatively noise
sensitive. Many other moment invariants have been suggested besides Hu’s. They
have varying degrees of discrimination ability and noise sensitivity. Among these are
Zernike moment invariants [24| and Bahmieh moment invariants [1]. For more infor-

mation about moment invariants, the reader should consult the comparative study

presented by Belkasim, Shridhar and Ahmadi [2].

3.6.2 Algorithms

There are eight algorithms for regular moment calculation used in our work. The most
obvious way to calculate morents is the straightforward algorithm [7]. Figure 3.4
shows this algorithm for calculating the first 16 moments. In the moment algorithms,
F is again the Ny x N, matrix containing thé image intensity function. misthed x4
matrix containing the image morments.

Because 2N? exponentiations are needed to compute each moment, this algorithm
is quite inefficient. An algorithm that avoids these calculations should be better.
Notice that the column coefficient monomials ;' can be calculated using 1 In

particular,

it =g | (3.4)

Reeves’ coefficient storage algorithm [23] exploits this fact. The idea here is to cre-
~ate four Ny x Nj arrays C(1),{ = 0..3 of column coefficient monomials using equation
- 3.4. These are then used to calculate the moments. Figure 3.5 shows the coefficient

storage algorithm for the calculation of an image’s first 16 regular moments.
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STRAIGHT(F, N-l,Ng,m)
for k =0.3
for{=10.3
Me = 0
for1=0..N; -1
forj=0.N—-1
m+ = (1 L)¥G + 1)} F(, )
end for
end for
end for

end for
END

Figure 3.4: Straightforward Algorithm for Moment Calculation

One drawback of the coeflicient storage algoritﬁm is thé.t the products of image .
elements F'(i,7),i = 0..Ny —.l,j = 0..N;—1 and coefficients ;u'_e repeatedly calculated
in the final stage of the algorithm. We can solve this problem by incorporating the
image values in the four coefficient arrays. We call the resulting algorithm column |
product storage. The column broducf. storage algorithm is shov}n in Figure 3.6.

There are two main problems with the storage algorithms. First, to process an |
N x N image, the storage aira.ys require 8N? bytes, a great deal of memory for
large values of N. In addition, O(N?) multiplications would be needed to execute the
algorithms on such an image. Multiplications are relatively computationally expensive
for small VLSI processors. ‘

The double summation in Equation 3.2 can be split into two separate summations.

Equation 3.5 gives the resulting equation for the calculation of mxry.

N N N
miL =3 4% 3, 5L f(3,7) =) i RMy (3.5)
=1 j=1 =1

where

N
RMy; =5 5% £(3,5)

i=1

29




COE(F, Ny, N2, m)
for:=0.N; -1
forj=0..N; -1
C(0,4,5) =1
end for
fori=1.13
forj=0.N; -1
end for
end for
end for

for {=0..3
fork=0.3
my = 0 :
fori=0.N; -1
forj=0..N; -1
Mt = C(I,t,j)F(t,])
Clls,j)x=1+1
end for
end for
end for

end for
END

Figure 3.5: Coefficient Storage Algorithm for Moment Calculation
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COL(F, NI,Nz,m)
 fori=0..N;-1
forj=0.N—-1
C(0,4,5) = F(i,3)
end for
forli=1.3
' for 3 =0..N; -1
end for
end for
end for

for{=10.3
for k=0..3
mgr = 0 )
fort=0.Ny -1
forj=0.N;-1

mu+ = C(1,7,5)
C(l,4,7)y=1+1
end for
end for '
end for
end for

END

Figure 3.6: Column Product Storage Algorithm for Moment Calculation
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The calculation of the (K, L)th moment is thus split into two steps. First, the Lth |
one dimensional moment RMf; of each image row is calculated. These row moments
are then used to calculate the (K, L)th overall two dimensional moment -mKL. This
is not unlike using the one dimensional Fourier transform to calculate the transform
- of a two dimeﬁsiona.l function. The next thfee algorithms all use this technique to
solve the problems associated with the storage algorithms. |

We have created an algorithm similar {o the storage algorithms that uses the above
two step moment calculation technique. We have called it the add and multiply |
algorithm because addition and multiplication alternate in the process of moment
calculation. Figure 3.7 shows the one dimensional add and multiply algorithm for
the calculation of the first four row moments of a two dimensional discrete Ny x N3

function F. The moments are stored in M.

1DADDANDMU(F, Ny, Ny of fset, M)
fori=0.N —1
for 1 =0.3
ML) =0
forj=0.N; -1
M(I,£)+_= F(z,7)
F(i,5)x=(j +of fset + 1)
end for
end for
end for

END

Pigure 3.7: One Dimensional Add and Multiply Algorithm for Moment Calculation

The two dimensional add and multipiy algorithm for the calculation of the first
sixteen overall image moments of an Ny x N; image with intensity function F' is

equivalent to

1DADDANDMU(F, Ny, N2,0, RM); LDADDANDMU(RM, 4, N,,0,m)

Although it has relatively small memory requirements, this algorithm still requires

32



N? + N multiplications to calculate each moment of an N x N image. It would be
preferable that an algorithm use only additions to calculate moments. Budrikis and
Hatamian have proposed an algorithm for regular moment calculation that does so
[4, 10]. The algorithm uses recurrences to build up higher order moments from lower
ones. To calculate the first 16 moments of an N X N image, it only requires 8N?+32N
additions. Figure 3.8 gives the pseudo code for this recursive algorithm. Again the
first four one dimensional moments of the rows of a two dimensional N; x N, image

function F are calculated and stored in M.

1DRECURSE(F, Ny, N2, M)
forz=0.N; —1

MO=M1=M2=M3=10

PREVM1 = PREVM2 =10

for j=0..N; -1
MO+ = F(3, N, — 1 -3)
Ml4+ = MO
M2+ =M1+ PREVM1
M3+ =M2+ M2+ PREVM2 — M1

PREVM1 =M1
PREVM2 = M2
end for
M(0,3) = MO
M(1,%) = M1
M(2,£) = M2
M(3,i) = M3
end for

END

Figure 3.8: One Dimensional Recursive Algorithm for Moment Calculation

As is the case with the two dimensional add and multiply algorithm, the two

- dimensional recursive algorithm is equivalent to
\DRECURSE(F, Ny, Ny, RM); IDRECURSE(RM, 4, N1, m)

Chen [7] has proposed another regular moment extraction algorithm that uses
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only additions. He calls it the partial sum algorithm. The algorithm also uses lower
order moments to calculate higher order ones. The technique employed here is to
build up higher order moments by repeatedly partially summing over 16_wer order
moments. To calculate each row moment, each pixel is added to the pixel before it.
Next each pixel is added to the pixel two before it. This process continues with the
distance between added pixels doubling at each iteration until the distance is equal
to half the image width. In this way, O(N?log, N) additions are required to calculate
each set of row moments of an N X N image except the last. They may be calculated
by simply summing the previous values of the intensity function F. As with the
previous two algorithms, overall moments can be calculated using two applications
of this technique. The partial sum algorithm for the calculation of the first four row
moments of a two dimensional Ny x N, function F' is gi;\ren in Figure 3.9.

In addition to the two dimensional add and multiply, recursive and partial sum
overall moment extraction algorithms, six additional two dimensional algorithms can
be created. To do so, the one dimensional algorithms are combined in pairs with
one algorithm calculating the row moments and the other calculating the oﬁera.ll
moments. Only two of these hybrid algorithms will be used in our research. Both
use the recursive algorithm to calculate the row moments. The first ﬁses the add and
multiply algorithm to calculate the overall moments. The other uses the partial sum
algorithm to do so. The first will be referreci to as the recursive/add and multiply
hybrid, the other as the recursive/partial sum hybrid.

