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Abstract

We present parallel implementations of a local (convolution) and a global (regular moment
extraction) image processing techmique on a multi-transputer system. Issues relevant to
implementation design including computational algorithm selection,..initial data pass, and
topology selection are discussed. Linear speedups in the convolution implementations are
observed for all image sizes whereas such speedups are obtained only for large image sizes
for the regular moment implementations. Analysis of the implementations including parallel
time complexity functions and observations about data passing and topology selection is
given, Two theoretical performance models based on the implementations closely match -

empirical timing results.

Keywords: parallel processing, transputers, image processing, convolution, moments,

performance evaluation.

1 Introduction

Real-time image processing applications require operations to be executed on the thousands

of pixels that make up image frames many times each second. The feasibility of transputer

based high speed image processing systems has been discussed in {10, 13]. In addition, various

commercial systems have been developed. For example, TRANSTECH has marketed an
image processing TRAM and an associated library of image processing routines [8]. However,

the literature published does not present many details about developing efficient transputer




based image processing systems. This paper explores this issue using two image processing
techniques.

We have developed parallel implementations of the image processing techniques of con-
volution and regular moments on an IMS B008 motherboard [9] containing nine IMS T800
transputers programmed with Parallel C. The programs were developed using the ANSI C
Toolset [7]. Qur main criterion for judging the efficiency of the implementations is execution
{ime. Memory requirements are also considered.I Special attention is given to implementation
performance as image size and number of transputers increase.

The structure of the paper is as follows. Section 2 reviews the image processing algo-
rithms, v22z. convelution and regular moments, that we have chosen and presents their single
transputer implementations. Section 3 gives our eight multi-transputer implementations.
Performance modelling of two of these implementations is presented in Section 4. Conclu-
sions of our work are presented in the last section. For the sake of brevity, we have simply
stated some of the results of our work. For a full description of our research, the reader

should consult [15].

2 Algorithms and Sequential Implementations

In this section we introduce the image processing algorithms selected in this paper and give
timing results for their single transputer implementations. The single transputer programs
have been compiled and executed on the root T800 transputer of the B0O08 motherboard.
All single tra.nsputér programs have been implemented as. Parallel C programs which use
none of the parallel features of the language. Compilation was accomplished using the icconf
command and a configuration source file. Alternatively, transputer programs can be com-
piled without a configuration source file by using the single transputer option of the icollect
command. The latter method produces significantly faster running programs. A subsection
devoted to convolution and its single transputer implementations is next given. Subsequently,

fiming results and analysis for the eight regular moment programs are presented.




2.1 Convolution

Convolution is a local feature extraction process. Its implementation involves passing a mask
or filter over an image. Some image features extractable using convolution are lines, edges
and points. Two commonly used masks for edge point detection are the Laplacian and the
Sobel [4, pp. 337-338]. The convolution of two discrete two dimensional functions f and g is
defined to be

M-1N-1

fe(z,9) *x ge(2,9) = Y > fo(m,n)ge(z — m,y — n) (1)

m=0 n=0

forz=0,1,...,M—-1andy=0,1,...,N — 1, where f, and g. are extended versions of the
functio:ps f and g, with additional zeros added outside the domain of the functions so that
the convolution operation can be performed [4, p.88].

The convolution algorithm requires O(M2N?) multiplications and additions to convolve
an N X N image with an M x M mask. The mask is passed over each image pixel. The
value of the convolved pixel is set to be the sum of the products of each mask element and
the pixels beneath it. It is assumed that [(M/2)] zero pixels have been added around the
edge of the image. For real-time applications, the procedure may be computationally too
intensive for a conventional single'processor computer. Qur approach to the problem is to
spread the computation required over many processors.

We have implemented the convolution algorithm on a single transputer using Parallel C.
Both the image and mask are acquired from files on the host. The image pixels are stored as
single byte Parallel C char data types. The mask elements are stored as float data types. In
Parallel C these are implemented as 32 bit IEEE floating point numbers, To maintain full
flexibility for convolving an arbitrary sized image with an arbitrary sized mask, the mask
and image are stored in dynamically allocated buffers rather than in static Parallel C arrays.
Offsets into these buffers are maintained in order to reduce the time needed to reference
elements,

Due to the large number of multiplications and additions needed, the convolution algo-
rithm runs relatively slowly. The program has been run on images with dimensions equal
to powers of two from 64 to 1024 for four different sized real masks. Table 1 gives timing
results for the progfa.m when run on a 256 x 256 image for those mask sizes. The times given

are for computation only. Figure 1 plots execution times of the program for various mask
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sizes versus the number of pixels. The execution times increase linearly with the number of
image pixels (quadratically with image size N). We have also found that the times increase
slightly less than linearly with the number of mask elements. This is due to the fact that the
number of additions required to maintain the buffer offsets increases less than linearly with
the number of mask elements. We have modified the convolution program to accept integer
masks. Not surprisingly, the execution times are faster than those achieved with floating

point masks, since integer arithmetic operations are faster than floating point ones.

2.2 Moments

Statistical moments are widely used in image analysis. They are among the most significant
of global image features. Many important geometric attributes of an image can be deter-
mined from its moments. Among these are its mass, spread and centre of inertia. Papoulis’
uniqueness theorem [12] has established that no two images can han.a;e the same set of mo-
ments. This property ensures that moments are effective as a means of distinguishing among
patterns. In addilion, object features called moment invariants, which do not change if a
geometric operation is performed on the object, can be derived from moments. Moments are
therefore a valuable tool for image analysis. The formula for calculating mgy, the (K, L)th
regular moment of a discrete two dimensional function f(4,5),i=1,2,...,N,j=1,2,...,N

is

N N
mir =Yy i5jLf(i,5) (2)

i=1 j=1
From Eq. (2) it can be seen that moment calculation also requires a large number of mul-
tip]ica.tions and additions. There are eight algorithms for regular moment calculation used
in our work. The most obvious way to calculate moments is the straightforward algorithm
[3] which uses nested do loops based on Eq. (2). Because 2N 2 exponentiations are needed to
compute each moment, this algorithm is quite inefficient. Notice that the column coefficient

monomials ;7 can be calculated using 5. In particular,

jl — jjl—l- (3)

Reeves’ coeflicient storage algorithm [14] exploits this fact. The idea here is to create four




N x N arrays C(1),1 = 0,1,...,3 of column coefficient monomials using Eq. (3). These are
then used to calculate the moments.

