SPATIAL INDEXING OF LARGE VOLUME.
BATHYMETRIC DATA SETS

by
Feng Gao
TRS3-081 December 1993

This is an unaltered version of the author's
M.Sc.{CS) Thesis

Faculty of Computer Science
University of New Brunswick
P.O. Box 4400
Fredericton, N.B.
Canada E3B 5A3

Phone: (506) 453-4566
Fax: (506) 453-3566

SPATIAL INDEXING OF LARGE VOLUME
BATHYMETRIC DATA SETS

by
Feng Gao

M.Sc.E., Tsinghua University, Beijing, China, 1987
B.Sc.E., Beijing College of Architecture and Civil Engineering, Beijing, China, 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science (Computer Science)
in the Faculty
of

Computer Science
This thesis is accepted
Dean of Graduate Studies
THE UNIVERSITY OF NEW BRUNSWICK

December 1993
© Feng Gao, 1993

SPATIAL INDEXING OF LARGE VOLUME
BATHYMETRIC DATA SETS

by
Feng Gao

‘M.Sc.E., Tsinghua University, Beijing,_C'hina, 1987
B.Sc.E., Beijing College of Architecture and Civil Engineering, Beijing, China, 1984

A THESIS SUBMITTED IN PARTTAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science (Computer Science)
in the Faculty
of

Computer Science
This thesis is accepted
Dean of Graduate Studies and Research
THE UNIVERSITY OF NEW BRUNSWICK

December 1993
© Feng Gao, 1993

ABSTRACT

Three spatial index structures based on Morton code sequence and R-tree indices
were designed and hﬁplemcntctl Indices for the Hydrographic Data Cleaning System
(HDCS) were built with Morton sequence and R-free structures directly implemented in
the C language, and with Morton sequence structures managed by the INGRES relational
database management system. A modified deletion algorithm for the R-tree index structure

was developed.

To test the software and to evalvate the implémentation of the structures,
experiments were carried out with a bathymetric data set suﬁeyed in Conception Bay,
Canada. Spanning four days, the survey includes 46 lines consisting of 54,192 profiles
each of which contains 32 sounding points. The total amount of data is 128.9 megabytes.
It is shown that R-tree indexing is superior to Morton sequence indexing by providing five
to nine times faster range search speed, occupying less disk space, and better supporting'
the range deletion operation. Range deletion with the modified algorithm was 11,7 times
faster, on average, than Guttman's original deletion algorithm. The experiment also
showed that, on average, the INGRES RDBMS build time was 31.7 times slower than
building the Morton sequence implemchtcd in C, search time is 176 times slower than

searching the Morton sequence, and occupied 4.4 times more space.

The three spatial index structures, Morton sequence, R-tree and INGRES Morton
sequence, required additional 1.9%, 1.7% and 7.9% of the original file storage for the
HDCS data, respectively.

TABLE OF CONTENTS

ABSTRACT. ' i

TABLE OF CONTENTS i
LIST OF FIGURES v
LIST OF TABLES vii
ACKNOWLEDGMENTS viii
1 INTRODUCTION 1
1.1 Range Queries and Spatial INAEXINGcorerrrrrrrerverererserarsresssassserees 1
1.1.1 Spatial Data.....ccviiciisircrinerersreresssssssessssesssesnemsesseessersassss 1
1.1.2 Range QUETY ..ccvvrenrrersvcsssroresssossorosvosserssersaserssesnessssessenee 2
1.2 Data Structures for Spatial Indexingcvvceerenen. rersesatesaaeareareane 4
1.2.1 INTOQUCHION «ocoeirrerececrrecarnreresecsnessesssessarnennarnersessnssssene 4
1.2.2 Grid File Structures ...c..covevivisiercccrenrirarsreresssssssessssssessans 5
1.2.3 Tree Indexing SIIUCHUTESeevverrerveniererssienansvsressssssnonnes 6
1.2.3.1 QUAd TIEES cocvvvereivveeeniieineservsnsiteressssesssssssessesans 7
1.2.3.2 K-A TICES .vovviiirieminrarsrenensasssesessasssessesseoneessenser 7
1.2.3.3 Range TIeeS...vvrerreiiersnessoasinmnnrersersrecssseesssnassns 8
1.2.3.4 R-TTEESviiieeiiniiisiicrcreneneearereresesssssvesssnesmnennas 9
1.2.4 Linear Indexing StUCIUTIES......corvrrerrrerrersrsreersrereersenessesasses 9
1.2.5 Regular Tessellationccceeeverrreresrvierserssurssssnessssnsessones 11
1.3 Thesis QUtiNe......ovvviiiiirinrrarereeracarererassasesssseranssesrsrasssnsseersessorssas 13
2 THE HDCS GENERAL STRUCTURES... 16
2.1 Ocean Mapping PIOJECE ...cccveeririerreerersreneseressesseserseressessssssssssessssas 16
2.2 HDCS Data and File SITUCIUTESceeeeeeererrrinerrnrnronsseersessssssessassens 16
22,1 HDCS File Organization........c.ccecveeerecraessesearensinsnssnsseserens 18
2.2.2 HDCS File Structures............... bariressseraresaeesisssssessssasantans 19
2.3 Spatial Indexing in HDCSccvcvvirernrnrevnnenieissainrerereereresrsssesessons 21
2.4 Spatial Searches in HDCS........covveiervineniieninrninesersseosssessessesensisoens 24
3 MORTON CODE INDEXING 26
3.1 MOTtOn COUES «.cueruremrerrrcrrencsarsvorssssssssssossninarsssarerarasssesnosessarsersesreer 2O
3.1.1 Encoding Morton Codes.....ceumarirrreerveoriesseerserensicsssessns 26
3.1.2 Decoding Morton Codesc.ceencrenenercnsneersessersnssarene 27
3.2 Morton Sequence of POINtS.......coviieariirennsissensiessssiessmeesscssasenns 28
3.2.1 MOItON SEQUENCE ..uverrereerrerenserrerrrarereerarsreressasssossessesssssnns 28
3.2.2 Characters of MOIton SEqUENCEScevreverervvsverressessersans 29
3.2.3 Morton Sequence of Data POIntSevvveerianiiesvereecnvinns 32
3.3 Range Search Using Morton SEqUENCe ...c..eeevevavvverreviserrsessessnenns 33
3.3.1 Linear Range Search Algorithm on Morton Sequence....... 34

ii

i

3.3.2 Over-search Problems. ... ciciemsiiisresresessrnssssronssnsssoness 35
3.3.3 Modified Range Search AlgorithM........ccccereecercceeccncsasnes 37
3.4 Morton Sequence Indexing of HDCS Profiles........cocvensrsccrenssreeniin- 38
3.4.1 HDCS Spatial INAEXINgccverernererrcreseerenenssscssesonsonnorsasorse 39
3.4.2 Spatial Resolution of 64-bit Morton Codecccocvveerrnenenne 39
3.4.3 Encoding and Decoding of Morton Codes in HDCS.......... 40
3.4.4 TIDCS Index File Structiresccccrmeneesereneessnesnssssessnserees 41
3.4.5 Creating Spatial Index Filesc.cccersvnesiscrerciesscreossanseraares 42
3.4.6 Range Searches Using the Index.........ccocevrrorenrecsvssecsinasras 44
4 RELATIONAL DATABASE MORTON CODE INDEXING. —
4.1 INrOQUCHION...cciirieiiiiiisiasirsrosssssrsssressronessesassassrbonsnessesonsonsornenseans 47
4.2 Relational Tables for Morton Code Indexing.........ouueneceenninnennines 47
4.3 Range Search Using the INGRES Relational Database.................... 30
4.4 Space Requirement Calculation.........cveevierrcerenrecesaecirvessccsnncassaneens 51
5 R-TREE SPATIAL INDEXING : 53
5.1 R-tree Structure and Its Variations......e.veerereveresevarenceresassancsnsrerses 53
3.2 R-tree File Structures for HDCS.........covvivrrrverniriressesnrserenrenss 57
5.3 Building R-tree INAICESocrerrereererreresrerassessennesesssssessossascaseranesroses 63
5.4 Range Search Using R-tree INAIiCES ...veeevierreiereierirneenranianceciessnneesas 64
5.5 Linking Deleted Records in R-tTEeS......corevverrvererresrererssarsessesarasans 65
5.6 Deleting Profiles From R-tree INAICESooererrveceenersseresssrsnssssserases 65
5.7 Modified Deletion AIZOHthIM coviiciiicirvesrirerssrreversnrereressessessessasesaere 66
6 COMPARISON OF THE INDEXING METHODS 70
6.1 Experimental DesCHPion ... iiccieisesssissssnovseriressersssessesvessarenses 70
. 6.2 Times for Building Morton Code and R-tree Spatial Indices............ 75
6.3 Times for Searching Morton Code and R-tree Spatial Indices.......... 76
6.4 Times For Deleting Profiles from R-tree Spatial Indicescevvenn.. 80
6.5 Times for Buildin g and Searching INGRES Morton Code
INAICES c1varrerrersasivnnsorsrsssororsessissssoresssssssusssussseressssseronsansosnessessrnses 82
6.6 Space Requirement of the Three Spatial Indexing Approaches 83
6.7 Advantages and Disadvantages of the Three Indexing
ApProaches......oovevrvavens et aste st s s s s s e R e R s s e aeraeranes 86
7 SUMMARY AND CONCLUSION 88
REFERENCES |

APPENDIX A: STRUCTURES ACCOMMODATING
SEARCH RESULTS

- APPENDIX B: ALGORITHMS FOR SEARCHING MORTON
SEQUENCE INDICES IN HDCS

APPENDIX C: AN EXAMPLE OF USING DYNAMIC SQL TO
RETRIEVE MORTON CODES FROM AN
INGRES TABLE

94

99

104

APPENDIX D: THE MODIFIED R-TREE DELETION
ALGORITHMS

APPENDIX E: A DETAILED LIST OF HDCS DATA USED FOR
' THE EXPERIMENT

109

112

VITA

iv

114

LIST OF FIGURES

RANZE QUETY tYPLS. ccviriivirersssssismsststsisissssssassstsossssssassssnsesorsn 3