3.7 | Remarks

The convolution algorithm requires M2N? floating point multiplications and addi-
tions. Especially for large mask sizes M, we anticipate that it will have a slow single
transputer implementation. We also intend te implement the straightforward, coef-

ficient storage, column product storage algorithms and the two dimensional add and
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1DPARSUM(F, Ny, Ny, M)

n = log, N3 '
fori=0.N; -1
forl=10.2

for indez = 0.n -1
of fset = 2indes
for j =0.N;—1—of fset
F(i,7)+ = F(¢,7 + of fset)
end for
end for
if I # 2 then
M(l,1) = F(1,0)
end if
end for
firstOrder MomentSum = F(i,0)
for j =0.Ny; -2 '
F(i,j)+=F(i,j +1)
end for :
M(2,i) = F(3,0)
fOI‘j = L.Nz -1
F(i,0)+ = F(i,5)
end for
M(3,3) = 3F(,0) + M(2,2) — firstOrder MomeniSum
end for ' '
END

Figure 3.9: One Dimensional Partial Sum Algorithm for Moment Calculation
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rﬁultiply, recursive, and partial sum algorithms on a single transputer. Of these six
algorithms, only the recursive, partial sum, and add and multiply algorithms seem
to hold much promise. The straightforward a.lgoritilrn requires too many exponenti-
ations to be efficient. The memory requirements of the two storage algorithms are
prohibitive. Two hybrid algorithms will also be implemented for analysis purposes,

as has been stated.
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Chapter 4

Single Transputer

Implementations

4.1 Introduction

Due to the large number of single processor algorithms used in our work, the single
transputer implementations are quite extensive. In particular, nine of the thirteen
single process algorithms mentioned in Chapter 3 have been implemented on a single
transputer using Parallel C. Our goals in doing so are as follows: 1) to gain familiarity
with developing programs in Parallel C on transputers, including, among other things,
learning about the compilation process, creating makefiles and configuring source
programs to run on transputers; 2} in the case of regular monients, to find the fastest
algorithms for parallelization; 3) to create base code from which we could develop the
multi-transputer implementations later; and 4) to develop straightforward correct
implementations in order to assure ourselves that those moré complicated multi-
transputer implementations are correct.

In this chapter, we first describe the technique we have used to program the single
transputer. A section devoted to the single transputer convolution implementation

comes next. Timing results and analysis for the eight regular moment programs are
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presented next. Some remarks conclude the chapter.

4.2 Programming Technique

The single transputer programs have been compiled and executed on the root T800
transputer of the B008 motherboard. All single transputef programs have been imple-
mented as Parallel C programs which use none of the parallel features of the language.
In particular, no processes are allocated or run, no channels are used and no message -
passing is performed. With only minor modifications, these programs could be com-
piled and run on a standard computer architecture with a standard C compiler such
as a Sun 4 running ANSI C under UNIX. Each program performs its computation on
the image and outputs the result (a convolved binary image in the case of convolution,
sixteen moments in the case of regular moments) to files on the host. The time taken

for computation alone is then printed on the host monitor.

4.3 Convolution

The convolution algorithm presented in Secfion 3.5.1 has been implemented on a
“single transputer using Parallel C. Both the image and mask are acquired from files
on the host. The image pixels are stored as single byte Parallel C char data types.
The mask elements are stored as float data types. In Parallel C these are implemented
as 32 bit IEEE floating point numbers. To maintain full flexibility for convolving an
arbitrary sized image and with an arbitrary sized mask, the mask and image are stored
in dynamically allocated buffers rather than in static Parallel C arrays. Offsets into
these buffers are maintained in order to reduce the time needed to reference elements.

Due to the large number of multiplica.ti'ons and additions needed, the convolution
algorithm runs relatively slowly. The program has been run on images with dimen-

sions equal to powers of two from 64 to 1024 for four different sized real masks. Table
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4.1 shows all the execution times in seconds. N represents the image size, M the

mask size.
M|N 64 128 | 256 | 512 | 1024
3 0.3239 | 1.293 | 5.166 | 20.65 | 82.61
5 0.7338 | 2.934 | 11.73 | 46.93 | 187.7
7 1.33 |5.325]21.31 | 8524 | 341
13 4,237 | 16.99 | 68.02 | 272.2 | 1098

Table 4.1: Single Transputer Convolution Timing Results in Seconds

Figure 4.1 gives a plot of the execution time against the number of image pixels for
the four different mask sizes. The execution time increases linearly with the number of
image pikels (quadratically with image size N'). A graph of the convolution execution
times as the mask size increases for the five different sized images is given in Figure
4.2, The reader can verify that the times increase slightly less than linearly with the
number of mask elements by examining Table 4.1. This is due to the fact that the
multiplications and additions involved in convolution must be performed not only
on the image pixels but also on the border of zeros added around the image. The
arithmetic operations on zero element values seem to be slightly faster than arithmetic
with any other value in Parallel C on thé TB800 transputer. _Furthermore, the number

‘of additions required to maintain the buffer offsets increases less than .Iinearly with
the number of mask elements. We have modified the convolution program to accept
integer masks. Not surprisingly, the execution times are faster than those achieved
with floating point masks, since integer arithmetic operations are faster than floating

peint ones.

4.4 Regular Moments

The six pure and two of the hybrid moment extraction algoriﬁhms described in Sec-
tion 3.6.2 have also been implemented on a single transputer. As is the case with

the convolution implementation, the images are acquired from host files and stored
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in buffers of Parallel C char types. Offsets into these buffers are again maintained
during execution of the programs. The first sixteen moments are found by all the
implementa.tions.. They are calculated as Parallel C double types. These are imple-
mented as 64 bit IEEE double precision floating point numbers, The moments are
printed to a host file at the end of each implementation. Each program was run on
the same five image sizes as the convolution program. Table 4.2 shows the timing
results in seconds. N is the image size. IS M indicates there was insufficient memory

to run the program on the image size in question.

algorithm | N 64 128 256 | 512 [ 1024
straightforward 21.27 85,6 | 342.8 | 1373 | 5495

coefficient 1.069 4.26 1701 |ISM |ISM
column products | 0.7935 | 3.158 | 12.6 |ISM | ISM
recursive 0.05888 | 0.2249 | 0.8803 | 3.484 [ 13.86
add and multiply | 0.1648 | 0.6634 | 2.484 | 9.839 | 39.17
partial sum - 0.4648 | 2.08 | 9.322 | 41.57 | 184

recurse/multiply | 0.06522 | 2.375 ;| 0.9055 | 3.534 { 13.96
recurse/partial 0.08723 | 0.2921 | 1.036 | 3.839 | 14.66

Table 4.2: Single Transputer Regular Moment Timing Results in Seconds

Figure 4.3 contains a graph of the execution times of the straightforward algo-
rithm plotted against the number of image pixels. The execution time increases
approximately linearly with the number of image pixels. Due to the large number
of additions, multiplications and exponent calculations required, this is by far the
slowest of the single transputer implementations. |

Similar graphs of execution times versus number of image pixels for the coefficient
Qtorage and column product programs are given in Figure 4.4. Again, linear increases
in the execution times with the number of pixels are shown. 'fhere was insufficient
memory for these two programs to be run on images greater than 256 x 256. The
timing results for the two dimensional partial sum, add and multiply and recursive
algorithm implementations are plotted in Figure 4.5. The times for the recursive and

the add and multiply implementations increase slightly less than linearly with the
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number of image pixels. However, the execution time of the partial sum implementa-
“tion increases more than linearly with the number of pixels. The reader can confirm
these observations by referring to Table 4.2 .These three progra.tﬁs are in fact the
fastest single transputer moment implementations. _
In order to allow speedup and efficiency analyses to be performed in Chapter 5 on
two of the multi-transputer progra.m#, the recursive/partial sum and recursive/add
and multiply hybrid algorithms have also been implemented. Figure 4.6 contains
graphs of the execution times of these two single transputer hybrid programs. The
execution times here increase slightly less than linearly. This can confirmed by refer-
ring to Table 4.2. _
. We believe that the timing results of the four hybrid algorithms not implemented
would fall between those of the two pure programs involved. A final observation is

that when the data type of the moments is changed from double to single precision
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in the recursive program, a significant decrease in execution times results. We expect
that similar reductions would occur if single precision moments were calculated in the
other programs. Some loss of accuracy in the moments extracted results when this is

done, however.