Omne drawback of the coefficient storage algorithm is that the products of image elements
and coefficients are repeatedly calculated in the final stage of the algorithm, We can solve
this problem by incorporating the image values in the four coefficient arrays., We call the
resulting algorithm column product storage.

There are two main problems with the storage algorithms. First, to process an N x N
image, the storage arrays require 8 N2 bytes - a great deal of memory for large values of N.
In addition, O({N?) multiplications would be needed to execute the algorithms on such an
image. Multiplications are relatively computationally expensive for many processors.

The double summation in Eq. (2) can be split into two separate summations. Eq. (4)

gives the resulting equation for the calculation of mxy,.

N N N
mir =Y 4% Y R4, =Y K RMy,, (4)
=1 j:l =1
where

N
RMy; =Y L1, 4).
j=1

The calculation of the (K, L)th moment is thus split into two steps. First, the Lth one
dimensional moment RMy; of each image row is calculated. These row moments are then
used to calculate the {K, L)th overall two dimensional moment myyz. This is not unlike
using the one dimensional Fourier transform to calculate the transform of a two dimensional
function. The next three algorithms all use this technique to solve the problems associated
with the storage algorithms.

We have created an algorithm similar to the storage algorithms that uses the above two
step moment calculation technique. We call it the add and multiply algorithm because
addition and multiplication alternate in the process of moment calculation. Figure 2 shows
the add and multiply algorithm for the calculation of the one dimensional moments of an
Ny X N, image F. Although it has relatively small memory requirements, this algorithm
still requires N2 + N multiplications to calculate each moment of an N X N image. It
would be preferable that an algorithm use only additions to calculate moments. Budrikis
and Hatamian have proposed an algorithm for regular moment calculation that does so [1, 5].

The algorithm uses recurrences to build up higher order moments from lower ones. Figure 3
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gives pseudo code for a generalized version of the one dimensional recursive algorithm. STM
contains the initial values of the moments. SPM contains the starting values of the previous
moments (the values that the moments had after the previous execution of the inner loop
of the algorithm). M and PRAM will contain the values of the moments and the previous
moments of F upoa completion of the algorithm. To calculate the first 16 overall moments
of an N x N image, the algorithm only requires 8¥% 4 32N additions.

Chen [3] has proposed another regular moment extraction algorithm that uses only addi-
tions, the partial sum algorithm. The algorithm also uses lower order moments to calculate
higher order ones. The technique employed here is to build up higher order moments by
repeatedly partially summing over lower order moments. To calculate each row moment,
each pixel is added to the pixel before it. Next, each pixel is added to the pixel two before
it. This process continnes with the distance between added pixels doubling at each iteration
until the distance is equal to half the image width. In this way, O{N?log, N) additions are
required to calculate each set of row moments of an N X N image except the last. They may
be calculated by simply summing the previous values of the intensity function F.

In addition fo the two dimensional add and multiply, recursive and partial sum overall
moment extraction algorithms, six additional two dimensional algorithms can be created. To
do so, the one dimensional algorithms are combined in pairs with one algorithm calculating
the row moments and the other calculating the overall moments. Only two of these hybrid
algorithms are used in our research. Both use the recursive algorithm to calculate the row
moments. The first uses the add and multiply algorithm to calculate the overall moments.
The other uses the partial sum algorithm to do so. The first will be referred to as the
recursive/add and multiply hybrid, the other as the recursive/partial sum hybrid.

The six pure and two of the hybrid moment extraction algorithms described have been
implemented on a singie transputer. As is the case with the convolution implementation, the
images are acquired from host files and stored in buffers of Parallel C char types. Offsets
into these buffers are again maintained during execution of the programs. The first sixteen
moments are found by all the implementations. They are calculated as Parallel C double
types. Each program was run on the same five image sizes as the convolution program.
Table 2 shows the execution times for the programs when run on a 256 X 256 image. The

times given are again for computation omnly.




We have discovered the following about the single transputer regular moment implemen-
tations. The execution time of the straightforward algorithm increases approximately linearly
with the number of image pixels. Due to the large number of additions, multiplications and
exponent calculations required, this is by far the slowest of the single transputer implementa-
tions. Linear increases in the execution times of the coefficient storage and column product
storage algorithms with the number of pixels have also been observed. The timing results for
the recursive and the add and multiply implementations increase slightly less than linearly
with the number of image pixels. However, the execution time of the partial sum implemen-
tation increases more than linearly with the number of pixels. These three programs are in
fact the fastest single transputer moment implementations.

In order to allow speedup, efficiency and performance analyses to be performed (see
Sections 3 and 4} on two of the multi-transputer programs, the recursive/partial sum and
recursive/add and multiply hybrid algorithms have also been implemented. The execution
times here increase slightly less than linearly. A final observation is that when the data
type of the moments is changed from double to single precision in the recursive program,
a significant decrease in execution times results. Some loss of accuracy in the moments

extracted results when this is done, however.

3 Multi-Transputer Implementations

Four mulii-transputer implementations of both convolution and regular moments have been
realized. This sectioﬁ begins with a description of the programming technique we have used
in the multi-transputer case. Next, descriptions of the issues relevant to image processing on
tranéputers and our strategies for dealing with them are presented. A subsection describing
the multi-transputer implementations for convolution is followed by a similar subsection that
gives the details of the regular moment multi-transputer implementations. The section ends

with some concluding remarks.