Figure 1.1
Figure 1.2 Grid file representation of a data SPACE.eueesercrsrersanescsranecrersnsases 6
Figure 1.3 Liner ordering of 2D SPACE.....ccoirsrrirersrsrorsrrnssssrrnersransressonersessnsanes 10
Figure 1.4 Space decomposition using three regular tessellations.........evseunne. 12
Figure 1.5 Tessellations at different resolutions and

their Euclidean plane tiles. ... rresessresrssesssnssresanenressas 13
Figure 2.1 Hydrographic data cleaning ProCess. «...ucrecessessssssesssocsesssssssasasaes 17
Figure 2.2 A line and its SOUNGINES....ccrversrvsssnesrnesrsrorsisnsassressnsssarsssasessoseressness 18
Figure 2.3 Hierarchical organization of ocean mapping data in HDCS.............. 19
Figure 2.4 Index and data file general structure in HDCS.vcocevereenerceerenenns 20
Figure 2.5 Position/Depth file SIUCIUIC. cuvecrvserssesriessecsassasssasssanssssassasessesesssnss 21
Figure 2.6 Hierarchical spatial index SUCLUIES.cocomircecssasuaisarscsererssesressaresn 23
Figure 2.7 Three step access for inside profile teSting. .c.ce.oerrerrerrsverrsrserressereares 24
Figure 3.1 Points in binary coordinates and their Morton codes.cocnvenuennne. 27
Figure 3.2 Calculating Morton codes by interleaving bits......... sessasasensnararseses 27
Figure 3.3 Two Morton sequences for 2D POINLS. ...uvveeererereerserereessesarseseoreons 29
Figure 3.4 Quad tree related decomposition and recursion of

A MOTTON SEUENCE. vurevreresesressrrersrsssorsrassssrssssrassrasssnsasssssssssnssssassass 30
Figure 3.5 Numbering scheme in base 4 digits.cocvcvimimoicrcrnrerecereneresrececanes 31
Figure 3.6 The walking pattern of a MOMON SEQUENCE. .vvevreeereeessnssrsssssssssasonas 31
Figure 3.7 Data points and the corresponding Morton sequence........coverreeenee. 33
Figure 3.8 The Morton sequence and a query window.cveevvcerssceniensnessens 34
Figure 3.9 A range search on a Morton sequence and

its over-search problem. ... rresseeretetessas et nsrntenrreatessresnane 36
Figure 3.10 Relation of Morton sequence and query windowccccccceverecancens 38
Figure 3.11 Possible cases Morton sequence touching or

CLOSSINE QW EAZES ..ecrrvemrrirrerersssononsrrerssrnrersrasesssrsresssnsnessssssesasses 45
Figure 3.12 A range search on a MOION SEQUENCE.uivueivsesssinsesssecssrsonses 46
Figure 5.1 An R-tree and the corresponding MBRS.ccevuveeevereresesersssasonsins 54
Figure 5.2 The R-tree and its coverage and overlay problem.veeeveeerrrrvennnns 55
Figure 5.3 An R*-tree and the corresponding object MBRS. ...ccvvevvecnieninniinnn. 57
Figure 5.4 Directory spatial index files.ccuvirveinniiriciiiiinnrssencsreceeresrorecseace 61
Figure 5.5 A simple R-tree for profile MBRS......cocrveverirrernreeersiosssnesessessssnansens 67
Figure 6.1 Surveyed area in Conception Bay off the north-east coast
: of NewfoundIand.icivvueerserrerusssemnmmcnninnneneennesessassisnsnsnoiesssens 71
Figure 6.2 Algorithm for Morton code and R-tree index build and

SEATCH EXPEIIMENES vevrvrerrerrrieerorersasssaioransssarsssossssssssnsosssessanasasraraarer 73
Figure 6.3 Algorithm for range deletion exXperiment.ccvervrerenrenccencesseneannne 74
Figure 6.4 Times for building R-tree indices for HDCS using different

DIANCH fACIOTS. oviiircrceivecverrerrrntererecrrnrerersrararereserasearerssssssssasesosoner 76
Figure 6.5 Times for searching Morton code and R-tree indices in HDCS.79
Figure 6.6 Average time used in the deletion of different ranges.c.cecvvvvens 81

Figure 6.7 Times used in searching INGRES Morton code indices.ccvenne.. 82
Figure 6.8 Space requirement for Morton code, R-tree and

INGRES MC INGICES. c1vverenerrivesresssrnesrsronssssnsssssssssssersnronsersaeessasaess 85
Figure 6.9 Space requirement for Morton code and R-tree indices.ovovueenne. 85

Table 1.1
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 4.1
Table 4.2
Table 4.3
Table 5.1
Table 5.2

Table 5.3
Table 5.4

Table 5.5
Table 5.6
Table 6.1
Table 6.2
Table 6.3

Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9

Table 6.10
Table 6.11

Table 6.12
Table 7.1

LIST OF TABLES

Comparison of linear orderings of 2D SPACE.......ccrerrrerrersineresrsrssaenns 11
A type definition for a 64-bit Morton code.ccmevinsirssnsenonsrens 39
Directory spatial index data file header structure.orvereeerenrnenns 42
Directory spatial index data file record Structure.oueveernvreerersens 43
Profile spatial index data file header STUCLULE.evrererererernrereserasanes 43
Profile spatial index data file record StUCUTE,eveevererenenecaenenenne 44
INGRES table fOr PIOJECES. .ucvrveecrvrreresrrressriseerssecsssesssasssssesssssssersess 48
INGRES table for GireCtories.....ccuirrrassrisncnrerossrrsnsvensrsanesnsaessessanes 49 .
INGRES Table for Profiles.......iocssrissssorsncsuorersonvanencssessnesassasasansor 49
Directory spatial index file (File1) hcadcr SHUCLUIE .oveeerrisiasvsosserases 59
Directory spatial index file (File1) data structure for

RAATEE NOGES .vovvevivvieitiiiieiisnsnrraresresessessassnessessenassessaenssssassrans 60
Directory spatial index file (File2) header structurecocvereervruenene 60
Directory spatial index file (File2) data structure

for R-tree leaf nodes of Filel.......cccveecreerrecerrasseesainanesesaecasasansaranens 60
Header record structure for the profile spatial mdex 1 (I 62
Structure of one record of the profile spatial index file.........cceuen.... 63
Query windows and their COVETAZE.crvvrrrrrervessereressrnsressesssssssasses 72
Profile ranges to delete for profile deletion experiment.........coree.... 74
Times (in seconds) for building Morton code and

RATEE INQHCES. ..vvivivicrvirrrenreneressresasesssenesaesasssersesasssersosasssesressassrores 75
Times (in seconds) for searching Morton code indices.ceu.n... 77
Times (in seconds) for searching R-tree (M=4) indices.cvouvrrenas 77
Times (in seconds) for searching R-tree (M=5) indices.cvrnenu. 78
Times (in seconds) for searching R-tree (M=6) indices.ovue... 78
Times (in seconds) for searching R-tree (M=7) indices.cereernn.. 79
Times (in seconds) for deleting R-tree indices

using Guttman's algorithm.c.ciiemnireinrnnesesressesssesssrsserinsns 80
Times (in seconds) for deleting R-tree indices

using modified algorithm.ccrrreerreercecrenereassrcsssssssesinesnereerares 81
Times (in seconds) for searching INGRES Morton code indices.82
Number of kilobytes required by the three approaches.cc..ccvne.n. 84
Comparison of times (in seconds) for building and searching

index files and the index file’s space requirements (in KB).............. 89

vii

ACKNOWLEDGMENTS

I wish to express sincere thanks to my supervisor, Dr, Bradford G. Nickerson, for
his suggestion of this subject and consistént guidance through each phase of this research.
His valuable advice and insightful thoughts have greatly contributed in shaping this
research work. I would also like to thank Dr. Lev Goldfarb, Dr. Joseph. D. Horton, and
Dr. Y. C. Lee, who read the thesis drafts and provided valuable comments and

suggestions.

Thanks are also due to the many individuals who contributed toward this thesis,
especially Mr. Leonard Slipp for his assistance in acquiring the HDCS data, and Ms. Tracy
Gulliver for her help in solving my problems with the INGRES database management

system.,

Great appreciation should also be extehded to Ocean Mapping Group for funding

my research work.

Especially, I would like to express my deep indebtedness to Dr. C. Ann Cameron
for her encouragement and help through the days, and maternally turning her house into

my home after I arrived in Fredericton.

viii

CHAPTER ONE

INTRODUCTION

| 1.1 Range Queries and Spatial Indexing

1.1.1 Spatial Data -

Computer processing of spatial data has grown substantially in recent years as the
power of computers has increased. We will continue to demand more spatial data
proces sing from computers since visual interpretation of our surroundings is so natural for
humans. The rapid advance in computing technology also provides the ability to handle
large volumes of spatial data. This increasing ability makes it possible to organize, store,.

retrieve, generate and distribute spatial data more efficiently.

Data capturing techniques are becoming more and more sophisticated, and spatial
data with higher resolutions are being acquired. The rapid advance in technology yields
tremendous amounts of spatial data, Generally, a fourfold increase in data volume results

by doubling the 5patid1 resolution [Goodchild, 1989].

Spatial data are rich in meaning, including not only locational but also topological
information, stored either explicitly or implicitly. From the data we can acquire the

locations and shapes of the objects, as well as their relation with other objects.

Five primitive types can be used to represent spatial objects: a point, a line, a
polygon, a surface and a volume. Points can be considered as a Basic type, since, no matter
how complicated an object is, it can be ultimately decomposed into points. Mathematical
methods can also be employed to approximate any object using point data. A complicated
object caﬁ also be represented by a representative point such as the centroid of the object
or the corners of its minimal bounding rectangle. Because of this, spatial operations for

points can also be used for the objects of the other four types.

1.1.2 Range Query

The range query is a frequent operation performed on spatial objects. It ban be
described as retrieving or counting a collection of spaﬁal data. In processing a query, two
types of activities are involved. Firstly, given a set of spatial data, a search is required.
The search, containing a sequence of comparisons, leads to a subset of the spatial data.
Researchers in this area are trying to minimize search time by employing different search
algorithms and different underlying data structures. Secondly, retrieval is involved to
assemble the query results. For example, a typical one-dimensional range search requires
retrieval of all the points within the rangé [x1, x2] amdng N points ordered along the x-axis.
The two activities can be described as using binary search to find x,, and sequentially
collecting each point along the x-axis in increasing x order, until a point whose value is

greater or equal to X, is reached.

a. An orthogonal range query b. A circular range query c. A polygonal range query

Figure 1.1 Range query types.

A query has standard geometric shape [Preparata, F. P., and Shamos, M. I, 1985].
In a two-dimensional space, three forms of range queries can be specified: orthogonal,
circular, and polygonal range query (Figure 1.1). The first of the three is the simplest. It

only needs comparison in the axis directions.