4.5 Remarks

All the single transputer programs were compiled using icconf and a configuration
source file. Alternatively, they can be compiled without a configuration source file
using the single transputer option of icollect. (See Section 2.6.3 for a description of the
transputer compilation procedure.) The latter method produces significantly faster
running programs. We believe that is this due to the fact that less general code is

produced if no parallel programming features are needed. Qur method of comj:ilation
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allows fairly accurate rnulti-transputer models to bé presented in Chapter 6 since
the rﬁulti-transputer programs need to be compiled in the most general parallel way.
The single transputer implementations themselves are quite extensive. However, we
believe the time spent programming them was worthwhile since they provide a good

foundation for the multi-transputer programs presented next.
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Chapter 5

Multi—Transputer

Implementations

5.1 Introduction

Four multi-transputer implementations of both convolution and regular moments have
been realized. Our goals in doing so are lofti-er than they are in the single transputer
case. Certainly we wish to create fast programs for performing convolution and for
calculating regular moments on the B008 using Parallel C. In the process, however,
we also wish to determine and investigate the issues related to image processing on
transputers in general. In particular, we want to discover useful principles and to cre-
ate strategies for implementing more general image processing applications efficiently
on multiple transputers.

This chapter begins with 2 descriptibn of the programming technique we have
used in the multi-transputer case. Next, descriptions of the issues relevant {o image
processing on transputers and our strategies for dealing with them are presented. A
section describing the multi-transputer imﬁlementations for convolution is followed
by a similar section that gives the details of the regular moment multi-transputer

implementations. Analysis of the implementationsis given next. Asusual, the chapter
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ends with some concluding remarks.

5.2 Programming Technique

The entire BOO8 motherboard is used in the multi-transputer implementations. (See
Section 2.5.7 for a full description of the B008 and its operation.) Qur method of
programming here is quite different from that used in the single transputer imple-
mentations. In the single transputer case, a Parallel C program running on the root
transputer is not only responsible for controlling input and output to the host but
also for all computations needed to perform the image processing tasks. The other
transputers are not used. However, in our multi-transputer implementations, all nine
transputers may be used. Parallel C is again used. In this case, however, one separate
asynchronous linked unit process executes on each transputer used. The root trans-
puter is still responsible for data tra.nsfefs to and from the hosf. All of the necessary
computations are executed on the other eight transputers.

Each transputer has been programmed using the optimal transputer programming
method discussed in Section 2.5.9. All local channels and processes are declared as
global variables in the source file for each transputer. The main() function of each
source file is used to allocate channels, allocate and run processes and to time the
implementatio;l. Processes are run asynchronously in parallel using the ProcRun()
function. A channel is created for communication between each pair of processes
that communicate in each direction they communicate. Aside from channels and
processes, global data structures have been kept to a minimum. In this way, the
problems of mutual exclusion are avoided that usually occur when more than one
concurrent process accesses the same data. As in Hoare’s model, each process keeps
its own. copy of data. This data can be sent to another process using message passing
on a local channel. Configuration source files (see Section 2.6.2) are used to map the

linked units to the appropriate transputer on the B008 for execution.
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5.3 General Issues and Strategies

When we began this part of the research, we were confronted with many interest-
ing and cha.ilenging questions. Among these were: “What parallelization techniques
should be used?”, “How should data be passed?”, “What moment algorithm should
be chosen?” and “What topologies are best for image processing?”. For each question,
a number of solutions are possible. One approach that we considered was simply to
select one possible solution to each problem ahd to design and program an implemen-
tation. We could find the best implementations by simply re;-peating that process for
all reasonable possibilities.

To have gone through with the above plan would have, of course, been foolhardy.
For one thing, we would have been obliged to consider a bewildering number of
implementations. Given the possible existence of other overlooked implementations,
an equally serious defect with the idea is that ﬁe would have had no theoretical
justification for claiming that we had indeed found the best implementations. All
things considered, we decided on the contrary that we needed to examine each relevant
issue separately and use theoretical reasoning in order to obtain the best strategy or .
strategies to deal with it. We could then design our impleménta.tions using those
strategies. Using this method drastically reduced the number of implementations we
had to consider. We also feel that this method gives us some scientific justification
for believing that our implementations are superior. Indeed, we believe this approach
has led to the design of efficient implementations.

Various parallel techniques have been discussed in Section 2.3. Data parallelism
is one of the main techniques described. Under this scheme, many processors execute
the same sequence of instructions on separate parts of a large amount of data. Image
processing techniques generally require that the same operation be performed on a
large number of pixels.. For this reason, we have decided to focus on data parallel

methods in our implementations. However, we realize that we might also have to
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use more complicated instructional parallel techniques as well. In the upcoming
gections we describe the following issues specific to multi-transputer image processing:
initial data pass, computational algorithm selection, accumulation of final }esults and
topology selection. For each issue, we relate the strategy we have decided upon to

deal with it, and give our justification for that decision.

5.3.1 Initial Data Pass

Under the data parallel model, each transputer is responsible for processing a part of
the image. These image parts might be passed djrectiy to the transputers using the
direct link access scheme suggested by Kille, Ahlers and Schneider [13]. In the direct
link access system, one link of each transputer is permanently connected to a specially
designed frame grabber transputer which directly passes each transputer its part of
the image. Because these links cannot be nsed to configure the network, direct link
access reduces the flexibility of the image processing system. Alternatively, the links
of the frame grabber might be connected into the crossbar. The other transputers’
links could then be used for network reconﬁgﬁra.tion as usual. Qur approach is closest
to the second option.

The BO08 root transputer acquires the images from files on the host. With a view
to having a balanced éomputationa.l load on the network and a symmetric computa-
tional model, we decided that th.e root transputer would not be used for computational

purposes. It is used as a sort of frame grabber transputer that gets images from the
| host and passes computational results back. It is also responsible for passing the
image segments to the computational transputers for processing. There are two main
issues to resolve about this initial data pass. The first is how. to split up the im-
age. The second issue is which algorithm to use to pass the image segments to the

transputers.
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Splitting the Image

- There are three options for splitting the image. It can be done row by row, column by
column or section by section. Convolution can be done equally well on image rows,
columns or sections. However, regular moments can be calculated by independently
calculating row moments or column moments, and then using these moments to
calculate the overall image moments (see Section 3.6.2). This indicates a row or
column oriented distribution scheme. However, ALHAZEN stores its images row
by row, not column by column. This last factor entails row by row transfer is the
best way to pass the data. Therefore, in our implementations each computational

transputer is passed and is responsible for processing several rows of the image.