3.1 Programming Technique

The entire B008 motherboard is used in the multi-transputer implementations. Qur method

of programming here is quite different from that used in the single transputer implementa-




tions. In the single transputer case, a Parallel C program running on the root transputer is
not only responsible for controlling input and output to the host but also for all computations
needed to perform the image processing tasks. The other transputers are not used. However,
in our multi-transputer implementations, all nine transputers may be used. Parallel C is
again used. In this case, however, one separate asynchronous linked unit process (a compiled
and linked Parallel C source file) executes on each transputer used. The root transputer is
still responsible for data transfers to and from the host. All of the necessary computations
are executed on the other eight transputers,

Bach unidirectional hardware link on the T800 transputer has its own controller. Tt is
therefore possible for all sixteen link controllers and the CPU to operate at the same time. In
order to take full advantage of this capability, we have allocated one asynchronous Parallel
C process to each unidirectional link and to each computational process. The processes
communicate with each other and synchronize themselves using local Parallel C channels as
in Hoare’s Communicating Sequential Process (CSP) model of parallel computation [6]. This
method of paraliel programming has also been used in [16].

All local channels and processes are declared as global variables in the source file for each
transputer. The main() function of each source file is used to allocate channels, aliocate and
run processes and fo time the implementation. Processes are run asynchronously in parallel
using the ProcRun{) function. A channel is created for communication between each pair
of processes that communicate in each direction they communicate. Aside from channels
and processes, global data structures have been kept to a minimum. In this way, problems
of mutual exclusion. are avoided. As in Hoare’s model, each process keeps its own copy of
data. This data can be sent to another process using message passing on a local channel.
Configuration source files are used to map the linked units to the appropriate transputer on

the BOO8 for execution.

3.2 General Issues and Strategies

Data parallelism is one of the main parallelization techniques used. Under this scheme, many
processors execute the same sequence of instructions on separate parts of a large amount of
data. Image processing techniques generally require that the same operation be performed on

a large number of pixels. For this reason, we have decided to focus on data parallel methods




in our implementations. In the upcoming subsections we describe the following issues specific
to mulii-transputer image processing: initial data pass, computational algorithm selection,

accumulation of final results and topology selection.

3.2.1 Initial Data Pass

Under the data parallel model, each transputer is responsible for processing a part of the
image. These image parts might be passed directly to the transputers using the direct link
access scheme suggested by Kille, Ahlers and Schneider [10]. In the direct link access system,
one link of each transputer is permanently connected to a specially designed frame grabber
transputer which directly passes each transputer its part of the image. Because these links
cannot be used to configure the network, direct link access reduces the flexibility of the image
processing system., Our approach is as follows.

The B0O08 root transputer acquires the images from files on thé host. With a view
to having a balanced computational load on the network and a symmetric computational
model, we decided that the root transputer would rot be used for computational purposes.
It is used as a sort of frame grabber tra.nsputér that gets images from the host and passes
computational results back. It is also responsible for passing the image segments to the
computational transputers for processing. There are two main issues to resolve about this
initial data pass. The first is how to split up the image. The second issue is which algorithm

to use to pass the image segments to the transputers.

Splitting the Imége There are three options for splitting the image. It can be done row
by row, column by column or subsection by subsection. Convolution can be done equally
well on image rows, columns or subsections. However, regular moments can be calculated by
independently calculating row moments or column moments, and then using these moments
to calculate the overall image moments (see Section 2). This indicates a row or column ori-
ented distribution scheme. In our implementations each computational transputer is passed

and is responsible for processing several rows of the image.

Data Passing Algorithm Selection There are at least two general algorithms for
passing the image rows: (a) grouped, and (b} packet. In the grouped approach, the root

simultaneously passes all the rows needed down each network path all at once, and every




transputer on a path keeps only the rows for which it is responsible, passing the remainder

down the path. In the packet scheme, the root simultaneously passes the rows needed down
| each path as separate packets, one after another. The packet for the last transputer in line
is passed first, the packet for the second last second and so on until the packet for the first
transputer is passed last.

For the purpose of passing the image rows, two subtopologies are used in our implemen-
tations. The first one is the pipeline structure. In this simple topology, the root is connected
to one or more transpuaters in a chain. To distribute image rows evenly among four trans-
puters in a pipeline, the packet algorithm is found to be superior. The second subtopology
is treelike. Here, the root is connected to a router transputer which in turn is connected to
three more transputers. The packet method is once again better than the grouped method
at distributing image rows to the four transputers in the tree topology. An additional ad-
vantage to using the packet algorithm is that larger images can be processed with it than
can be processed with the grouped algorithm. Based on these results, we have chosen the

packet method as the initial data passing algorithm for our implementations.

3.2.2 Computational Algorithm Selection

There are two ways to design parallel computational algorithms. One can either base them on
existing single processor algorithms or create new parallel algorithms which have no relation
to any known single processor algorithm. We have chosen the former technique, since it
is much simpler. In particular, we have considered both data and instructional parallel
versions of the sequential algorithms found in Section 2 and combinations of both. This has
enabled us to convert actual code from the single transputer implementations for use in our

multi-transputer programs.

3.2.3 Accumulation of Final Results

Generally, the final results must be passed back through the network to the root for output on
the host. This process is the inverse of the initial data pass. For this reason, we have decided
to use the same packet algorithm for the final data pass. In particular, each computational
transputer passes its own results back towards the root and then passes back the results of

those farther down its path. The root simultaneously gathers the packets from each network
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path ending at if.

3.2.4 Topology Selection

We choose topologies only after algorithm selection as a2 way of enabling and optimizing a
potential implementation. In particular, we choose topologies to make possible all necessary
data communication and to minimize the time taken for it. This data communication can be
done for the initial data pass, computational data communication or for the accumulation of

final results.

3.3 Convolution

In this subsection, we describe the multi-transputer programs we have created for performing
convolution. The purely local nature of convolution entailed that it__'wa;s less challenging a
process than regular moments to implement on transputers. However, there were still issues
about the initial data pass and topology selection to be investigated. In the next subsection
we describe the reasoning that led to the design of the convolution implementations. Detailed

descriptions and timing results for the implementations follow.