Overhead is always a problem in range search, since spatial data must be physically
stored on a medium such as a disc. Reading data from the medium or writing data to it
involves relative movement of the disc heads. By the nature of this disc movement, spatial
data can only be stored on the disc as a sequence of binary digital numbers. Two
locationally close data, therefore, may not be close on the disk, and a range search
operation may require substantial disc head movement. This results in a slow range search

time.

There are two resolutions to this problem. At a lower level, spatially close data
should be kept in a physically adjacent location, typically in a disc page; at a logical level, a
spatial indexing mechanism can be used. Usually those two methods are used joiﬁtly to

reduce the overhead in performing a range query.

1.2 Data Structures for Spatial Indexing

1.2.1 Introduction

Carrying locational and topological meaning, spatial data are far more complicated
than non-spatial data. These implicit meanings arise from human interpretation of the
spatial data. It is realized thﬁt'traditional Linear indexing methods are not well suited to the
non-zero size objects such as lines and polygons [Preparata and Shamos 1985; Samet
1990a; Abel and Mark 1990]. Because of this, we cannot simply handle the spatial data in
the way we process non-spatial data. For example, we cannot simply sort the spatial data

and still keep its property in the space [Wood, 1993].

In order to speed up range searches in geographic information systems and digital
mapping, advanced indexing mechanisms for spatial data are used. Numerous hierarchical
spatial data structures have been introduced in indexing multi-dimensional objccts..
Generally, spatial data structures are more complicated than non-spatial data structures.
This is required by the applications, e.g., range searches, on the spatial data, since there is
no total ordering for them [Wood, 1993]. The field of spatial data structures is a very
active research afea. New proficient data structures_ are continuously being created; old
structures are being improved so that they can handle more sophisticated spatial data at a

higher efficiency.

Spatial data can be represented in two approaches: object-space representation
and image-space representation. The former is more object-oriented than the latter, and
both representations tend to approximate each other [Samet and Webber 1988]. The first

approach is based on the observation that complex objects consist of sub-objects which, in

furn, are complex objects of other re}aﬁvély simple sub-objects. Hierarchical structures
can be used to represent objects. An R-tree is an example of this method (see section
1.2.3.4). A typical image-space representation in two-dimensional space is a quadtree.
Regions close tb each other are organized m the tree as one object. Both object-space and

image-space representations are similar to each other in some extent.

Spatial structures, according to how they organize the data, fall into the following
four categories: grid files, tree structures, lincar ordéﬁngs, and tessellations. These
structures and their usage in range searches are viewed briefly with emphasis on the tree

structures and linear orderings.

1.2.2 Grid File Structures

Grid file structures were first introduced by Nievergelt [1984]. The idea behind
grid file structures is to organize data space. Figure 1.2a is a space housing point data. It is
separated by grid lines into grid blocks. Usually blocks are rectangles, having maximum m
points in each. With data being held in a physical unit called a bucket, a block maintains
the address of the unit. One bucket may store points of more than one block. Updating a
grid file involves splitting and merging blocks and buckets as data are added into or

deleted from the space.

¢
* ' —-_) "
*] ' . -1
] . | . e I
a. A space with b. Space partition and its buckets c.Agridfileanda
point data range search

Figure 1.2 Grid file representation of a data space,

A range search spans a set of grid blocks. The blocks intersecting the range
borders, or bordering grid blocks, may have data outside the query, while all the non-
bordering grid blocks (the shaded grid blocks in Figure 1.2¢) accommodate within-the-

range points.

An adaptive grid file can also be used to find line intersections and to solve point-
in-polygon problems [Franklin, 1984].

1.2.3 Tree Indexing Structures

Another commonly used approach is building spatial indices using hierarchical tree
structures. The major advantage of these structures is they can rapidly focus on the data
subsets of interest. This ability "results in an efficient representation and in improved

execution times {Samet, 1990a]."

The most well-known tree structures are quad trees, k-d trees, segment trees,

range trees, and R-trees.

1.2.3.1 Quad Trees

Constructing a quad tree for point data requires recursively decomposing a data
space into four disjoint congruent square regions, or quadrants, until each quadrant has
less than m points. A tree can be built accordingly with its leaf nodes accommodating
addresses to the point data and its non-leaf ones pointing to the nodes of a lower level
[Samet 1990a, Wood 1993]. |

As pointed out by Wood [1993], a range query on a quad tree, starting at the root,
may be preserved as long as it‘ 15 completely within a quadrant, or eventually split into
semi-range query, quarterplane query, slab query, or half plane query. If we have n
points, therefore, a range search reporting r points takes O(r + JE) time, in the worst

case, on a quad tree of minimum height [log,n].

1.2.3.2 k-d Trees

Samet [1990a] identified the major disadvantages of the k-dimensional point quad
trees: comparirfg k dimensional keys rather than ofmly one at each node in a search,
requiring a large amount of space for each node, and wasting space at non-leaf nodes due

to the NIL pointers. Those deficiencies, however, can be reduced by using a k-d tree.

A k-d tree can be built by recursively subdividing the space in only one dimension,
For example, we create a 2-d tree in two dimensions by alternatively using the x-
coordinate and y-coordinate as discriminators at different levels of the tree. The space for
a k-d tree is somewhat less than for a point quadtree since the level of a tree implies its

discriminator,

Range searches are performed similar to the way we conduct a binary search, If a
node is outside a query, we can avoid searching the branch of the tree rooted at this node.
Only when the node is in the range, further searches for both ranges are needed. The time
required for a worst case range search is O(k ') with a k-d tree of n points [Samet

1990a].

1.2.3.3 Range Trees

Range trees are designed to retrieve all the points falling within a given range.
Comparing to the guadtree and the 4-d tree, the range tree is "an asymptotically faster
search structure [Samét, 1990a]." As a trade off, a significantly larger volume of storage

is required since duplicated data are used in this tree-containing-tree structure,

In constructing a two-dimensional range tree, for example, we first sort all the
points in one dimension, say x, and store those points at the leaf nodes of a binary tree T.
Attached at each non-leaf node N is another binary tree T* with it's external nodes housing
all the points in the subtree of T rooted at N, This time the tree 7" is sorted in the other
dimension y. _ | _

A range search for ([Xuin» Xuals [Ymino Ymee) Starts with marking the paths from the
root T to Xy, and X Ascending along the path to x;, from the closest common non-leaf
node Q of the two paths, if a non-leaf node N's left son is alsb in the path, search its right
son's binary tree T sorted on y. On the other pafh t0 Xux from Q, if N's right son is also in

the path, search its left son's binary tree T".

A k-dimensional range tree of a points requires O(nlogi™ n) storage and a range

search reporting r points takes O(log} n+r) [Samet, 1990a].

1.2.3.4 R-Trees

Guttman {1984] first introduced R-tree structures. The fundamental idea of an R-
tree is for each object space to generate a minimal bbunding rectangle (MBR) to cover the
object. Those MBRs, according to their locations in the space, are divided into groups
which, in turn, are bounded by larger MBRs hierarchically. The number of MBRs in a
group is the number of entries in a node of the tree. Each entfy in a leaf node stores the
identification and the MBR of an object; an entry in non-leaf nodes contains the pointer to
its child and the rectangle tightly bounding all the MBRs of the child. In a range search, by
- checking MBRs at the low level of the tree, only data near the search range are examined

and irrelevant regions can be eliminated.

1.2.4 Linear Indexing Structures

Spatial indexing and search algorithms can be simplified by reducing multi-
dimensional problems to one dimension problems, which in turn makes it possible to
benefit from the existing data structures and algorithms in the one-dimensional world. One
of the main approaches in spatial indexing is mapping an m-dimensional image into a one-
dimensional- line, known as the space-filling curve [Witten and Wyvill 1983]. The
orderings are a list of single valued keys derived from the coordinates of the objects.
Among many such curves, the Morton sequence, or Morton order [Samet 1990a, Samet

1990b, Peuquet 1984], is one of the conversions widely used in geographic information

systems. Other well-known linear orderings are row order [Samet 1990a), Hilbert order

[Samet 1990a, Peuquet 19841, and gray code order [Samet 1990a] (sce Figure 1.3).

=1 §

a. Row order b. Morton order ¢. Hilbert Order d. Gray code order

Figure 1.3 Liner ordering of 2D space.
Identified by Abel and Mark [1990] are three properties of two-dimensional spatial
orderings of a cellular model of space. They also apply to points at the resolution of the

space.

(a) An ordering is continuous if, and only if, every cell pair with consecutive keys

has four neighbours.

(b) An ordering is quadrant-recursive if “the cells in any valid quadiree

subquadrant of the matrix are assigned a set of consecutive integers as keys."

(c) An ordering is monotonic if, and only if, for a fixed coordinate x or y, the key

varies monotonicly with the other coordinate y or x, respectively.

10

Table 1.1 Comparison of linear orderings of 2D space.

Ordering Properties Applications

Row Order Monotonic. Raster data in remote sensing
and image processing.

Morton Order Monotonic and quadrant-recursive Spatial indexing in geographic

' - _ information systems

Hilbert Order Quadrant-recursive and continuous Run-encoding tests and colour-
space processing

Gray Code Order Quadrant-recursive Spatial data handling.

Range searches on the orderings sometimes involve coding and decoding the keys.
Take a simple range search on a Morton sequence for example. Morton codes for the
lower-left (MCy;) and upper-right (MCyg) corners of a given query window need to be
calculated. All the points of their Morton codes smaller than MCU_ or greater than MCyg
are definitely outside the query window. For the Morton codes between MGy and MCyg,
coordinates have to be derived from the code so that we can check each point against the
query. In a general picture, the basic range algorithm employs binary searches to find the
range of MGy, and MCiR on the order, and uses a linear search to retrieve the points

within the window.

1.2.5 Regular Tessellation

Regular tessellations are space decomposition uvsing equilateral and equiangular
polygons. Three well-understood regular t_éssellations are the square, triangle, and
hexagon. Bell et al. [1983] described these tessellations according to the type and number
of polygons around each vertex of the atomic polygon. For example, [6°] means there are
six other triariglcs around a vertex, and the atomic triangle has three such vertices. A

regular tessellation can be regarded as a dual of the vector data type. Unlike the vector

11

models, which use points as their logical units, reguiar tessellation models use polygonal

meshes as their logical units [Peuquet 1984).

a. [4*] Square Hierarchy b. [6°] Equilateral Triangle c. [3%] Hexagon
Hierarchy Hierarchy

Figure 1.4 Space decomposition using three regular tessellations.