Data PaSsihg Algorithm Selection

There are at leé.st two general algorithmis for passing the image rows. The first might
be called 'grouped’. In the grouped a.pproa.ch, the root simultaneously passes all the
rows needed down each network iaath all at once, and every transputer on a path keeps
only the rows for which it is responsible, passing the remainder down the path. The
second might be called ‘packet’. Under this scheme, the root simultaneously passes
the rows needed down each path as separate packets, one after another. The packet
for the last transputer in line is passed first, the packet for the second last second and
so on until the packet for the first transputer is passed last. Each transputer passes
all the packets needed fﬁrther down the path and then receives and keeps its own
packet.

For the purpose of passing the image rows, two subtopologies are used in our
implementations. The first one is the pipeline structure shown in Figure 5.1. In this
simple topology, the root is connected to one or more transputers in a chain. Timing
results for both data passing algorithms for a pipeline with four transputers besides

" the root are given in Figure 5.2. The image pixels are distributed evenly among the
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four transputers. There is insufficient memory to use the grouped method to pass the

largest image. Clearly the packet algorithm is superior.

Root

Figure 5.1: Pipeline Subtopology

The second subtopology is treelike, as shown in Figure 5.3. Here, the root is
connected to arouter transputer which in turn is connected to three more transputers.
- The timing results for the grouped and packet algorithms for this topology are given in

Figure 5.4. The image pixels are again distributed evenly among the four transputers.

The packet method is once again superior.

Based on the results in Figure 5.2 and in Figure 5.4, we have chosen the packet
method as the initial data passing algorithm for our implementations. An additional
‘advantage to using the packet algorithm is that larger images can be processed with
it than can be processed with the grouped algorithm.

Clearly other algérithms exist for the initial data pass. In particular, the abové

two basic algorithms can be combined for some networks. For example, in a network
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Figure 5.4: 'I‘ree Data Passing Timing Results

using the second subtopology the rows for the three leaf transputers might be pﬁssed
as a group followed by the rows for the router. However, it is our conjecture that the
packet method is the optimal algorithm for the initial data pass for all topologies in
all networks. The fact that IN MOS has chosen a packet scheme for its virtual channel
data passing sttem on the T9000 gives some support to this hypothesis.

5.3.2. Computational Algorithm Selection

There are two ways to design parallel computational algorithms. One can either base
them on existing single processor algorithms or create new parallel algorithms which
have no relation to any known single processor algorithm. We have chosen the former
technique, since it is much simpler. In particular, we have considered both data and
~ instructional parallel versions of the sequential algorithms found in Chapter 3 and

combinations of both. This has enabled us to convert actual code from the single
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transputer implementations for use in these multi-transputer programs.

5.3.3 .Accur'nulation of Final Reéults

Sometimes the computational stage of a multi-transputer program ends with the final
results either in the root transputer or in the one connected to it. Also, in the direct
link access model described in Section 5.3.1, the final results can be passed back to the
frame grabber (root) directly. In other situations however, the final results must be
- passed back through the network to the root for output on the host. This process is
the inverse of the initial data pass. There are again various ways to execute this data
pass. Each one has an analogue initial data pass algorithm. For this reé.son, we have
decided to use the same packet algorithm for the final data pass. In particular, each
computational transputer passes its own results back towards the root and then passes
back the results of those farther down its path. The root simultaneously gathers the

packets from each network path ending at it.

5.3.4 Topology Selection

If we had chosen to use transputers to determine the best paraliel implementatiohs of
moments and convolution for common parallel prdceséing topologies, then we clearly
would have been obliged to choose a topolo-gy first and then design the data passing
and computational algorithms of the implementation with that topology in mind.
However, we decided to find the best implementa.tions. for transputers themselves.
This gives us freedom to choose the best algorithms independent of topology. We
choose topologies only after algorithm selection as a way of enabling and optimizing
" a potential implementation. In particular, we choose topologies to make possible all
necessary data communication and to minimize the time taken for it. This data com-
munication can be done for the initial data pass, computational data communication

or for the accumulation of final results.
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In order to minimize the time taken for data communication a topology must be
selected that has the shortest possible paths between transputers whiéh communicate
a lot of data or which communicate frequently. This is not always easy to accomplish,
since sormetimes many transputers must communicate a great deal and there are only
four communication links available on each transputer. In a.ddition,. the optimal
topology for each of the three communication steps may not be the same and a
compromise topology may have to be created. Fortunately, this was never necessary in
our work because the best topology for each of the .steps was always the same. Because
of this and because it is theoretically possible to reconfigure transputer networks
dynamically we have decided that the issue of designing compromise topologies is not

worth investigating in this thesis.

5.4 Convolution

In this section, we describe the multi-transputer programs we have created for per-
forming convolution. The purely local nature of convolution entailed that it was less
challenging a process than regular moments to implement on transputers. Howéver,
there were still issues about the initial data pass and topology selection to be in-
vestigated. In the next section we describe the reasoning that led to the design of
the convolutién implementations. Detailed descriptions and timing results for the

implementations follow.

5.4.1 Design of the Implementations

Keeping in mind the general strategies described in Section 5.3, we have designed
and implemented four multi-transputer convolution programs. We have created pure
data parallel programs with each computational transputer receiving and processing
several rows of the image. In each implementation, the frame grabber root transputer

uses the packet algorithm to pass the image rows and the mask. The same convolution
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algorithm has been implemented in all four programs as a data parallel computational -
process on all the computational transputers used. The packet method is again used
to pass the rows of the convolved image back to the root in all the programs.' Two
pipeline convolution implementations investigate an issue related to the initial data
pass. We have investigated the issue of topology selection by implementing ring and
tree versions of one of the two pipeline programs. As in the single transputer case,
all the programs use a mask consisting of floating point values and store the image

pixels in buffers of char data types.

5.4.2 Pipeline Implementations

In the single transputer version of convolution, the image is first padded with a
border of éero pixels. In the multi-transputer programs, the borders can either be
added in the computational transputers once the image row;s have arrived or can be
added in the root before the image rows are passed. Cok [6] has suggested another
approach of initially passing only the rows ea.ch.tra.nsputer is responsible for and
having the transputers exchange the bordering rows before beginning convolution.
We have implemented pipeline versions of convolution using the first two schemes.
The pipeline topology with eight computational transputers is shown in Figure 5.5.
Surprisingly, the more elegant first option proved to be no better than the second
in spite of the fact that it requires less data to be passed. We believe that the extra
overhead involved in passing the correct rows to each transputer in this case more
than makes up for the time saved in the data passes. Timing results for various mask
sizes for a 512 x 512 image for the second pipeline implementation are given in Figure
5.6. The times decrease dramatically as the number of processdrs increases from two
to four to eight. The corresponding speedup graphs are given in Figure 5.7. The
speedups are close to linear for all mask sizes. Notice also that the speedups increase
as the mask size grows. Figure 5.8 shows the efficiency graphs for the second pipeline

implementation for the mask sizes on the same 512 x 512 image. These efficiencies
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are all reasonably close to one.

5.4.3 Ring Implementation

In an attempt to reduce the time taken for data communication, we have created
a ring version of the second pipeline implementation. The ring topology with eight
computational transputers is.shown in Figure 5.9,

The important feature of the ring implementation is that the root can distribute
image rows and collect convolved rows in two directions at once. This cuts the
maximum number of transputers on any one path to or from the root in half as
- compared to the pipeline version. Reductions in the time needed to distribute the
image and to return the convolved image to the host are realized. Pseudo code for

processor Py in the 8 transputer convolution ring program is given in Figure 5.10.