8.3.1 Design of the Implementations

Keeping in mind the general strategies described in Section 3.2, we have designed and im-
plemented four multi-transputer convolution programs. We have created pure data parallel
programs with each computational transputer recelving and processing several rows of the
image. In each implementation, the frame grabber root transputer uses the packet algorithm
to pass the image rows and the mask. The same convolution algorithm has been implemented
in all four programs as a data parallel computational process on all the computational trans-
puters used. The packet method is again used to pass the rows of the convolved image back
to the root in all the programs. Two pipeline convolution implementations investigate an
issue related to the initial data pass. We have investigated the issue of topology selection by
implementing ring and tree versions of one of the two pipeline programs. As in the single
transputer case, all the programs use a mask consisting of floating point values and store the

image pixels in buffers of char data types.
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3.3.2 Pipeline Implementations

In the single transputer version of convolution, the image is first padded with a border
of zero pixels. In the multi-transputer programs, the borders can either be added in the
computational transputers once the image rows have arrived or can be added in the root
before the image rows are passed. Cok [2, p. 131] has suggested another approach of initially
passing only the rows each transputer is responsible for and having the transputers exchange
the bordering rows before beginning convolution. We have implemented pipeline versions of
convolution using the first two schemes.

Surprisingly, the more elegant first option proved to be no better than the second in spite
of the fact fha.t it reguires less data to be passed. In fact, the execution times for the first
implementation are inferior for all the mask sizes, image sizes and numbers of processors
that we have timed. For example, to convolve a 1024 x 1024 image with a 7 X 7 mask, the
eight transputer version of the first implementation requires 46.46 seconds while the eight
processor version of the second needs 45.67 seconds. We believe that the extra overhead
involved in passing the correct rows to each transputer in this case more than makes up for
the time saved in the data passes. The times of both implementations decrease dramatically
as the number of processors increases from two to four to eight.

In addition, we have discovered the following about the second pipeline implementation.
First, the speedups are close to linear for all mask sizes. For a 512 x 512 image and a
5 x 5 mask, the speedups range from 1.92 on the two processor program to 7.25 on the
eight transputer version. Secondly, the speedups increase as the mask size grows for all
image sizes and numbers of transputers. For example, the speedups of the eight processor
program improve 14% as the mask size is increased from 3 X 3 to 13 X 13 when convolving a
1024 X 1024 image. Lastly, the efficiencies are all reasonably close to one, decreasing slightly
as the number of processors increases. In particular, the efficiency of the implementation
ranges from 0.95 to 0.84 when coavolving a 512 X 512 image with a 3 X 3 mask as the number

of processors increases from two to eight.

3.3.3 Ring Implementation

In an attempt to reduce the time taken for data communication, we have created a ring

version of the second pipeline implementation. The important feature of the ring implemen-
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tation is that the root can distribute image rows and collect convolved rows in two directions
at once. This cuts the maximum number of transputers on any one path to or from the root
in half as compared to the pipeline version. Reductions in the time needed to distribute the
image and to return the convolved image to the host are realized.

The ring timing results for a 512 x 512 image are given in Figure 4. The results are quite
similar to those of the second pipeline implementation. The ring implementation is actually
only slightly faster. For example, the eight processor ring program takes 141.9 seconds to
convolve a 1024 X 1024 image with a 13 X 13 mask as opposed to the 142.5 seconds needed
by the eight transputer second pipeline program. This is less thar a 0.5% improvement.
Speedups for these timing results are shown in Figure 5. The graphs are linear, as is the
case with the second pipeline implementation. However, the speedups are slightly greater,

reflecting the improved timing results.

3.3.4 Tree Implementation

With the reduction of communication time again in mind, we next converted the ring imple-
mentation to an eight transputer tree implementation. Although the ma.ximu.m number of
transputers on both paths from the root is the same as it is for the ring topology, the maxi-
mum path length from the root is shortened to three from four. However, in most cases the
execution times for the eight transputer tree are no better than the corresponding times for
the eight transputer ring. In fact, for a 1024 x 1024 image and a 13 X 13 mask, its execution
time of 143.2 seconds is worse than the time attained by the second pipeline implementation
(142.5 seconds). Only when the program is run on a 3 X 3 mask on a 64 x 64 or a 128 x 128
image does the tree implementation run faster than the ring. We have also nbticed that
the efficiencies of the convolution implementations increase as the image size increases. For
example, the efficiency of the four processor ring program increases from 95.8% for a 64 x 64
image to 96.3% for a 1024 x 1024 image when the mask size is 13 x 13.

It is most important to note that the convolution implementations all have close to
linear speedups. This is typical of local techniques with pure data parallel implementations
which require no communication between processors during the computational stage. Some
observations about topology selection are also indicated. The transputer topology is varied

over the last three convolution implementations. The time needed to pass the original and
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convolved images is partly determined by the topology used. Yet the timing results for these
implementations are quite similar. We conclude from this that for pure data parallel image
processing algorithms implemented on the B008, topology selection is relatively unimportant.
However, for another transputer board, topology selection may be more important, since the

paths along which the image segments are passed may be longer.

During the computational stage, & 2PMQ floating point multiplications and additions are
executed o1 each of P processors. For an N processor array where each processor is respon-
sible for performing convolution on one row of the image, the parallel asymptotic complexity
of our convolution implementations will be O{N M?) floating point multiplications and ad-

ditions.

3.4 Regular Moments

The global nature of regular moment calculation made it a more cﬁa]lenging image pro-
cessing technique to implement on transputers than convolution. In this subsection we give
descriptions and the timing results of our four multi-transputer implementations of regular

moments.

3.4.1 Design of the Implementations

In designing four regular moment implementations, we have again used the general strategies
we have developed. The frame grabber transputer again passes packets of image rows to
each computational transputer for processing. The tree topology is used for this initial
data pass. The two dimensional recursive algorithxﬁ'resultsl in the fastest single transputer
implementation. We therefore considered using a data parallel version of the two dimensional
recursive algorithm for moment calculation. Each transputer might calculate the sixteen two
dimensional moments for its image rows using this algorithm. An instructional parallel
algorithm could then be used to add those separate sets of moments to obtain the overall
moments for the entire image. However, this techrique does not work. The one dimensional
recursive algorithm can certainly be used to calculate the row moments for each transputer’s
image rows. However, the one dimensional recursive algorithm cannot be used on these row
moments to calculate the overall two dimensional moments of the rows.