Hierarchies can be constructed based on the three regular meshes (Figure 1.4),
which can be infinitely repeated to cover the whole image space. Unlike the other two, a
hexagon is limited since we cannot subdivide it into infinitely finer hexagons for a better:
resolution. This is because hexagons have jagged edges. Squares and triangles can be
recursively decomposed into four small areas of the atomic pattern; however only
subdivision of squares maintains the shape and the orientation at the same time while the

triangles' orientation difference is 60° [Samet 1990a, Ahuja 1983].

The primary advantage of a hexagonal mesh is this uniform adjacency; that is the
distances between the centroid of the hexagon and the centroids of all its adjacent
hexagons are equal. Each hexagon is adjacent to six other hexagons by sharing one-sixth
of their boundaries [Gibson and Lucas, 1982]. Square and triangular tessellations do not
have this property because the distances between the centroids of the common-side

neighbour and the common-vertex neighbour are not equidistant,

Quad trees can be built on the tessellations based on both squares and triangles,
and Ahuja [1983] proved that image operations on those two quad tree representations
appeared to have the same complexity. Efforts have been made by Gibson and Lucas
[1982] to develop what they called Generalized Balanced Ternary structures and the

algorithms analogous to the ones for quad tree. The Euclidean plane tiles for quad trees

and septrees are shown in Figure 1.5,

Figure 1.5 Tessellations at different resolutions and their Euclidean plane tiles.

!

1.3 Thesis Outline

It is cxﬁccted that the appﬁcaﬁon charactci'izcs the degree of suitability of an
indexing mechanism, An effective data structure on one kind of spatial data may behave
differently on other kinds of spatial data. The spatial data collected in the Ocean Mapping
Project are basically groups of soundings. In this thesis, the general objective is to build
spatial indices for profiles and to test them by using a large number of profiles of real

swath data from the EM100 depth system. It includes the following specific objectives:

i3

1. Develop a method using the Morton sequence to index profiles of swath data,
both directly and in a relational database management system (RDBMS) environment

under INGRES. A timing comparison between the direct and RDBMS approaches will be
made.

2. Investigate the use of R-trees to directly index profiles of swath data and answer
the questions: "Is the performance of R-tree indexing better than that of the Morton code
for indexing?" "Can the R-tree be better adapted to a dynamic update of the spatial index

compared to the Morton code index?" and "How can the R-tree index be stored in a file?"

3. Investigate a hierarchical approach using R-trees to index groups of profiles,
with each group having a sub-index such as another R-tree to index the data within the

group.

Chapter Two gives the background of the Ocean Mapping Project and
Hydrographic Data Cleaning System. Emphasis is given on the need for spatial indexing in
HDCS, the surveyed data, data organization, file structures, and the assumptions for

- spatial indices and range searches.

Morton order indexing played a significant role in this thesis. Different Morton
sequences on the same data space can be generated by using different code computing
methods. Chapter Three discusses those methods and also explores the range search
problem on Morton sequences. The search algorithm is described in this chapter. Index file
structures are designed to store Morton indices for profiles and indices for direcioﬁes of

lines, days, vessels and projects under HDCS.

14

In Chapter Four, a relational database is used to realize the Morton sequence
indexing. Continued from Chapter Three, this chapter is dedicated to the INGRES
implementation of the spatial indexing and range searching method. Relations, or tables in

INGRES terminology, are designed for indexing purposes.

Chapter Five opens a new page for spatial indexing in HDCS. We study the R-tree
structures and the algorithms for building, dcletiné and searching the trees. The tree
structure makes it possible to dynamically maintain the indices as the data is being changed
or moved to other locations. A modified deletion algorithm is given based on the property

that profiles are geographically close to each other and they are kept in the neighbouring

leaf nodes in an R-tree structure,

Experiments based on the three implementations are performed using a large
amount of real data. Chapter Six describes and compares the experimental results that lead

to the conclusions in Chapter Seven. A summary is also included in the last chapter.

15

CHAPTER TWO

THE HDCS GENERAL STRUCTURES

2.1 Ocean Mapping Project

The Ocean Mapping Project at the University of New Brunswick started in the late
80's. Its objectives are [Ware et al., 1990]

"to address current problems associated with processing the high volumes of data
which are being generated by modern ocean bathymetry mapping systems. This
data often cannot be fully utilized because of the difficuity of organizing and
displaying this data using conventional techniques. Using a multidisciplinary
approach implemented on a high performance workstation, we propose to devise
techniques for error detection and correction, for seabed visualization, and for data
interpretation.”

2.2 HDCS Data and File Structures

The Hydrographic Data Cleaning System (HDCS) is a tool to clean or edit
multibeam bathymetric data sets collected from a range of sensors such as the positioning
system, gyro, vessel dynamics, tide gauges, and salinity/temperature/depth profiles along
with the multibeam data [Ocean Mapping Group, 1991]. In order to make proper data
cleaning decisions, all the observed data must be saved. The size of the four day survey

~data used in the experiment of Chapter Six for example, is 130 megabytes, including
57,192 profiles on 49 lines. It is required, therefore, that the HDCS be able to handle large

volumes of data.

16

Surveyed data of one day are stored in a daily file. The raw data are converted to
soundings at the very beginning of the data cleaning process, which is performed on a
working file. This file may be read from parts of several daily files and the cleaned data
will be written back into the daily files. The large volume of data makes spatial indexing a -

must when retrieving the data to form a working file (Figure 2.1).

Daily Files _ Daily Files

A Working File - A Working File

/

Processing a Working File

i :

L=

Forming a Working File Writing a Working File

Figure 2.1 Hydrographic data cleaning process.

A daily file contains lines which represent a survey vessel's tracks at sea during the
day. Moving along the path, the equipment on the boat makes multibeam bathymetric
surveys. An array of depths perpendicular to the line can be calculated using the reflected
sonar signals, Each array is called a profile and the depths are called soundings (Figure

2.2). Varying with the equipment used, each profile may have from 12 to 132 soundings
[Ware et al., 1992].

17

0600000000600 30.00-00-¢ oo — profilel
08 0-908-90.00-0490049-00.80.4 4.0-4 __,_ﬂprpfiJCZ
S 20800600 44900090
0 00 00-0.00-00000-00-08-09.90 ~—— profile 4

sounding

/ line (vessel's track)

P9 0 9-09-9g-o-9 00 g0l ap-g 00 "‘“""'pmﬁlen

Figure 2.2 A line and its soundings.

2.2.1 HDCS File Organization

In the Hydrographic Data Cleaning System, surveyed data are organized
hierarchically [Ware et al,, 1992]. All the data are stored under the directory HDCS,
which consists of directories named after each surveying project. In each project, several
vessels may be used. Under each vessel directory are days, followed by line directories,
storing the data surveyed in a day (Figure 2.3).

18

e
e
@

—Navigation |
—Pitch

—Roll

—Heave

—PosnDepth

— DepthSpatiallndex
—=Gyro :

— Vessel Velocity

~—Tide

Figure 2.3 Hierarchical organization of ocean mapping data in HDCS.

2.2.2 HDCS File Structures

The HDCS file structures are depicted in Figure 2.4. Generally, surveyed data and
configuration data are kept in data files. Given in the document [Ocean Mapping Group
1991] are the data files nsed in HDCS for the information of project, station, vessel,
navigation, pitch/roll, heave, heading or course, vessel velocity, tide, depth, vertical offset,
sound velocity, and position/depth. Each data file has a header record defining the header
record size, data récord size, number of data records, and other related information about

the file. Data records have flags indicating the status of the data.

Index File Data File

Index File Header Record | Data File Header Record
Set Record : Data Record
Number of
Records
Set Records
(Fixed Length)
--—Record Size—

Figure 2.4 Index and data file general structure in HDCS.

Each data file has an index file of fixed structure; accessing individual data records
requires a visit to the set record containing information about the data record. The size of

a data set varies according to the type of data.

Of all the data files mentioned above, only the Position/Depth data file is of
interest here. The data in this file have been corrected for tide, vessel dynamics, sound
velocity profiles, and sensor placement. The conceptual file structure for the

Position/Depth data is shown in Figure 2.5.

20

Posn/Depth Index Posn/Depth Data

Posn/Depth index header | Posn/Depth data header
Posn/Depth set : :
Posn/Depth set

Posn/Depth set

Figure 2.5 Position/Depth file structure.

2.3 Spatial Indexing in HDCS

Spatial indexing files are used in the HDCS to make it efficient to access profiles.
falling within or overlapping a rectangular query window. A range search is used to form a
working file and to support interactive queries. Some assumptions are made in the Data

Structure Design [Ocean Mapping Group 1991] which are listed as follows:

1. Query windows (QW) used in range searches are rectangular.

2. A range search returns a whole profile intersecting with the QW; it leaves
profile-query-window clipping to the system graphic functions.

3. A query window must be larger than any profile in the HDCS data. A constant
has to be imposed on the minimum size of a QW based on the maximum length

of all the profiles.

21

4. Sounding data must be converted to latitude/longitude/depth format before
spatial indices .a.rc built. Range searches are also performed on data of this
format.

5. Spatial searches should support interactive queries.

Guided by the assumptions, spatial index files are built on two kinds of objects:
profiles and directories. The basic objects we need to index are the profiles on each line. A
profile consists of a constant number of sounding points whose geographic locations can
be described by latitudes, longitudes and depths. Minimal bounding rectangles (MBRs) are
- used in building indices. A profile's MBR can be obtained through finding the minimum
latitude and longitude, and maximum latitude and longitude of all the soundings on the
profile. A line's MBR is a rectangle that covers all the profile MBRs. The MBRs for a day,
vessel and project directory can also be easily obtained by computing a bigger MBR
covering the smaller MBRs under the directory.

The hierarchical nature of the HDCS tree structures provide us an excellent base
for building hierarchical indexing structures. We can not only establish index files at the
line level for profiles, but also build index files at the lower levels of the tree, i.., in the

day, vessel, and project directories (Figufc 2.6).

22

HDCS Level
Index for All the Projects Under HDCS

Project Level
Index for All the Vessels Under Project §

:] | Vesseli | l | Vessel Level

Index for All the Days Under Vessel §

Day Level
Index for All the Vessels Under Day §

Line Level
Index for All the Profiles Under Line

Profiles

T
AT

g
AR

Figure 2.6 Hierarchical spatial index structures,

Since one MBR is needed for each directofy and the number of directories is
limited, sequential files are used for directory indexing. Sequential scans are used to
perform range searches on those files. On the contrary, sophisticated indexing mechanisms
are used for indexing profiles. Either Morton sequences or R-trees are used for profile

indexing.