CONVOL is defined in Section 3.5.1.
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CONVOLSRINGP: _
get the image dimension N from P,
get the mask dimension M from P
get the M x M mask G from P,
get the zero padded image rows 3N/8 to N/2+ M — 2 F from P,
CONVOL(F,N/8,N,G,M,C)
send C to P '
END

Figure 5.10: Convolution Ring: Pseudo Code

The ring timing results for a 512 X 512 image are given in Figure 5.11. The results
are quite similar to those of the second pipeline implementation. The ring implemen-
tation is actually only slightly faster than pipeline version. Speedups for these timing
results are shown in Figure 5.12. The graphs are linear, as is the case with the pipeline
version. However, the épeedups are slightly greater, reflecting the improved timing
results. Figure 5.13 contains the corresponding efficiency graphs. Again, the graphs
are similar to the efficiency graphs for the pipeline version. However, the efficiencies

are slightly greater than the pipeline efficiencies.

5.4.4 Tree Implementation

With the redﬁction of communication time again in mind, we next converted the ring
irnplementa.tidn to an eight transputer tree implementation. The tree topology with
eight computational transputers is shown in Figﬁre 5.14. Processors P, and F; are
the routers. |

Although the maximum number of transputers on both paths from the root is
the same as it is for the ring topology, the maximum path length from the root is
shortened to three from four. However, in most cases the execution times for the eight
tra.nspﬁter tree are no better than the corresponding times for the eight transputer

ring. In fact, for a 13 x 13 convolution mask, the timing results are actually worse
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than the eight transputer pipeline results. Only when the program is run on a 3 x 3
mask on a 64 x 64 or a 128 x 128 image does the tree implementation run faster
than the ring. Figure 5.15 illustrates another interesting feature of the c;onvolution
implementations. This figure shows efficiency graphs of the eight transputer tree

implementation for various mask sizes. Clearly, efficiency increases as the image size

increases,
0.98
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Figure 5.15: Convolution Tree: Efficiency Graphs

5.5 Regular Moments

The global nature of regular moment calculation made it a more challenging image
processing technique to implement on transputers than convolution. It requires the
full flexibility and reconnectivity of the transputer model. In this section we give

‘descriptions and the timing results of our four multi-transputer implementations of
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regular moments. As with convolution, we first give a description of the design of the

implementations.

5.5.1 Design of the Implementations

In designing four regular moment implementations, we have again used the general
strategies we have developed. The frame grabber transputer again passes packets of
image rows to each computational transputer for processing. The tree topology is used
for this initial data pass. The two dimensional recursive algorithm has the fastest sin-
gle transputer implementation. We therefore considered using a data ],;;a.rallel version
of the two dimensional recursive algorithm for moment calculation. Each transputer
might calculate the sixteen two dimensional moments for its image rows using this
algorithm. An instructional parallel algorithm could then be used to add those sep-
arate sets of moments to obtain the overall moments for th(.e entire image. However,
this technique does not work. The one dimensional recursive algorithm can éertainly
be used to calculate the row moments for each transputer’s image rows. However,
the one dimensional recursive algorithm cannot be used on these row moments to
calculate the overall two dimensional moments of the rows.

Undaunted, we realized that we could still use the one dimensional recursive al-
gorithm to calculate row moments for each transputer’s rows. We also noted that
the three algorithms with the fastest single transputer implementations (recursive,
add and multiply, and partial sum) share another property besides speed. Each one
separates the task. of moment calculation into first calculating the moments of each
image row and then using them to calculate the overall two dimensional image mo-
ments. We realized that we might exploit this in our implemeﬁtations. We therefore
have created three implementations whiéh all use a data paralle]l version of the one
dimensional recursive algorithm to calculate row moments on each computational

transputer. These moments are then used by instructional parallel versions of the
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three algorithms to calculate the overall image moments. We refer to each imple-
mentation according to the name of the instructional parallel algorithm used, namel;%
recursive, add and multiply, and partial sum. The fourth multi-transputer regular
moment implementation is an alternative version of the partial sum implementation.
In all four implementations, the instrﬁctional parallel algorithm places the image
moments in a transputer connected to the root. Additional transputer connections
have been added to the tree structure so that the necessary data passing during the
instructional parallel phase of the implementations can be accomplished. As is the
case with the single transputer regular moment implementations, the moments are

calculated as double precision numbers in the multi-transputer programs.

5.5.2 Recursive Implementation

The topology for the eight transputer version of the recursive implementation is given
in Figure 5.16. The routers in the tree are processors 7 and P;. The extra connec-
~ tions made create a pipeline out of the computational transputers. Once the row
moments have been calculated on each tra.néputer, the one dimensional recursive al-
gorithm is executed across the computational transputers as follows. " (See Figure |
3.8 for the pseudo code for the one dimensional recursive algorithm.) The rightmost
computational transputer (Pr) begins by executing the one dimensional recursive al-
gorithm on its row moments. Using the algorithm, P; determines not only the values
of the sixteen overall moments mgr, K =0..3,L =0..3 fbr its rows but also those of
- the middle eight overall moments prevmgyp, K = 1.2, L = 0..3 for the rows starting
at its second row. When the algorithm ends, P passes these 24 moments to the
transputer on its left, Pe. '

P; executes the one dimensional recursive algorithm on its own row moments with
MO = mop, M1 = myp, M2 = mar, M3 = mar, PREV M1 = prevmy, PREVM2 =
prevmar, I = 0..3. When this is completed; the resulting 24 moments are passed on

to Ps. This process continues down the pipeline of transputers. After each transputer
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Root

Figure 5.16: Eight Transputer Recursive Topology

has executed the algorithm, the overall moments for the part of the image starting at
its first row have been calculated. When the algorithm has executed on the leftmost |
transputer Py, the sixteen overall image moments have been calculated. At this time,
Py passes the image moments back to the root for output.

~ Figure 5.17 shows the timing results for various image sizes for the recursive im-
plementation. As might be expected, the execution times do decrease as the number
of transputers used increases. The speedup results corresponding to these execution
times are shown in Figure 5.18. In contrast with the convolution implementations,
these speedups are élearly less than linear. Figure 5.19 shows thé efficiency graphs of
the recursive impl;:menta.tion for the same image sizes. The efficiency of the imple-
mentation clearly increases as the image size grows. The rapid decline of the efficiency
of the implementation as the number of processors used increases is also evident. This

decline is due to the fact that increasing the number of transputers does reduce the
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time needed to calculate the row moments but actually increases the time taken to

calculate the overall moments. This is because during the overall moment calculation |
only one computational transputer is active at a time and adding transputers only
serves to increase the number of moment data passes required in this last instruc-
tional parallel stage of the computation. This is the biggest drawback of the recursive
implementation. Perhaps if all the computational transputers work together and at
once on calculating the overall moments a faster implementation would result. The

partial sum and add and multiply implementations attempt to make use of this idea.

0.5 5
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0.451 =4.5
.44 -4

| 1024x1024 image” |

5
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Figure 5.17: Recursive Timing Results

5.5.3 Partial Sum Implementations

It was necessary to augment the basic tree structure heavily for the eight transputer
partial sum implementation. P, and P; are the router transputers in the tree. The

following connections between computational transputers were made unless they were
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Figure 5.19: Recursive Efficiency Graphs

68




part of the basic tree structure. First of all, the transputers were joined into a
pipeline. Sccondly; with the exception of the third (P,) and fourth (P;) transputers,
each transputer was connected to one two before or after 1t Lastly, every transputer
was joined to the transputer four positions before or after it. The resulting topology

(shown in Figure 5.20) seems formidable indeed.