Undaunted, we realized that we could still use the one dimensional recursive algorithm to
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calculate row moments for each transputer’s rows. We also noted that the three algorithms
with the fastest single transputer implementations (recursive, add and multiply, and partial
sum) share another property besides speed. Each one separates the task of moment calcula-
tion into first calculating the moments of each image row and then using them to calculate
the overall two dimensional image moments. We realized that we might exploit this in our
implementations. We therefore have created three implementations which all use a data
parallel version of the one dimensional recursive algorithm to calculate row moments on each
computational transputer. These moments are then used by instructional parallel versions of
the three algorithms to calculate the overall image moments. We refer to each implementa-
tion according to the name of the instructional parallel algorithm used, namely recursive, add
and multiply, and partial sum. The fourth multi-transputer regular moment implementation
is an alternative version of the partial sum implementation. In all four implementations, the
instructional parallel algorithm places the image moments in a transputer connected to the
root, Additional transputer connections have been added to the tree structure so that the
necessary data passing during the instructional parallel phase of the implementations can be
accomplished. As is the case with the single transputer regular moment implementations,

the moments are calculated as double precision numbers in the multi-transputer programs.

3.4.2 Partial Sum Implementations

Chen suggested this regular moment extraction algorithm for s linear array of processors in
1990 [3]. It was necessary to augment the basic tree structure heavily for the eight transputer
partial sum implementation. Py and P; are the router transputers in the tree. The following
conrections between computational transputers were made unless they were part of the basic
tree structure. First of all, the transputers were joined into a pipeline. Secondly, with the
exception of the third (P} and fourth (P;} transputers, each transputer was connected to
one two before or after it. Lastly, every transputer was joined to the transputer four positions
before or after it. The resulting topologyl(shown in Figure 6) is formidable indeed.

We have observed the following about the partial sum implementation. First, increasing
the number of transputers in the implementation results in decreases in execution times for all
image sizes. Secondly, the implementation is most efficient for larger images. In particular,

the efficiency of the eight processor program increases from 43% for a 64 x 64 image to

15




74% for a 1024 x 1024 image. In addition, the partial sum speedups are less than those
observed in our convolution implementations. For a 5§12 x 512 image, the speedups range
from 1.88 on the two transputer program to 5.81 on the eight processor program. Lastly,
the efficiency of the implementation decreases dramatically as the number of processors
increases for a given image size. For example, the efficiency of the two transputer program
is 0.92 for a 256 x 256 image. The efficiency of the eight transputer program drops to
0.69 when run on a 256 x 256 image. The reason for the quick decline in efficiency as the
number of transputers grows is as follows. Increasing the number of transputers decreases the
amonnt of time needed to calculate the row moments. It also decreases the time needed to
perform the additions required in the partial sum stage of the computation which calculates
the overall moments. However, the partial sum technique requires a large amount of data
communication when executed on more than one transputer. As the number of transputers
increases, this requirement increases dramatically, To make matteré worse, for the eight
transputer program, routers (P, P3) are necessary because of lack of links. This results in a
communication bottleneck which further slows down the last stage of the computation. The
observed decreasing efficiencies make sense in light of this information.

We have also implemented an alternative version of this partial sum implementation. In
this implementation, the partial sum process is done for all four sets of row moments at once,
instead of for only one set at a time, as Chen suggests. This reduces the number of data
transfers (if not the amount of data sent) by a factor of four. In spite of this reduction, this
more elegant implementation is no faster than the simpler method. For most image sizes and
numbers of tra.nsput.ers that we have timed, the simpler first method is faster or comparable
to the second. In particular, when finding the moments of a 1024 X 1024 image, the execution
times of the two eight transputer programs are virtually identical (2.484 seconds and 2.482
seconds respectively). We attribute the lack of improvement of the second implementation

to the larger overhead in buffer management that it requires compared to the first method.

3.4.3 Recursive Implementation

Extra connections are made from the basic tree structure to create a pipeline out of the com-
putational transputers in the recursive topology. The eight fransputer recursive topology is

shown in Figure 7. Once the row moments have been calculated on each transputer, the one
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dimensional recursive algorithm is executed across the computational transputers as follows.
The rightmost computational transputer ( Pr) begins by executing the one dimensional recur-
sive algorithm on its row moments. {See Figure 3.) Using the algorithm, P; determines not
only the values of the sixteen overall moments, M Prxr, K = 0,1,...,3,L =0,1,...,3 for its
rows but also those of the middle eight overall moments, PRM Pyxp, K =1,2,L=0,1,...,3
for the rows starting at its second row. When the algorithm ends, Py passes these 24 moments
to the transputer on its left, P,

After receiving these moments, Pg executes the one dimensional recursive algorithm on
its own array of row moments RM with STM set to be M P; and SPM set to PRMP;
as in Figure 3. The pseudo code for Ps in the eight transputer recursive implementation is
shown in Figure 8. STRM and SPRM, the starting values of the current and previous row
moments, are zero arrays. After this second execution of the recursive algorithm on Fs, the
resulting 24 moments M Ps and PRM Ps are passed on to Ps. This process continues down
the pipeline of transputers. After each transputer has executed the algorithm, the overall
moments for the part of the image starting at its first row have been calculated. When the
algorithm has executed on the leftmost transputer FPp, the sixteen overall image moments
have been calculated. At this time, Py passes the image moments back to the root for output.