Like the structure of a data file, each index file also has two parts: file header and
file data. The file header is used to store the summary information for the file, Each record
in the file data stores the actual indexing data. Chapters Three, Four and Five elaborate on

the index file structures for directories and profiles.

23

2.4 Spatial Searches in HDCS

Spatial searches in HDCS involve retrieval inside profiles of a query window,
described using four corner points in pairs of latitude and longitude. Given such a range, a
query can be carried out in three-step-access (see Figure 2.7) [Ocean Mapping Group
1991], as follows:

1. Search the directory spatial index files for vessels, days and lines, and find out
the lines whose MBRs fall into or overlap with the QW.

2. Search the profile spatial index files under such lines, and obtain the profiles
whose MBRs are within or overlap with the QW.

3. Use the actual sounding data of the profiles to rule out the profiles which do not

intersect the query window,

D5
Qw Qw | _ QW
D1 D4|.
P14 PINS
D3
D2 D2
a. Step One b. Step Two c. Step Three

Figure 2.7 Three step access for inside profile testing.

The range search sequentially scans a directory spatial index file, and checks each
minimat bounding rectangle to find the relation between the QW and the MBR. Four test

results can be obtained as follows:

1. The QW overlaps an MBR;

2. The QW is enclosed by an MBR;

3. The QW encloses an MBR; or

4. The QW and an MBR are separate.

In the first two cases, further tests of the relations between the QW and the
directory’s sub-directory as well as profile MBRs must be doné. On the other hand, when
a directory MBR is entirely within the search range as in the third possibility, all the sub-
directory and profile MBRs under this directory can be included in the search results
without any extra examination. For example, if it is tested positive that a project directory
minimal boﬁnding rectangle is totally within a given query window, then, as a matter of
fact, all the MBRs of the project's vessel, day and line djfcctories, as well as the profﬂcﬁ of
each line, must be within the query window. Therefore all the spatial data under the
project can be counted as search results. Finally when a directory MBR is totally outside
the search rangé, the directory itself, .thc subdirectories and the profiles under this

directory are totally outside the query window. No further test is necessary either.

The input for the range search program are a query window and the name of a
project under which searches for the profiles are required. The search results, returned by
the program, are organized hierarchically according to the vessels, days, lines, and the
profiles under the specified project. Only the directories and the profile numbers which are
within or overlap the query window are kept in the SpatialSubset structure listed in

Appendix A.

CHAPTER THREE

MORTON CODE INDEXING

3.1 Morton Codes

Morton codes are named after G. M. Morton who first introduced the codes and
used them in the development of the world's first operational geographic information

system called Canadian Geographic Information System (CGIS) [Morton 19686,
Tomlinson 1976].

A spatial point can be rcprcschted by a Morton code, which is a decimal number

computed by interleaving the binary representations of the point's coordinates.

3.1.1 Encoding Morton Codes

The process of constructing a Morton code is called encoding. In order to
illustrate how a Morton code is calculated, a 2°x2” grid space is used (Figure 3.1) with
each grid line intersection being addressed by x- and y-coordinates. Three bit binary
numbers are needed in order to represent all the coordinates in the space. For example,
points A, D, and E have coordinates (0,0),, = (000, 000),, (1,1), = (001,001),, and (2, 1),
= (010, 001),, respectively. '

26

-

oo MORTON CODES
ol1 Point Pattern 'S’ Pattern 'N'
A 0 0
010 B 1 2
C 2 1
E 6 9
wla B .

000 001 010 011 100

Figure 3.1 Points in binary coordinates and their Morton codes.

Two ways of encoding Morton codes of point E are given in Figure 3.2a and b.
Taking the lowest bit of x first in a Morton code gives us decimal number 6. Otherwise,

using the lowest bit of y first generates a Morton code of 9, instead.

a) X=2Qy=(1 0),
y=Dp=(0 1

Mortoncode = (0 1 1 0), = (6),,

b) x=@p=(1 0),
y=(=C 0 1),

Mortoncode =(1 0 0 1), = (9),,

Figure 3.2 Calculating Morton codes by interleaving bits.

3.1.2 Decoding Morton Codes

In a range search, we cannot tell if a point is within a query or not by looking only

at the Morton code of the point. The coordinate information carried in the code, however,

27

can be used in the test. As a reverse process of encoding, decoding uses the bit
representation of a Morton code and restores them, from the lowest bit to the highest bit,

to the original coordinates.

3.2 Morton Sequence of Points

3.2.1 Morton Sequence

A Morton sequence is a sorted order of Morton codes: Figure 3.3 gives examples
s_ of Morton sequences for all the coordinate points in a 2D space. In the examples, Morton

codes are first calculated for each point, and then sorted in an increasing order.

In Section 3.1, we mentioned that there are two ways to calculate a point's Morton

code. Those two methods yield two Morton sequences of the same space. The Morton

sequence in Figure 3.3a walks through the space in a 'S’ pattern while the sequence in

T AL e T

Figure 3.3b traverses the space in an N pattern.

These two appearances of the Morton ordering are identical in characters, and are
widely used in spatial data handling for indexing purposes. The '’ pattern is chosen as the

indexing mechanism in this thesis.

-) 28

a.' In "X pattern | b. In"N' pattern

Figure 3.3 Two Morton sequences for 2D points.

3.2.2 Characters of Morton Sequences

The characters of Morton sequences make them very useful space-orderings.
Morton codes, as the keys in a Morton sequence, are position related. A Morton code is
defined only by the coordinates of a point. Encoding and decoding of a Morton code are
also easy to specify. As long as the pattern is pre-defined, points of different coordinates

have different Morton codes. -

As for all space-filling curves, a Morton sequence transforms two-dimensional
space into a linear order which keeps the neighbours in the original space as close as
possible in the sequence. This filling is exhaustive; it enters the space at the origin of the

space, and passes through every point before it exits.

29

Another major advantage of this zigzag order is its quad tree related
decomposition and recursion. Each corner of a 'S’ pattern can be regarded as a quadrant,

or a representation of small such patterns at a higher resolution. This property can be

clearly seen in Figure 3.4a-d.

|

Ay

¢) A Lower Level of ‘X' Pattern d) The Lowest Level of 'R' Pattern

| Figure 3.4 Quad tree related decomposition and recursion of a Morton sequence.

30

Quadrants can be coded into base 4 numbers in a scheme such as that drawn in
Figure 3.5 with the south-west quadrant denoted as 0, the south-east denoted as 1, the
north-west as 2 and the north-east as 3. A Morton code in Figure 3.4 can be represented
in three digits with the first digit representing the lowest level of ‘X' pattern, and the last
digit the highest level. Morton code 27, for example, is 123,, and its corresponding
point can be found located at quadrant 1 at the. lowest level, quadrant 2 at the second

level, and quadrant 3 at the highest level (see Figure 3.7).

Figure 3.5 Numbering scheme in base 4 digits.
This character of quad tree related decomposition and recursion can be used to

determine the direction when walking through a Morton sequence. It can be clearly seen

that the walking order is 0, 1, 2 and 3, and this order holds at all the levels.

. 2 3 2 3
| 2 3
0 1 0 1
2 3 2 3
0 1
4] 1 0 i

a. 'S Pattern at Level /; b. 'S Pattern at Level c. Walking Direction

Figure 3.6 The walking pattern of a Morton sequence.

31

Deciding the direction after quadrant 3 is subtie. We have to look cne level lower,
and consider the quadrant number ﬁf the current 'S’ in this lower level. Suppose that the
current 'S’ pattern is at level I; and the immediate lower level is J, ;. If the 'X" at level /. is in
quadrant 0 of level /, ,, the Morton sequence goes to the first Morton code in quadrant 1
of level /, , (Figure 3.6). Sixﬁilarly, the first Morton code at quadrant 3 of level [, follows
the last Morton code at quadrant 2. When the "X’ pattern of level I, is quadrant 1 of level
/,;» the Morton sequence jumps to quadrant 2 of level /,,. The walking directions aré

arrowed in Figure 3.6¢.

3.2.3 Morton Sequence of Data Points

So far, we have been describing Morton sequences based on the points at the
interval of the coordinate units. This unit is the resolution of such points in the space, and
the points themselves are called resolution points. In a particular application, not every
resolution point is occupied by an actual data point. A Morton sequence can still be built
without any modification. Figure 3.7 gives an example of data points in solid dots and its

corresponding Morton sequence,

32

0,1,2, 3, 4,7, 8,10, 14, 15, 16, 17, 1§, 19, 21, 22, 23, 27,28, 30, 31, 32,
35, 36, 37, 40, 41, 42, 43, 46, 47, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63 _

Figure 3.7 Data points and the corresponding Morton sequence.

3.3 Range Search Using Morton Sequence

We have mentioned in Chapter One that a range search involves retrieving or
counting all the spatial objects within a given range. In the HDCS, such search ranges are
assumed to be rectangular. We, therefore, mainly consider orthogonal query windows

whose edges are parallel to the coordinate axes.

Before we get into the details of a range search on a Morton sequence, we should
bear in mind that such a sequence is monotonic, that is if, and only if, for a fixed
coordinate X or y, the Morton sequence varies monotonicaly with the other coordinate y

or x, respectively [Abel and Mark 1990]. It is not hard to prove that among the four

13

corners of a query window, the upper-right one has the biggest Morton code MCy while
the lower-left has the smallest Morton code MCy;. All the points inside the query window
have their Morton codes bigger than MCy;, and smaller than MCz. The Morton code of
point P in Figure 3.8, for example, is bigger than MC, which is bigger than MCy;, and -
MG, is smaller than MC; which is smaller than MCy.

\\ \\\

NN

Figure 3.8 The Morton sequence and a query window.

v

3.3.1 Linear Range Search Algorithm on Morton Sequence

Once the Morton sequence of a point set has been built, a range search can be

performed in the following way:

1. The Morton codes of the query window's lower left and upper right corners,
MCy and MCyg, are calculated. Those two numbers are used as a search boundary with

the Morton codes of in-window points falling in between.

34

2. A binary search is employed to find the location of MCy in the Morton
sequence. If there is no data point at the lower-left corner of the QW, the location of a

Morton code just greater than MCy; should be used.