Root

- Figure 5.20: Eight Transput;:r Partial Sum Topology

In the instructional parallel part. of the partial sum implementation the one di-
mensional partial sum algorithm executes across the computational transputers. As
we explained in Section 3.6.2, a series of pairwise additions is performed in the inner
loop of the algorithm. First, each pixel is added to the preceding pixel. Then it is
added to the pixel two pixels before it. Next it is added to the pixel four before it,
and so on. After each addition, the distance between added pixels doubles until the
distance is half the width of the image.
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This is basically what occurs when the instructional phase of the partial sum im-
plementation executes. In this case, however, row moments are added together. The
row moments are spread out over many transputers. So the pairwise additions require
the transfer of row moments between transputers. In the eight transputer implemen-
tation, the first pairwise additions require each computational transputer (except the
first, leftmost transputer P,) to pass one moment to the processor preceding it. That
is why the pipeline topology is necessary. The next pairwise additions require two
moments to be sent, the additions after that four and so on. Hoﬁever, when the
width between the moments to be added exceeds the number of rows » processed on
each transputer, it becomes necessary for transputers separated by two to exchange
moments. The fourth transputer (P;) must act as a router for moment transfers -
between the third (P;) and fifth (P;) transputers because of lack of links. Similarly,
P, acts as a router between P; and Ps. For the last pairwiéé additions, t.ra.nsputers
receive r moments from the transputer four positions after them. The last two data
exchanges explain the need for the last connections described in the first paragraph
of this section.

The above series of pairwise additions is executed three times on the row moments. -
In this way, the first three overall moments corresponding to the row moments are
calculated. The fourth overall moment is then ca.lc;ilated. To do so, the row moments
are first addcél pairwise. Finally, the row moments are added up in a similar, but
simpler way than the above full series of pairwise additions. In order to calculate the
first sixteen overall image moments, the entire above process is repeated for all four
sets of row moments. The first transputer (FP;) collects the overall moments as they
are calculated.

We have also implemented an alternative version of this partial sum implementa-
tion. In this implementation, the partial sum process is done for all four sets of row

moments at once. This reduces the number of data transfers (if not the amount of
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data sent) by a factor of four. In spite of this reduction, this more elegant implemen-
tation is no faster than the simpler method. We attribute this to the larger overhead
in buffer management that it requires compared to the first method.

Figure 5.21 contains the timing results for the first partial sum implementation.
As with the recursive implementation, increasing the number of tra.nsputers results
in decreases in execution times for all image sizes. The times are all actually slightly
slower than those of the recursive implementation, however. The partial sum speedup
graphs are sirnilar to those of the recursive program. They are given in Figure 5.22.
These graphs are again clearly less than linear. The (;oi'responding efficiency graphs
~ are given in Figure 5.23. The reader should notice that this implementation is also
most efficient for larger images. Once more we see a quick decline in efficiency as the
number of transputers used grows. The reason for the decline is less obvious than
it was in the recursive case. Increasing the number of tra.ﬁsputers again decreases
the amount of time needed to calculate the row moments. It also decreases the time
needed to perform the additions required in the partial sum stage of the computation
which calculates the overall moments. However, the partial sum fechnique requires
a large amount of data communication when executed on more than one transputer.
As the number of transputers increases, this requirement increases dramatically. To
make matters worse, for the eight transputer program, routers (P3, P} are necessary
because of lack of links. This results in a communication bottleneck which further
slows down th.e last stage of the computation. The observed sublinear speedups and

decreasing efficiencies make sense in light of this information.

5.5.4 Add and Multiply Implementation

In the description of our design of the regular moment implementations, our disap-
pointment at the impossibility of a pure data parallel version of the two dimensional

recursive algorithm to calculate overall moments was expressed. We could not simply
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Figure 5.21: Partial Sum Timing Results
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Figure 5.22: Partial Sum Speedup Graphs
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Figure 5.23: Partial Sum Efficiency Graphs

use it to calculate the overall moments for each transputer’s rows and add the result-
ing sets of moments together to get the moments for the entire image. The add and
multiply algorithm, however, can be used in this way to arrive at the overall image
moments. The topology required is relatively simple compared to that needed for the
partial sum prbgram. The eight transputer version is shown in Figure 5.24. It is sim-
ply a tree structure with the fifth (P,) and seventh (Ps) computational transputers
also connected. Py and P; are again the router transputers.

| Once the row moments have been calculated in the add and multiply implemen-
tation, a data parallel version of the one dimensional add and multiply algorithm is
executed simultaneously on the row moments on each computational transputer. The
offset of the first row each transputer processes is used. When this has been done,
the last technique used to add each set of row moments in the partial sum implemen-

tations is used to add the sets of 16 moments. It is for this addition that the extra

73




Figure 5.24: Fight Transputer Add and Muitiply Topology

connection in the topology is needed. The first transputer (FP;) ends up with the
moments and passes them back to the root for host output. In Figure 5.25 pseudo
code is given for processor F; in the 8 transputer add and multiply implementation.
Both RECURSE and ADDANDMU are defined in Section 3.6.2.

In Figure 5.26 the add and multiply timing results for various image sizes can be
found. Again, as the number of processors increases, the times all decrease. Figure
5.27 shows the speedup graphs for these times. The reader can verify that these
graphs again flatten out as the number of processors increases. Efficiency graphs
for the image sizes are shown in Figure 5.28. The efficiency graphs also drop as the

number of transputers increases.
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ADDANDMUSP,
get the image dimension N from Py
get the image rows N/2 to 5N/8 —1 F from F,
1DRECURSE(F,N/8,N,RM)
I1DADDANDMU(RM, 4, N/8,N/2,m)
get 16 overall moments Pymom from Ps
fork=10..3
forl=10.3
mu+ = Psmomy
end for
end for _
get 16 overall moments Pgmom from Py
for k=0..3 '
forl=10.3
My+ = Pemomyy -
end for
end for
_ send 16 overall moments m to P,
END

~ Figure 5.25: Add and Multiply Pseudo Code
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76



512x512 image

| 1024x1024 image |

o™
06s]

0.61 \
0553 3 * 5 5 E; 8

number of processors

Figure 5.28: Add and Multiply Efficiency Graphs

5.6 Analysis of the Implementations

5.86.1 Convolution

It is most important to note that the convolution.implementa.tions all have close to
linear speedups. This is typical of local tech;iques with pure data parallel implemen-
tations which require no communication between processors during the computational
stage. Some observations about topology selection are also indicated. The transputer
topology is varied over the last three convolution implementations. The time needed
to pass the original and coﬁvolved images is partly determined by the topology used.
Yet the timigg results for these implementations are quite similar. We conclude from
this that for pure data parallel image processing algorithms implemented on the B008,
topology selection is relatively unimportant. However, for another transputer board

with more slots for transputers, topology selection may be more important, since the
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paths along which the image segments are passed may be longer.

Lastly, we present time complexity analysis of the computational stage of the im-

plementations. During the computational stage, ¥ ;M: floating point multiplications

and additions are executed on each of P processors. For an N processor array where
each processor is responsible for performing convolution on one row of the image, the
parallel asymptotic complexity of our convolution implementations will be O(NM?)

ﬂoa.ting point multiplications and additions.