As might be expected, the execution times for the recursive implementation have been
found to decrease as the number of transputers used increases. As is the case with the pa.ftia.l
sum implementations, we have found that the speedup graphs of the recursive implementation
are less than those of the convolution implementations. A rapid decline in the efficiency of the
implementation as the number of processors increases is also evident, We believe this decline
is due to the fact that increasing the number of transputers does reduce the time needed
to célcula,te the row moments but actually increases the time taken to calculate the overall
moments. This is because during the overall moment calculation only one computational
transputer is active at a time and adding transputers only serves to increase the number of
moment data passes required in this last instructional parallel stage of the computation. This
1s the biggest drawback of the recursive implementation. Perhaps if all the computational
transputers were to work together and at once on calculating the overall moments a faster
implementation would result. The add and multiply implementation attempts to make use

of this idea.
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The recursive implementation requires 842 double precision additions to calculate the
q P

row moments of an N X N image on an array of P processors using the one dimensional
recursive algorithm. It requires an additional 32N double precision additions and 24P double
precision data transfers to calculate the first 16 overall moments. In particular, for an array
of N processors, the algorithm requires 40N additions and 24N data transfers. Therefore,
when implemented on such an array, the algorithm clearly requires O(N) double precision

additions and data transfers.

3.4.4 Add and Multiply Implementation

In the description of our design of the regaular moment implementations, our disappointment
at the impossibility of a pure data parallel version of the two dimensional recursive algorithm
to calculate overall moments was expressed. We could not simply use it to calculate the
overall moments for each transputer’s rows and add the resulting sets of moments together
to get the moments for the entire image. The add and multiply algorithm, however, can be
used in this way to arrive at the overall image moments. The topology required is relatively
simple compared to that needed for the partial sum program. It is simply a tree structure
with the fifth (P,) and seventh (Ps) computational transputers also connected. Py and Py
are again the router transputers. The eight transputer add and multiply topology is shown
in Figure 9.

Omnce the row moments have been calculated in the add and multiply implementation, a
data parallel version of the one dimensional add arnd multiply algorithm is executed simul-
taneously on the row moments on each computational transputer. The offset of the first row
each transputer processes is used. When this has been done, the sets of 16 moments are
added up across the processors in partial sum fashion. It is for this addition that the extra
connection in the topology is needed. The first transputer (F,) ends up with the moments
and pasées them back to the root for host output. Figure 10 gives pseudo code for transputer
Py in the eight transputer add and multiply implementation. STRM and SPRM are again
ZEro arrays.

In Figure 11 the add and multiply timing results for various image sizes can be found,
Again, as the number of processors increases, the times all decrease. Figure 12 shows the

speedup graphs for these times. The speedups for the three largest image sizes are very
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similar, with the 1024 x 1024 image having the greatest speedup, and the 512 x 512 having
the next largest speedup. Note that the speedups are linear for these larger image sizes, but
less than linear for the smaller ones.

The add and multiply algorithm requires 81%2 double precision additions to calculate the
row moments of an N X N image on an array of P processors. In addition, %’ double
precision multiplications and additions are needed to calculate the first 16 overall moments
of the image rows of each processor. To add these up, it takes Ek‘;ﬂ; ~1oi16 = 16(P - 1)
double precision data transfers and 16log! additions. For an array of N processors, the add
and multiply algorithm clearly will also have linear asymptotic complexity in the number of
double precision additions and data transfers.

In contrast with the convolution implementations, our regular moment implementations
suffer from rapidly decreasing efficiencies as the number of transputers increases. The global
nature of moments entails that as the number of processors used to calculate them increases,
so too does the amount of communication needed among the processors. It is this communi-
cation increase that has resulted in the decreased efficiencies of our four and eight transputer
moment implementations. Additionally, although we did not vary topologies for our moment
implementations, we feel that the moment programs would be quite sensitive to changes in
topology. This is also clearly different from the convolution implementations.

In 1990, Chen [3] proposed efficient parallel regular moment algorithms for both linear
and two dimensional processor arrays. The algorithm proposed for the linear array is the
multi-transputer pa:r_tial sum technique we have implemented. For a two dimensional array
of processors, each of which is given a subsection of the image, Chen recommends that
the processors first collectively use the partial sum algorithm to calculate the row moments
and .a,ga.in use the partial sum procedure on these moments to calculate the overall image
moments. In a more recent article, Pan [11] showed that because Chen forgot to take the
time needed for data passing into account, the theoretical timing analysis presented in his
article is incorrect. In so doing, Pan demonstrated that Chen’s two dimensional algorithm
implemented on an N X N array of processors would have the same parallel asymptotic time
complexity of O(N) as his one dimensional algorithm implemented on an N processor linear
array when calculating the regular moments of an N X N image.

We believe that the behaviour of an implementation is most significant as image size grows
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and the number of transputers used increases. For the largest image size of 1024 x 1024, the
execution time of the eight transputer add and multiply program is 2.351 seconds and that
of the recursive implementation 2.374 seconds. These times excel the corresponding time of
2.484 seconds for the partial sum implementation.

This indicates that when implemented on the B008 in Parallel C, the add and multiply
and the recursive multi-transputer algorithms are superior to the partial sum algorithm
proposed by Chen. We have also shown that the algorithms have the same linear parallel time
complexity as the partial sum algorithm for a linear array of N SIMD or MIMD processors.

4 Performance Models

In this section, we present high level performance models of two of our multi-transputer
implementations. We ignore the overhead incurred with Parallel C inter process communica-
tion and process switching time on each transputer. Since all the implementations have the
same basic structure we have chosen to model only the best implementation for convolution
(ring} and regular moments (add and multiply). We believe that the models for the other
implementations would be similar. Since the parameters were chosen for runs where N = 512
and M = 7, the models work best for these values of N and M. However, the models may
also be applicable for other values of N and M. In our models, the following notation is
used: P denotes the number of transputers used; N denotes the image size and Ts(B, T)
denotes the time in Seconds needed to send B bytes to each of T transputers on a path from

the root using the packet method.

4.1 Convolution Model

4.1.1 Notation

In this model, the following additional notation is used:
M denotes the mask size.

Ta(N, M, P) denotes the total time in seconds needed to convolve an N x N image with an

M x M mask using the ring implementation with P computational transputers.
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Tep(N, M, P) denotes the computation time in seconds needed to convolve an N X N image

with an M X M mask using the ring implementation with P computational transputers.