3. Morton codes larger than MCy, will be visited linearly, until the end of the
sequence or a Morton code larger than MGy is reached, whichever comes first. All the

points within the QW will be reported.

In the example of Figure 3.9a, the Morton codes for the query window are
MCy;=9 and MC=50, and the Morton codes we test are 10, 14, 15, 16, 17, 18, 19, 21,
22,123,217, 28, 30, 31, 32, 35, 36, 37, 40, 41, 42, 43, 46, 47. Notice that only five points,
ie. 14, 15, 35, 36 and 37, are in the query range (see Figure 3.9b).

3.3.2 Over-search Problems

Any visit to unqualified data in a range search is an over-search. Over-searches

should be avoided as much as possible,

Caused by the points outside a query window, the over-search problem exists
when using the linear search algorithm. This problem varies with the location of data and
the query window, as well as the distribution of data. The linear search algorithm partially
eliminates the over-search problem by quickly finding the Morton code greater than MC,,
and by skipping the Morton codes greater than MCyg on the Morton sequence (Figure
3.9¢). All the Morton codes with values bctv-vcen MC;; and MCg, however, have to be

visited, even though there are only five pointé. within the window (Figure 3.9d).

35

X
o

0 31 i4 _: :\\\ X
¢. Data Points Immediately Excluded d. Data Points Causing Over-search
From the Query Window of the Query

Figure 3.9 A range search on a Morton sequence and its over-search problem.

36

3.3.3 Modified Range Search Algorithm

Trying to minimize the number of disk accesses, Yang's algorithm [1992] stops the
linear search as long as the Morton sequence leaves the query window, calculates the next
point where the sequence enters the QW, and resumes the linear search from the entering
point. For example, in Figure 3.9a, after the sequence leaves the query window at Morton
code 16, the entering point 24 is calculated. Starting the search again at point 24, allows

points 17, 18, 19,21, 22, and 23 to be skipped.

Based on the recursive character of Morton sequchccs, two important calculations
are performed in the algorithms. The first is to detect on whicﬁ side of the query window
the Morton sequence is re-entering the range and meanwhile decide if the Morton
sequence touches the side of the query window, i.e., stops at the same quadrant (Figure
3.10a), or crosses the side, i.e., changes quadrants at a level less than the highest (Figure
3.10b). The second is to compute edge point EP for a crossing bridge and obtain the first
point FP referring to EP and the data point DP.

37

— Morton sequence touching QW ==~ = = Morton sequence crossing QW

a. Morton sequence touching QW b. Morton sequence crossing QW

Figure 3.10 Relation of Morton sequence and query window.

3.4 Morton Sequence Indexing of HDCS Profiles

This section introduces the.HDCS structures, index file structures and the way
Morton sequences are used in indexing profiles, A hierarchical indexing structure is used
in the HDCS with index files for directories and profiles. The Morton sequence indexing
technology is used only at the profile level since the number of directories is relatively

small and scanning the directory index files is quite trivial.

38

3.4.1 HDCS Spatial Indexing

In each project directory, a spatial index file is built for the MBRs of vessel
directories under this project; in each vessel directory an index file for MBRs of day
directories under each vessel; in each day directory an index file for the MBRs of line
directories under each day. A directory name is the key in the index file.

Spatial index files for profiles are built in the line directories. For each profile's
MBR, four Morton codes are calculated for the four corners. The Morton codes for
profiles on a }iné are sorted into a lincar Morton sequence and stored into an index file. A
Morton code is a k;ay'for an index file record, and the corrcspohding profile number is its

attribute.

3.4.2 Spatial Resolution of 64-bit Morton Code

A 64-bit unsigned integer is required for each Morton sequence, since four-byte
integers are used to represent the coordinates of each sounding point. A 64-bit integer is
beyond the limit of a 32-bit workstation. A structure with two four-byte unsigned integers
is employed. The first unsigned integer represents the lower bits of a Morton code, while

the second holds the higher bits.

Table 3.1 A type definition for a 64-bit Morton code.

typedef unsigned long MortonCode[2];

39

Since the earth's radins can be roughly taken as 6378 km, if a 32-bit unsigned
integer is used to represent the longitude, which has the range from [0, 2x), the minimum

distance an unsigned integer can represent is calculated as:

The earth's perimeter
Maximum number of an unsigned 32-bit integer

longitude resolution =

_ 2X7®x6378X10°mm
2% -1

_ 40074155889.19139%mm
4294967295

=9.33mm

which is enough for the precision of longitude representation.

The range for latitude is [-n/2, +®/2] which is half the range of longitude, and the
resolution for latitudes is 4.67mm. Therefore a 32-bit unsigned integer variable is precise

enough for both latitudes and longitudes.

3.4.3 Encoding and Decoding of Morton Codes in HDCS

The 'S pattern encoding of Morton codes are employed in HDCS spatial indexing.
It is mentioned in Section 3.4.2 that the first element in the two element array of Table 3.1
stores the lower bits of a Morton code and the second element of the array stores the
higher bits of the code. The first bit of MortonCode{0] .is set to be the first bit of latitude,
and the second bit of MortonCode[0] is set to be the first bit of longitude. The intﬁrlcaving

goes on till all the bits in MortonCode[0] are set to the lower bits of the latitude and

40

i
z
H
-i
:!‘.
s
.

longitude. The first bit of MortonCode[1] is set to be the 17th bit of the latitude and the
second bit of the MortonCode[1] is set to be the 17th bit of the longitude, and so on.

Decoding Morton codes is really a reverse process of encoding. Bits in a two
element Morton code are taken from lower position to higher position, and are put first in

latitude then longitude variables starting from their lower positions.

Algorithms for encoding and decoding are given in Appendix B.

3.4.4 HDCS Index File Structures

As mentioned in Chapter 2, the spatial index files have two parts: header and data
records. A header record contains information about a file, and the data records store the

spatial indexing data.

Tables 3.2-3.5 list the structures for the header and data of directory and profile
spatial index files. The profile spatial index files are sorted according to the Morton codes
of the profile MBR corners, while the djrcgtory spatial index file records are randomly
listed.

A Morton code in Tables 3.4 and 3.5 is actually a two element array described in
Table 3.1.

41

3.4.5 Creating Spatial Index Files

All the directories aie processed in post-order. Spatial index files are first created
for profiles, meanwhile the MBRs are found for those line directories whose profile spatial
index files are being built. In turn, MBRs are found for day directories, vessel directories,
and project directories while building spatial index files for line directories, and finaily,

vessel directories.

Table 3.2 Directory spatial index file header structure.

Item Type Size Units

Size of this header record integer 32 bits Bytes

Size of a record in this data file integer 32 bits Bytes

Number of records in this data file integer 32 bits :

HDCS file type integer 32 bits

File version number integer 32 bits

Reference time for this header file integer 32 bits 100 seconds

Data time scale for time offsets in this file integer 32 bits No. of microseconds

Minimum time (offset w.r.t. reference time) integer 32 bits Data time scale

Maximum time (offset w.r.t reference time) integer 32 bits Data time scale

Position scale for position offsets in this file integer 32bits No. of nano-radians

Reference latitude for this header file integer 32 bits 100 nano-radians.

Minimum latitude (offset w.r.t. reference integer 32 Dbits Position scale
latitude)

Maximum fatitude (offset w.r.t. reference integer 32 bits Position scale
latitude) - : _

Reference longitude for this header file integer 32 bits 100 nano-radians

Minimum longitude (offset w.r.t. referenc integer 32 bits Position scale
longitude) ' '

Maximum longitnde (offset w.r.t. reference integer 32 bits Position scale
longitude)

Maximum latitnde difference for one integer 32 bits 100 nano-radians
profile’s bounding rectangle

Maximum longitude difference for one integer 32 bits 100 nano-radians

profile’s bounding rectangle

42

. Table 3.3 Directory spatial index file record structure.

Item

Directory MBR's minimum time (offset
w. I. t. reference time)

Directory MBR's maximum time (offset
w. 1. t. reference time)

Directory MBR's minimum Iatitude (offset
w.r.t, reference latitude)

Directory MBR's maximum latitude (offset
w.r.t. reference latitude)

Directory MBR's minimum longitude
(offset w.r.t. reference longitude)

Directory MBR's maximum longitude
(offset w.r.t. reference longitude)

Directory name

Type Size
integer 32 bits

integer 32 bits

integer 32 bits

integer 32 bits

integer 32 bits

integer 32 bits

Units
Data time scale

Data time scale
Position Scale
Position Scale
Position Scale

Position Scale

char 256 characters

Table 3.4 Profile spatial index file header structure.

Item

Size of this header record

Size of a record in this data file

Number of records in this data file

HDCS file type

File version number

Reference time for this header file

Data time scale for time offsets in this file

Minimum time (offset w.r.t. reference time)

Maximum time (offset w.r.t reference time)

Minimum Morton code stored in the data file

Maximum Morton code stored in the data file

Maximum latitude difference for one
profile’s bounding rectangle

Maximum longitude difference for one
profile’s bounding rectangle

43

Type
integer
integer
integer
integer
integer
integer
integer
integer
integer
unsigned
unsigned
integer

integer

Size

32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
64 bits
64 bits
32 bits

32 bits

Units
Bytes
Bytes

100 seconds

No. of microseconds
Data time scale
Data time scale

100 nano-radians

100 nano-radians

Table 3.5 Profile spatial index file record structure.

Item Type Size Units

Morton code for this profile minimal bounding unsigned 64 bits
rectangle corner point

Sequential number of this profile in the line integer 32 bits

3.4.6 Range Searches Using the Index

The medified search algorithm [Yang 1992] was adapted to the HDCS application
and used in this thesis to perform range search on profile Mort_on sequences. Pseudo code

for the search is listed in Appendix B after the following explanations are given.

A query window divides the data space into nine areas (Figure 3.11). Several cases
must be considered depending on where the Morton sequence enters the QW from. For
éxample, if the outside-window point is in Area Eight, the Morton sequence may touch
the window on the top or bottom edge, or may cross the top edge. Function

FindEnteringPoint handles these cases.

When a Morton sequence crosses an edge of the query window (Figure 3.10b), a
Morton code on the edge, MCg, must be calculated first by function GetQWEdgeMC,
then the first Morton code in the QW, MCps, can be calculated by FalllntoQW. MCp is
the smallest Morton code among all the on-edge Morton codes which are larger than the
Morton code of the data point outside the query window, MCpp. If the Morton sequence
touches an edge, the touching point's Morton code is also the smallest afnong all the on-

edge codes lager than MCpp. It can also be calculated using function GetQWEdgeMC.