5.6.2 Moments

In sharp contrast with the convolution implementations, our regular moment imple-
mentations suffer from flattening speedups and decreasing efficiencies as the number
of transputers increases. The global nature of moments entails that as the number of
processors used to calculate them increases, so too does the amount of communication
needed among the processors. It is this communication increase that has resulted in
the decreased efficiencies of our four and eight transputer moment implementations.
Ad_ditionally, although we did not vary topologies for our moment implementations,
we feel that the moment programs would be quite sensitive to changes in topology.
This is also clearly different from the convolution implementations.
In 19.90, Chen [7] proposed efficient paralle]l regular moment algorithms for both
linear and two dimensional proéessor arrays. The algorithm proposed for the linear
“array is the multi-transputer partial sum techrﬁque we have implemented. ¥or a
two dirﬁensiona.l array of processors, each of which is given a section of the image,
Chen recommends that the processors first collectively use the partial sum algorithm
to calculate the row moments and again use the partial sum procedure on these
moments to calculate the overall image moments. In a more recent article, Pan
[17] showed that because Chen forgot to take the time needed for data passing into
account, the theoretical timing analysis presented in his article is incorrect. In so

doing, Pan demonstrated that Chen’s two dimensional algorithm implemented on an
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- N'x N array of processors would have the same paralle] asymptotic time complexity of
O(N) as his one dimensional algorithm implemented on an N processor linear array
when calculating the regular moments of an N x N image.

The recursive implementation presénted in this chapter requires % double pre-
cision additions to calculate the row moments of an N x N image on an array of P
processors using the one dimensional recursive algorithm. It requires an additional
32N double precision additions and 24P double precision data transfers to calculate
fhe first 16 overall moments. In particular, for an array of N processors, the algo-
rithm requires 40N additions and 24N data transfers. Therefore, when implemented
on such an array, the algorithm clearly requires O(N) double precision additions and
data transfers.

The add and multiply algorithm, on the other hand, requires the same s%’ double
precision additions to calculate the row moments of an N x N image on an array
of P processors. In addition, 3%\-"— double precision multiplications and additions are
needed to calculate the first 16 overall moments of the image rows of each processor.
To add these up, it takes Ei‘_’__‘é, “19i16 = 16(P — 1) double precision data transfers
and 16logs additions. For an array of N processors, the add and multiply algorithm -
clearly will also have linear asymptotic complexity in the number of double precision
additions and data transfers. ]

We believe that the behaviour of an implementation is most significant as image
size grows and the number of transputers used increases. For the largest image size
of 1024 x 1024, the execution time of the eight transputer add and multiply program
is 2.351 seconds and that of the recursive im?lementa.tion 2.374 seconds. These times
excel the corresponding time of 2.484 seconds for the partial sum implementation.

This indicates that when implemented on the B008 in Parallel C, the add and
multiply and the recursive multi-transputer algorithms are superior to the partial
sum algorithm proposed by Chen. We have shown that the algorithms have the

same linear parallel time complexity as the partial sum algorithm for a linear array
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of N SIMD or MIMD processors. In his article, Pan correctly points out the wide
range of technologies implementing the SIMD and MIMD architectures. Which of
the three algorithms is best for any given technology can only be determined by
experimentation. o

A last observation is that the first convolution pipeline implementation and the
alternative partial sum implementation indicate that reducing the amount of data
transferred in an implementation or the number of transfers required does not always
result in faster multi-transputer programs. We believe that the Parallel C software

overhead needed to make these reductions may cancel out their benefits.

5.7 Remarks

The single transputer convolution program was changed so that an integer mask was
processed rather than a floating point mask. It is also possible to change the multi-
" transputer convolution implementations so that integer masks are used. We feel that
faster execution times would again result if this were done. Similarly, the multi-
transputer programs can be changed to produce floating point moments rather than -
double precision ones. The execution times for the altered implementations would of
course be less than their double precision analogues. Also, as in the single transputer
case, we have restricted timing results and analysis given to N x N images with N
equivalent to powers of two. To maintain an even computational load, the.multi-
transputer programs were run with two, four or eight computational processors. The
convolution implementations required little modification to change from two to four
to eight transputers. The moment programs however, had separate implementations

for each different number of transputers.
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Chapter 6

Performance Modelling

6.1 Introduction

In this chaﬁter, we present performance modelling of two of our multi-transputer
implementations. The modelling is intended to confirm that the timing results for
the implementations correspond to what their design indicates should be expected.
We believe the reasoning process presented in Chapter 5 that led to the designs
is sound and stands well on its own. We are not trying to prove its legitimacy.
Instead, we are trying to demonstrate that we in fact understand what is occurring
during the implementations. Additionally, we want to create a scientific method with
which we can predict the behaviour of our implementations for a greater number of
transputers. The modelling is high-level, coarse modelling rather than an exact bit-
- by-bit analysis. In particular, we ignore the overhead incurred with Parallel C inter
| i)rocess communication and process switching time on each transputer. Since all the
implementations have the same basic structure (i.e., an initial data pass followed by a
computational stage and, in the case of convolution, a final data pass) we have chosen
to model only the best implementation for convolution (ring) and regular moments

(add and multiply). The models for the other implementations would be similar.
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6.2 Convolution Model

6.2.1 Notation

In our analysis, the following notation is used:

P denotes the number of transputers used.
N denotes the image size.
M denotes the mask size.

Tu(N,M, P) denotes the total time in seconds needed to convolve an N x N image
with an M x M mask using the ring implementation with P computational

transputers.

Tep(N, M, P) denotes the computation time in seconds needed to convolve an NxN
image with an M x M mask using the ring implementation with P computational

transputers.

Tem{N, M, P) denotes the data communication time in seconds needed to convolve
an N x N image with an M x M mask using the ring implementation with P

computational transputers.

Te{N, M) denotes the time in seconds needed to convolve an N x N image with an

M x M mask using the single transputer convolution program.

T..{B,T) denotes the time in seconds needed to send B bytes to each of T transputers
on a path from the root using the packet method. |

6.2.2 Computation Time

In the single transputer convolution program, N?M? floating point additions and

'N?*M? multiplications and 2N3M? array references are executed. In addition, there
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are 2N*M array offset additions performed. Finally, N? function calls and array
references are needed. We ignore operations that occur less than N? times in our

analysis. Therefore,
TN, M) > Iy NP M? 4 ;N2 M + k3 N?

‘The value of k; seems to be approximately 5.91 x 1078, that of &, to be 3.26 x 1078,
" and k3 to be 1.26 x 1075, k3 was determined by timing the program with only the N?
loop exécut.ing. This was accompllished by running the program with the N M? loop
commented out. k; was set to be the execution time divided by N2. Next, k, was set
to be the execution time of the NM? loop divided by NM?2. To get this time, the
execution time of the N? loop was subtracted from the execution time of the NM?
loop and the N2 loop. Lastly, ki was set to be the execution time of the N>M? loop
divided by N2M?3, Substituting these constant values, we get.

Ton(N, M) 2 5.91 x 10" N2M? +3.26 x 10"°N?M + 1.26 x 1075 N?

These computations are spread evenly émong the P computational transputers
used. Therefore, we should get

TN, M)

TN, M, P) = =22

591 x 10-8N2M? +3.26 x 1076 N2M + 1.26 x 1075N?
= 3 _

6.2.3 Communication Time

Each image consists of N2 pixels. In our multi-transputer implementations, each
computational transputer is passed 1/P of the pixels or N?’ pixels. (This actually
is a lower bound for the convolution ring, since bordering pixels are also passed to
each transputer.) In the ring implementation, the root passes the pixels to each of

P/2 transputers down both branches of the ring at the same time using the packet
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method. This takes Tp.(%- P , £). The root must first separate the image into P packets |
for passing. This takes time proportional to the number of pixels in the array, N2.
Additional time is required to send the packets down the line of transputers. This
takes time proportional to the number of bytes in the packet ( ) and to the number
of transputers in the line (P/2). Therefore, '

N P

N2
=X3)

P'(P 2)~k1N2+k3(

By experimentation with the data passing program that generated the packet
timing results given in Figure 5.2, we have determined that k; seems to be about

2.25 x 1077, k; about 6.42 x 10~7. Substituting, we get,

N2

2
5 2)~225x10"7N’+642x10-7(N E

To )
=225 x 107" N? +3.21 x 10-"N?