Tem(N, M, P) denotes the data communication time in seconds needed to convolve an N x N
image with an M X M mask using the ring implementation with P computational

transputers.

Ton{N, M) denotes the time in seconds needed to convolve an N X N image with an M x M

mask using the single transputer convolution program.

4.1.2 Computation Time

In the single transputer convolution program, N2M? floating point additions and N2Af2
multiplications and 2N2M? array references are required. In addition, there are 2N2M
array offset additions performed. Finally, N2 function calls and array references are needed.

Therefore,
Ton N, M)~ by N°M? + ka N2 M + ksN?

The values of the constants in the above equation are found to be k; ~ 5.91 x 1078,
By ~ 3.26 x 1078, and k3 ~ 1.26 X 1075, k3 was determined by timing the program with only
the N2 loop executing. This was accomplished by running the program with the N M? loop
commented out. k3 was set to be the execution time divided by N2, Next, k; was set to be
the execution time of the N M? loop divided by N M?2. To get this time, the execution time
of the N2 loop was subtracted from the execution time of the N M? loop and the N? loop.
Lastly, k, was set to be the execution time of the N2M? loop divided by N2M?, Substituting

these values of constants, we get
Ton(N, M)~ 591 x 107°N?M? +3.26 X 107°N2M + 1.26 x 105 N2

These computations are spread evenly among the P computational transputers used.

Therefore, we should get

T,
To(N, M, P) = Tenl 2 20)
_ 591 x 10"5N2M? { 3.26 x 10"SN2M + 1.26 x 10-5N?
B P
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4.1.3 Communication Time

BEach image consists of N2 pixels. In our multi-tra.nsputer implementations each computa-
tional transputer is generally passed 1/P of the pixels or &~ plxels In the ring implementa-
tion, the root passes the pixels to each of P/2 transputers down both branches of the ring at
the same time using the packet method. This takes T,,,(NT=l ) 3;—). The root must first separate
the image into P packets for passing. This takes time proportional to the number of pixels in
the array, N2, Additional time is required to send the packets down the line of transputers.
This takes time proportional to the number of bytes in the packet (N?’) and to the number
of transputers in the line (P/2). Therefore,
T 2y & ki + k(2D )

We have created a simple multi-tra.nsputer program that simply uses the packet method
to distribute sets of image rows to several transputers. Experimentafion with this program
has enabled us to determine k; and k;. In general, there may be extra overhead involved in
the initial data pass than that needed in this simple program. With that fact in mind, we
have set k; to be 2.25x 1077 and &; to be 6.42 x 107, slightly higher than the timing results
of the data passing program indicate they should be. Substituting these values, we get,

N2 P
b5 2)_225>< 107N? + 6.42 x 10“7(—)( =)
=2.25x 107" N? 4 3.21 x 107" N?

= 5.46 X 10~ 7 N'?

The data pass is repeated in reverse at the end of the program when the convolved image

is passed back to the root. Therefore, the total communication time,

NZ P
Tcm(N, M, P) ~ 2Tps(?, E)

=2%x 546 x 107" N?

=1.09 x 10 8N?
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4.1.4 Overall Time
The total execution time, Ty is composed of Tcé and Topm, t.e.,
Tu(N,M,P) = T{N,M, P) + Torn(N, M, P)

Therefore,

Tu(N, M, P) ~ 5.91><10-51\73M”+3.26><}1)cn-°1\r=‘ﬁ,:t+1.26><10-51'\!2 +1.09 x 106N2. In Figure 13,

the Jast function is plotted for P = 2, 4, 8 with N = 512 and M = 7. The actual timing
results for the ring implementatijon are also plotted. The actual times are slightly more than
the estimated times. The discrepancy may be explained as follows. In our communication
model, we have not taken into account the time needed to send the convolution mask down
each branch of the ring. Nor have we allowed for the extra time needed to send the borders
of zeroes to the computational transputers. Our setting of the constants in the model (see
Section 4.1.3) may compensate for this. However, we have also ignofed the computé,tiona.l

time needed to add the borders to the image in the root.

4.2 Regular Moment Model
4.2.1 Notatio.n

The additional notation used in this model is as follows:

Tu(N, P) denotes the total time in seconds needed to calculate the first 16 moments of
an N X N image using the add and multiply implementation with P computational

transputers.

Tep(N, P) denotes the computation time in seconds needed to calculate the first 16 moments
of an N x N image using the add and multiply implementation with P computational

transputers.

Tem(N, P) denotes the data communication time in seconds needed to calculate the first
16 moments of an N X N image using the add and multiply implementation with P

computational transputers.

Ten(N) denotes the time in seconds needed to calculate the first 16 moments of an N x N

image using the single transputer hybrid recursive/add and multiply program.
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4.2.2 Computation Time

In the single transputer implementation of the recursive/add and multiply hybrid algorithm,
8N? additions and N? array references are required. There are also 16 N multiplications and

additions and N array offset additions needed. Consequently, we get
Tan(N) 2 ky N2+ kpN =~ 1.32 X 1075N? + 1.66 x 107*N

The empirical values are k; ~ 1.32 x 105 and k; ~ 1.66 x 10~%. These were determined
in a similar manner to the computational constants in the convolution model.

In the last stage of the add and multiply implementation, the 16 moments calculated by
the P processors are added up in partial sum fashion across the network. This should take
time proportional to log, P, i.e., this time equals k;log, P for some k;. For a 512 x 512
image, k; ~ 1.47 X 1072, As with the convolution ring implement_a?'tion, all computation

except this last addition is spread evenly among the P computational transputers. Thas,

N
Tep(N, P) ~ T’—’}(f) +1.47 x 10~%log, P

_ 132x 107°N2 +1.66 x 107N

P + 147 X 1072 1og, P

4.2.3 Communication Time

In the add and multiply implementation, the image is distributed to the P transputers using
the packet method as is the case with the ring convolution implementation. This again takes
Tp,(%z', %) In the regular moment implementations, however, there is no convolved image to
pass back to the root as is the case with convolution. Using the same values for the constants

in the convolution ring medel for this initial data pass, we get

Tera(N,P) =~ 5.46 x 1077 N?