Area Seven Area Eight ! Area Nine

Touch Left . Touching Top : Outside the Range
Touch Top + Crossing Top -
Crossing Top » Touching Bottom .
Touching Buttom :
e et ' Top - e oo
Area Four Area Five Ar ;;1 Six o
Touching Left Inside the Range . Touching Le
Left Right Touching Right
W Crossing Right
---------------- IQ Bottom
Area One : Area Two ; Area Three
Outside the Range . Touching Bottom | Touching Left
: : Touching Right
' . Crossing Right
: : Touching Bottom

Figure 3.11 Possible cases Morton sequence touching or crossing QW edges

(Adapted from Yang [1992]).

Figure 3.9(a) is repeated in Figure 3.12 and used as an example to explain the
range search algorithms on Morton code indices. First the Morton codes for the corners of
the QW are calculated: MCyp = 9, MGy = 35, MCr = 24, and MCyz = 50. Binary
searches on the Morton seqﬁence are involved to find the first MC which is not smaller

than MCy, and the first MC which is not small than MC;;, These two Morton codes are
51 and 10, respectively.

The first test point is 10 which is smaller than MCw. So Morton code 10 is
decoded to obtain the point's latitude and longitude used in detecting if the point is within

the QW. Since point 10 is not within the QW, Morton code 11 at which the Morton

45

sequence enters the QW is calculated by calling function FindEnteringPoint, The Morton

code on the Morton sequence which is just largcr than 11 is Morton code 14. Since 14 is
f less than MCg, it is decoded and tested against the QW. The test is positive so the
counter for the profile represented by Morton code 14 is increased by one, and next
Morton code, 15, on the sequence is obtained. Similar tests are carried on with Morton
code 15 and 16, and then an entering Morton code 24 is calculated. The loop from Step 6
to Step 16 in Algorithm 1 of Appendix B continues until a Morton code larger than MCyp

is reached.

Finally all the profiles whose counter are larger than zero are reported as within the

query window.

E
._):
¢
:
H
!
;
i

1 Figure 3.12 A range search on a Morton sequence.

46

CHAPTER FOUR

RELATIONAL DATABASE MORTON CODE INDEXING

4.1 Introduction

Database management systems (DBMSs) are powerful tools in handling data of
large volume. Commercial DBMSs provide the facilities to define, insert, update and
retrieve data with the added value of reducing redundancy, controlling CONCUITency,
supljorting data independence, and enforcing data integrity, With its flexibility in data
structures and system designs [Date 1981] and its rapid improvement in performance,
relational database management systems (RDBMSs) are one of the main methods for large
~ scale data 'storagc. Researchers ar'e. also exploring the use of RDBMSs to deal with

geographical information [Waugh and Healey 1987, Abel 1989].

In order to compare the performance with direct Morton sequence indexing, a
commercial RDBMS, INGRES, was used in this thesis. Tables are designed as close as
- possible to the direct indexing file structures described in Chapter Three. The C language

was used as host for embedded SQL to build and visit those tables.

4.2 Relational Tables for Morton Code Indexing

Under the INGRES environment, all the spatial index information is kept in

relations, or tables using INGRES teiminology. To have a unigue schema for each table,

47

the spatial index file headers (see Tables 3.2 and 3.4) are separated from the files. Profile
spatial index file headers are combined with the Directory spatial index file data (Table
3.3) into a new table (Table 4.2). Directory spatial index file headers are no longer

necessary.,

All the tables are maintained in a database. In order to compare the timing for
building and searching the INGRES tables with those in the direct Morton code indexing,
hierarchical index mechanisms are also preserved in INGRES spatial indcxing. For each
line, there is a table containing all the profile Morton codes of the line, and for each
directory, a table accommodating all the MBRs of the immediate sub-directory. For

example, a project has a table for all the vessel directories under this project.

The tables for the directories have the same schema, and so do the tables for .thc
profile Morton sequences of different lines. The reason for organizing . the indices in
different tables is that if a directory is found totally outside the query, then the tables

containing indices for the directories and profiles under this directory can be ignored.

The database schemata are listed in Tables 4.1-4.3 with their keys in italic font.
Only the data necessary for indexing from Tables 3.2-3.5 are included in the design.

Table 4.1 INGRES table for projects.

Item Type Size Units
Project name char 64 Characters
Table name for the project char 32 Characters

48

Table 4.2 INGRES table for directories.

Directory name char 64 Characters
Reference time for this header file integer 32 bits 100 seconds
Data time scale for time offset in this file integer 32 bits No. of microseconds

Minimum time (offset w.r.t. reference time) integer 32 bits Data time scale
Maximum time (offset w.r.t. reference time) integer 32 bits Data time scale
Position scale for position offsets in this file integer 32 bits No. of nano-radians

Reference latitude for this file integer 32bits 100 nano-radians
Minimum latitude (offset w.r.t. reference integer 32 bits Position scale
latitude)
Maximum latitude (offset w.r.t. reference integer 32 Dbits Position scale
latitude)
Reference longitude for this file integer 32bits 100 nano-radians
Minimum longitude (offset w.r.t, reference - integer 32 bits Position scale
longitude)
Maximum longitude (offset w.r.t. reference integer 32 bits Position scale
longitude) _ '
Maximum latitude difference for one profile’s integer 32 bits 100 nano-radians
bounding rectangle
Maximum longitude difference for one profile's integer 32 bits 100 nano-radians
bounding rectangle
Table name for the lower directory char 32

Table 4.3 INGRES Table for Profiles.

Item - Type Size Units

Morton code for this profile minimal bounding float 128 bits
rectangle corner point

Sequential number of this profile in the line integer 32 bits

Compared to the tables in Chapter Three, some modifications have been made to

the new tables, as follows:

1. Since INGRES lacks the unsigned integer type, in order to represent a 64-bit

unsigned Morton code listed in Table 3.1, two INGRES double precision fields are used.

49

INGRES double type takes 64 bits, and is the closest data type in INGRES for 32-bit
unsigned integer. This takes extra eight bytes for a Morton code. However, the algorithms
to encode and decode a Morton code are not affected since 2 Morton code in memory is
still stored in a two element array as described in Table 3.1. A Morton code needs to be
converted into two double values before written into a INGRES table; these two double
values of a Morton code needs to be converted into two unsigned integers after they are
read into the memory. Another option would be to convert an unsigned integer into a
character string and store the string in INGRES tables. This, however, would definitely

slow down the interactive retrieval by the extra CPU time spent on conversion,

2. One extra table (Table 4.1) is needed in the database to bring together all the

project names and their corresponding tables.

3. In the INGRES environment, hierarchical indexing structures are represented in
tables kept in one database. Each index for directories m Table 4.2 must contain a table

name telling the index table of the lower directory or the table of a Morton sequence.

43 Range.Search Using the INGRES Relational Database

Range searches are performed in a way similar to that used for direct Morton code
indexing. The same search algorithms are used, and the search results are hierarchically
organized in the vessel, day, line and profile order. The only difference between the range
searches in direct Morton code indexing and INGRES Morton code indexing is how the

data are retn'.eﬁed from the index files.

50

Since query conditions vary with the change of the Morton code values, SELECT
statements must be formed and executed during run-time. Dynamic SQL was used to

handle this situation [INGRES Manual, 1990).

The basic idea of dynamic SQL is using PREPARE FROM and DESCRIBE INTO
statcmcnté to obtain the type and size information of an SQL statement. A structure called
SQLDA (SQL Descriptor Area) is used to house the information and to pass it into the
program. After each FETCH statement retrieves data from the table into a cursor, items of
interest can be correctly interpreted using the type and size information for the elements of

the table.

Given in Appendix C is an example of using dynamic SQL to retrieve a Morton
code from an INGRES table.

4.4 Space Requirement Calculation

The space requiréd for an INGRES table can be calculated in the way described in
the INGRES manual [1992]. Three steps are needed to calculate the number of INGRES
pages used by a table.

Firstly, the number of rows, NumRows, and the width of a row, RowWidth, of a
table must be known. The latter is the total number of bytes of a row including three bytes

overhead.

51

Secondly, the number of rows per page, NumRowsPerPage, is calculated. Each
INGRES page is 2048 bytes, of which only 2008 are available for user data. The

anRowsPerPdge must be rounded down to the nearest integer.

NumRowsPerPage =| 2008 / (RowWidth+2) |
Finally, the total number of pages, NumPages, can be computed by dividing the
NumRows with NumRowsPerPage. The result should be rounded up to the nearest integer.
NumPages =[NumRows [NumRowsPerPage]
As an example, take the table of a profile Morton sequence on the line 13:46:06 of
the day 1991311, These 1145 profiles are measured by the vessel Matthew for the project
ConceptionBay. Since four Morton codes are calculated for the MBR corners of each

profile, there are 4580 rows in the index table of the Morton sequence, with the width of
the row as 43 bytes.

The number of rows per page can be computed as follows,

NumRowsPerPage =| 2008/ (43+2) | ={44.6222222222 |= 44,

therefore, the total number of pages needed is

NumPages =[4580 /447 =[104.09090909097 = 105,

or 215,040 bytes.

52

CHAPTER FIVE

R-TREE SPATIAL INDEXING

5.1 R-tree Structure and Its Variations

Guttman [1984] introduced the R-tree structure for dynamic indexing, This is a
spatially organized tree; it reduces over-search by eliminating irrelevant data and checking

only data which are close in space to the search area.

The basic idea of the R-tree indexing is using minimal bounding. rectangles (MBRs)
to enclose objects. According to their location in space, the MBRs are divided into groups
which are covered by successively largef MBRs to form a hierarchical data structure. Each
MBR belongs to one and only one higher rectangle, even though it may have a part in
several other highcr ones. A node in this height balanced tree can hold a maximum of M
entries. Each entry in its leaf nodes stores the object's MBR and tuple-identification, while
an entry at the non-leaf level has its MBR and a pointer to the child, Figure 5.1 is an
 example with M = 4, |

53

[Riz[m13[R1a | |

|Ri[R2 iR |Re| [®SI R6] R7[R8] [wo{mio|Rin| |
ris] RS | |

Rz B T : : R4 g
: : : © [r10
5 ’ im ;
) , : :
' R6 ' .
&1 : R4 [Rs R7

Figure 5.1 An R-tree and the corresponding MBRs.