= 5.46 x 107" N?

The data pass is repeated in reverse at the end of the program when the convolved

image is passed back to the root. Therefore, the total communication time,

N2 P

=9 x 5.46 x 10-"N?

= 1.09 x 107°N?
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6.2.4 Overall Time

We have
T“(N:Map):T@(N:M}P)'i'Tcm(N:MyP)

Therefore,
Ty(N, M, P) ~ 5.91xlO"N’h_f’-l-a.zs__x_}l,o“N’_g\_lil.zsx10"‘N’ +1.09 x 10-°N2.

In Figure 6.1, the last function is plotted for P = 2,4, 8 with N = 512 and M =
7. The actual timing results for the rilig implementation are also plotted. The actual

times are slightly more than the estimated times.
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Figure 6.1: Convolution Model Graphs
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6.3 Regular Moment Model

6.3.1 Notation

The notation used in this model is similar to that used for the convolution ring model.

In particular,
P denotes the number of transputers used.
N denotes the image size.

" Tu(N, P) denotes the total time in seconds needed to calculate the first 16 moments
of an N x N image using the add and multiply 'implemenﬁation with P compu-

tational transputers.

Tp(N, P) denotes the computation time in seconds needed to calculate the first 16
moments of an N x N image using the add and multiply implementation with

P computational transputers.

Tem(N, P) denotes the data communication time in seconds needed to calculate the
first 16 moments of an N X N image using the add and multiply implementation |

with P computational transputers.

Tun(N) denotes the time in seconds needed to calculate the first 16 moments of an
N x N image using the single transputer hybrid recursive/add and multiply

program.

Tos(B,T) denotes the time in seconds needed to send B bytes to each of T' transputers
on a path from the root using the packet method.

6.3.2 Computation Time

In the single transputer implementation of the recursive/add and multiply hybrid

algorithm, 8N? additions and N? array references are required. There are also 16N
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multiplications and additions and N array offset additions needed. So we get
Ten(N) > by N* + ko N

The empirical values are k; =~ 1.32 x 1075 and k; = 1.66 x 10~%. These were
determined in a similar manner to the computational constants in the convolution
model. The program was timed with only the N loop executing, and the result was
divided by N to get k3. To get the constant k;, the execution time of the N? loop
was timed and divided by N?. Substituting the constants, we get

Tyn(N) =~ 1.32 x 105N + 1.66 x 107N

~ In the last stage of the add and multiply implementation, the 16 moments calcu-
lated by the P processors are added up in partial sum fashion across the network.
~ This should take time proportional to log, P, i.e., this time equals k, log, P for some
ky. For a 512 x 512 image, k; seems to be 1.47 x 1072, As with the convolution ring
implementation, all computation except this last addition is spread evenly among the

P computational transputers. So,

Top(N, P) = %ﬂv) + 147 x 10~ log, P

_ 1.32x1075N? +1.66 x 107*N

3 +1.47 x 107% Jog, P

6.3.3 Communication Time

In the add and multiply implementation, the image is distributed to the P transputers
using the packet method as is the case with the ring convolution implementation. (No
bordering pixels are passed in this case, however.) This again takes T,,(NTz, g-). As
in the convolution ring, this should be approximately 5.46 x 10~7N? seconds. In the
regular m&ment implementations, however, there is no convolved image to pass back

‘to the root as is the case with convolution. Therefore, the total communication time,

Tem(N, P) ~ 5.46 x 1077 N?
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6.3.4 Overall Time

We know that Ty(N, P) = To(N, P) + Tun(N, P). So,

1.32 x 107N? + 1.66 x 10~*N

Tu(N, P) ~ P

+1.47 x 107 % log, P + 5.46 x 10~"N?

In Figure 6.2, the above function is plotted for P = 2, 4, 8 with N = 512. The
actual timing results for the add and multiply implementation are also plotted. This

time our estimates are slightly greater than the actual values.
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Figure 6.2: Regular Moment Model Graphs

6.4 Remarks

Since the parameters were chosen for runs where N = 512 and M = 7, the mod-

els work best for these values of N and M. We believe, however, that the models

may also work well for other values of N and M. Since the data passing programs
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do not allow for the simultaneous communication and computation possible in the
transputer model, the data p.a..ssing parameters have been set slightly higher than
the data passing timing results might indicate they should be. Because of this, our
data passing model may differ slightly from what occurs in a normal computational
mu.Iti-tra.nsputer program. While not perfect, we believe that the models are close
enough to the observed timing results (within 5%) to confirm that our understanding

of the behaviour of the two programs is correct.
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Chapter 7

Conclusion

7.1 Thesis Summary

In this thesis, we have presented parallel implementations of the image processing
techniques of convolution and regular moments on multiple transputers programmed
with Parallel C. Several single transputer programs were first created in prepara-
tion for multi-transputer programming. Eight multi-transputer programs have been
presented and analyzed. In all, we have created 21 different transputer programs
consisting of over 100 source files and approximately 20, 000 lines of code.

Our results are as follows. Most importantly, we observed linear speedups for
all the multi-transputer convolution programs. The multi-transputer regular mo-
ment programs are also considerably faster than their single transputer counterparts.
However, as the number of transputers increases, the efficiencies of the programs de-
crease at a greater rate than in the convolution implementations. This is a symptom
of the increase in communication overhead that pa.i‘a.llel implementations of global
techniques undergo as the number of processors increases. Local techniques, such as
convolution, are immune to this effect.

In addition, we feel that the following results are significant. First, we have shown

 that the packet method of data transmission is superior to the grouped technique of
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passing data. On the same topic of data communication, our research indicates that
the software overhead involved may well cancel out any benefit achieved from reducing
either the amount of data sent or the number of transmissions needed to send it in
multi-transputer systems programmed with Parallel C. We also learned that topology
selection does not greatly influence the efficiency of multi-transputer implementations
on the BO0S of pure data parallel a.Igoriths such as those we created for convolution,.
Also, our idea of making each transputer responsible for processing several rows of the
image seems to work well, esp\.ecia.lly for implementing global techniques like moments
and the Fourier transform. Lastly, we have created two new parallel algorithms for
moment extraction which compare favourably with those previously suggested. We
feel certain that our work has laid the foundations for an efficient, flexible multi-

transputer image processing system including many techniques.

7.2 Future Work

It might be possible to improve the current implementations. For instance, one might
try changing the priorities of the proceéses local to the source files as described in -
Section 2.6.1 in the multi-transputer programs. In addition, the memory ordering
of the linked units might be changed to get the implementations to run faster. The
direct link a_.c..cess model might be implemented. Alternatively, different data passing
techﬁiques might be attempted for the initial data pass.

Aside from these potential improvements, our system needs to be expanded. Other
image processing techniques like the Fasi Fourier Transform might be implemented.
In addition, image processing applications that use the features extractable from
convolution and regular moments could be programmed. For example, a contour
tracing package might be created that uses one of our convolution programs as a front
end processor for édge detection. A program that uses the regular moments extracted

by one of our moment implerncnta.tions to determine a set of moment invariants could
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be implemented.
Lastly, the idea mentioned in the introduction of using transputers to model other

parallel image processing technologies might be investigated.
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