4.2.4 Overall Time
We know that Ty(N, P) ~ Tep(N, P} + Tem(N, P). Hence,

1.32x 1075N2 + 1.66 x 104N

Tg](N,P)E P

+1.47 x 10 %log, P+ 5.46 x 10~ " N?
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In Figure 14, the above function is plotted for P = 2, 4, 8 with N = 512. The actual timing -
results for the add and multiply implementation are also plotted. This time our estimates
are slightly greater than the actual values. We believe that this model is inflated because
the regular moment implementations require little extra overhead in the initial data pass.
For simplicity, the same values for the constants involved in the initial data pass model have
been used in both the convolution and regular moment models. More accurate models might
be obtained in the following manner. First, the values of the constants used in the initial
data pass model might be reduced. Next, an extra term could be added to the computational
time part of the convolution model to account for the padding of the image with zeros done
in the root. Lastly, the extra data sent (the zero borders and the convolution mask) might

be accounted for in the communication aspect of the convolution model.

5 Conclusion

We have presented parallel implementations of the image processing techniques of convo-
lution and regular moments on multiple transputers programmed with Parallel C. Several
single transputer programs were first created in preparation for multi-transputer program-
ming. Eight multi-transputer programs have been developed and analyzed. We have created
~ performance models of two of the multi-transputer programs.

Our results are as follows. Most importantly, we have observed linear speedups for all the
multi-transputer convolution programs. The multi-transputer regular moment programs are
also considerably faéter than their single transputer counterparts. However, as the number
of transputers increases, the efficiencies of the programs decrease at a greater rate than in
the convolution implementations. This is a symptom of the increase in communication over-
head that parallel implementations of global techniques undergo as the number of processors
increases. Local techniques, such as convolution, are immune to this effect.

In addition, we feel that the following resulis are significant. First, we have shown that
the packet method of data transmission is superior to the grouped technique of passing data.
On the same topic of data communication, the first convolution pipeline implementation
and the alternative partial sum implementation indicate that reducing the amount of data

transferred in an implementation or the number of transfers required does not always result

25




in faster multi-transputer programs. We have also learned that topology selection does not
greatly influence the efficiency of multi-transputer implementations on the B008 of pure data
parallel algorithms such as those we created for convolution. Also, our idea of making each
transputer responsible for processing several rows of the image seems to work well, especially

for implementing global techniques like moments and the Fourier transform.
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Figure 1: Single Transputer Convolution Execution Times For Various Mask Sizes

MASK SIZE | TIME(SEC)
3x3 5.166
5x5 11.73
T T 21.31

13 x 13 68.02

Table 1: Single Transputer Convolution Execution Times in Seconds for a 256 x 256 Image

AAM(F, Ny, Ny, of fset, M)
for:=0..N, -}
for{=10.3
M1, z) =0
for j = DNZ —1
 M(Li)+ = FG,j)
F(i,j)x = (j + of fset + 1)
end for
end for
end for

END

Figure 2: One Dimensional Add and Multiply Algorithm for Moment Calculation
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REC(F,N,,N,;, STM,SPM, M, PRM)
fori=0.N; -1

M0 = STM(0,7)

M1 =8TM(1,3)

M2 = STM(2,7)

M3 = 5TM(3,%)

PRM1 = SPM(1,%)

PRM2 = SPM(2,1)

forj=0.N; -1
MO+ = F(i, N, — 1 —3)
Mi4+ = MO
M2+ = M1+ PRM1
M3+ = M2+ M2+ PRM2 — M1

PRM1 = M1
PRM?2 = M2
end for
M(O,i) = M0
M(l,i) = M1
M(2,‘£) = M2
M(3,3) = M3

PRM(I,i) = PRM1
PRM(2,£) = PRM?2
end for

END

Figure 3: One Dimensional Recursive Algorithm for Moment Calculation

ALGORITHM | TIME(SEC)
straightforward 342.8
coeflicient 17.01
column products 12.6
recursive 0.8803
add and maultiply 2.484
partial sum 9.322
recurse/multiply 0.9055
recurse/partial 1.036

Table 2: Single Transputer Regular Moment Execution Times in Seconds for a 256 x 256 Image
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Figure 4: Convolution Ring Execution Times for a 512 x 512 Image
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Figure 5: Convolution Ring Speedups for a 512 x 512 Image
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Figure 6: Eight Transputer Partial Sum Topology

Root

Figure 7. Eight Transputer Recursive Topology
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BEGIN
get the image dimension N from P
get the image rows 3N/4 to TN/8 —1 F from P,
REC(F,N/8, N,STRM,SPRM,RM,PRRM)
get 16 moments M P, from P,
get 8 moments PRM P; from Py
REC(RM,4,N/8, MP,, PRM P;, M Ps, PRM F;)
send 16 moments M Py to P
send 8 moments PRM P to P

END '

Figure 8: Eight Transputer Recursive Pseudo Code for Pq

Root

Figure 9: Eight Transputer Add and Multiply Topology
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BEGIN
get the image dimension N from Py
get the image rows N/2 to SN/8 — 1 F from P,
REC(F,N/8,N,STRM,SPRM,RM, PRRM)
AAM(RM,4,N/8,N/2, M)
get 16 overall moments M P from P;
for k=10.3
forl=10.3
Mk, )+ = MP(k, 1)
end for '
end for
get 16 overall moments MPFg from P
for £k =10..3
forl=20.3
Mk, D)+ = MPs(k,1)
end for
end for
send 16 overall moments M to F,
END

Figure 10: Eight Transputer Add and Multiply Pseudo Code for P,
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Figure 11: Add and Multiply Execution Times (timel: 64 x 64 Image, 128 x 128 Image, 256 x 256
Image; time2: 512 x 512 Image, 1024 x 1024 Image)
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Figure 13: Comparison of Convolution Execution Times for a 512 x 512 Image and a 7 x 7 Mask
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Figure 14: Comparison of Regular Moment Execution Times for a 512 x 512 Image
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