The R-tree indexing structure has many advantages. Firstly, minimal bounding
rectangles give -us a rough idea about the range exicnsion of objects. MBRs are easy to
describe and to be compared with search ranges since their edges are parallel to the x- and
y-axes, respectively, and an MBR can be simply defined by four numbers. Secondly, when
massive data are involved, a hierarchy can be formed by using large MBRs covering small
MBRs. Thirdly, leaf nodes store the descriptions of full and non-atomic spatial objects.
Thus the spatial search can be performed in an object-oriented way. Range search can be
performed at fast speed because of the R-tree's hierarchical characterisﬁc as well as its

using MBRs in an object-oriented manner. Fourthly, R-trees can be used in dynamic

54

indexing. Finally, paging and disk O buffering can be handled well using the R-tree

structures.

R-trees have been shown to be an efficient dynamic indexing mechanism for spatial
.objects of non-zero size [Guttman 1984]. The R-tree has coverage and overlay problems
[Roussopoulos and Leifker 1985]. The coverage is defined as the area in a higher
rectangle which is not occupied by the MBRs of its descendants. The coverage is the
irrelevant space in R-trees. This problem always exists, since not every higher rectangle
can be fully filled by the MBRs of its descendants. This will cause a query window, QW1
in Figure 5.2, for example, to test positive in a higher rectangle R14, but all its
descendants--R9, R10 and R11--test negative [Noronha 1988]‘.-. Guttman also noticed the
coverage problem. He tried to make the excess area as small as possible in his Splitting

algorithms and tried to optimize R-trees in the re-insertion consideration.

QW3 E)]Rg l: '

R6 7

R R4 RS : R7

Figure 5.2 The R-tree and its coverage and overlay problems.

55

Overlap problems arise when MBRs intersect among themselves, as in the case of
R12 and R13 in Figure 5.2, A query window in the overlapped area will cansed the search
algorithm to test all the overlapping rectangles. Overlap problems become critical when
they occur in non-leaf nodes. In order to complete the search of QW2, both rectangles
R12 and R13 and their descendants are tested. If the query window falls in »n overlapping

areas, n paths from the root have to be followed [Faloutsos et al., 1987].

The coverage and overlap problems lead to the worst case in searching an R-tree
when they happen simultaneously as indicated by the example of QW3 of Figure 5.2.
There is no data in the query window, but tests are done through more than one path until

the algorithm finally convinces itself of the search failure.

It is not always possible to have zero overlap for polygons in an R-tree
{Roussopoulos and Leifker 1985]. If we know the objects before we build the tree, those
data can be tightly packed into the tree with minimum overlap and coverage of the leaf
nodes. The so-called packed R-tree uses this idea. The nearest neighbours are picked out
from the spatial data and are put together into a node. The packed R-tree is suitable to
relatively static data which do not submit to frequent insertion and deletion. It “can result

in significant sav:ings in space and search time" [Rouésopoulos and Leifker 1985].

The R*-tree is also an improvement of the R-tree. R*-trees eliminate all overlap by
finding the problem object, say R2 in Figure 5.1, and assigning it to more than one
neighbouring higher MBR. An R*-tree is shown in Figure 5.3 where R2 belongs to both
R12 and R13. It is easy to see that, for the same objects, an R*-tree is higher than an R-
tree, and the search path will also be longer. Since it is also possible in an R*-tree to get

the same object from different paths, the search algorithm needs some further test steps to

56

prevent an object being counted more than once. Those two disadvantages, however, are

overshadowed by the efficiency of R*-trees {Faloutsos et al., 1987].

[R12] R13 | R14 [R15]

|r1[R2{m3[ra| [m2[mS[m6] | (R7{R8{ [| BN
R4" TRg |
L N B : } A T YT R
: : X ' {R10 .
E : 1l w '
. ‘R13 L : j F
N - Lo R ;
- . R b L .
i R | [RS - S :
3 : b S :
: '. § : T ' :
N : ' , »
5: . e - -
| : :
- :
. T |
Figure 5.3 An R*-tree and the corresponding object MBRs,

5.2 R-tree File Structures for HDCS

Packed R-tree structures are nsed for HDCS spatial indexing since profiles are
collected in such a manner that two consecutive profiles are close in space, and those data

are not subject to frequent change.

57

Two types of R-tree indices are built. The first is the tree for profiles, and the
second is the tree for directories. In each line directory, an ﬁldcx tree is constructed for all
the proﬁlés on the line. The rectangle. tightly bounding all the profile MBRs is the minimal
bounding rectangle for the line directory. In a day directory an R-tree index is built using
the MBRs of all the lines under the day. Similarly, in a vessel directory an R-tree spatial
index is constructed for all the days, and in a project directory an index is built for all the
vessels, as well. The general picture of R-tree spatial indexing in HDCS can be regarded

as a tree-containing-tree structure.

Each file is divided into two parts: file header and file data. The file header is used
to store the summary information for the file. Each record in the file data stores the
information for one node in the R-tree. Each record contains m minimal bounding
rectangles and m pointers. The maximum number of MBR entries in a node is M where the
property m={ M /27 holds as for all R-trees of order M. The pointers in the leaf nodes
are the addresses of the data tuples, and those in the non-leaf .nodcs are pointers to the
other nodes. An indicator is used to discriminate the type of record in the file data. It has
the value of either / (for leaf), or n (for non-leaf) or d (for a deleted record). The root in
the tree structure may not be the first record in the file structure, and the file header

records the root's byte offset in the file.

All the R-tree index structures for lower directories are identical. Each index
consists of two separate files with extension Filel and File2, respectively. They are

described as follows:

58

Table 5.1 Directory spatial index file (Filel) header structure.

Item Type Size Units

Size of this header record ' int 32bits Bytes

Size of a record in this data file int 32 Dbits Bytes

Number of data records in this data file int 32 bits

HDCS file type ' int = 32 bits

File version number int 32 bits

Reference time for this header file int 32bits 100 seconds

Data time scale for time offsets in this header file int 32bits No. of microseconds
Minirmum time {offset w.r.t. reference time) int 32bits Data time scale
Maximum time (offset w.r.t, reference time) int 32bits Data time scale
Position scale for position offsets in this file int 32bits No. of nano-radians
Reference latitude for this file int 32bits 100 nano-radians

Minimum latitude (offset w.r.t. reference latitude) int 32 bits 100 nano-radians
Maximum latitude (offset w.r.t. reference latitude) int 32 bits 100 nano-radians

Reference longitude for this file int 32 bits 100 nano-radians

Minimum longitude (offset w.r.t. reference int 32bits 100 nano-radians
latitude) '

Maximum longitude (offset w.I.t. reference int 32bits 100 nano-radians
latitude)

Maximum latitude difference for one profile's int 32bits 100 nano-radians

minimal bounding rectangle _
Maximum longitude difference for one profile's int 32bits 100 nano-radians

minimal bounding rectangle
Maximum number (m) of bounding rectangles in int 32 bits
a record -
Byte offset to the root in this data file int 32 bits
Number of deleted records in this data file int 32 bits

Byte offset to the first record on the linked list for int 32 bits
the deleted records in this data file

39

Table 5.2 Directory spatial index file (Filel) data structure for R-tree nodes.

Indicator (1, n, or d) of the data record char 8 bits

Byte offset of this record’s parent record int 32 bits

Number of MBRs in this record, m int 32 bits

Minimum latitude for MBR 1 int 32bits Position scale
Minimum longitude for MBR 1 int 32bits Position scale
Maximum latitude for MBR 1 it 32bits Position scale
Maximum longitude for MBR 1 int 32Dbits Position scale
Byte offset for child node of MBR 1 int 32bits Byte
Minimum latitude for MBR 2 int 32bits Position scale
Minimum longitude for MBR 2 int 32bits Position scale
Maximum latitude for MBR 2 int 32biis Position scale
Maximum longitude for MBR2 int 32bits Position scale
Byte offset for child node of MBR 2 int 32bits Byte
Minimum latitude for MBR M int 32Dbits Position scale
Minimum longitude for MBR M int 32bits Position scale
Maximum latitude for MBR M _ int 32 bits Position scale
Maximum longitude for MBR M : int 32bits Position scale
Byte offset for child node of MBR M int 32bits Byte

Table 5.3 Directory spatial index file (File2) header structure.

Item Type Size Units
Size of this header record int 32bits Bytes
Maximum size of the records in this data file int 32 bits Bytes
Number of data records in this data file _int 32 bits
HDCS file type int 32 bits
File version number int 32 bits
Total number of bytes in this data file - int 32bits Bytes

Table 5.4 Directory spatial index file (File2) data structure for R-tree leaf nodes of Filel.

Item Type Size Units
Number of characters (V) in this data record int 32 bits
- Directory name of length ¥ char N bytes

60,

In Filel, when the record is not a leaf, its byte offset is the address of another
record in Filel. Every node is a child node, except for the root, which has its "Byte offset
of this record's parent record” BO, set to zero. When the record is a leaf, the byte offset is
an address of a record in File2 which is simply a list of all the sub-directory names. We

can regard those directories as tuples we want to build the spatial index on,

File Header Record File Header Record
Node Record 1 —=| N1, Directory Namel
Node Record 2 N2, Directory Name?2
L 5 L L
= sy -1 —l“
Node Record i —»{Ni, Directory Name i
A4 B
= = 7] T
Nn, Directory Name n
Node Record n
a. Filel b. File2

Figure 5.4 Directory spatial index files.
The structure for a spatial index file for profiles is given in Tables 5.5 and 5.6.
As for Filel, the indicator in the data record also has one of the value: [, n and d.
The only difference between Filel and a profile spatial index is at a leaf node, where the

byte offsets become the profile sequential numbers in a line instead of the addresses of

records in File2,

61

Table 5.5 Header record structure for the profile spatial index file.

Item . Type Sizg Units

Size of this header record int 32bits Bytes

Size of a record in this data file int 32bits Bytes

Number of data records in this data file int 32 bits

HDCS file type int 32 bits

File version number int 32 bits

Reference time for this header file int 32bits 100 seconds

Data time scale for time offsets in this header file int 32 bits No. of
microseconds

Minimum time (offset w.r.t. reference time) int 32bits Data time scale

Maximum time (offset w.r.t. reference time) int 32bits Data time scale

Position scale for position offsets in this file int 32bits No. of nano-radians

Reference latitude for this file int 32bits 100 nano-radians

Minimum latitude (offset w.r.t. reference latitude) int 32 bits 100 nano-radians
Maximum latitude (offset w.r.t, reference latitude) int 32 bits 100 nano-radians

Reference longitude for this file int 32bits 100 nano-radians
Minimum longitude (offset w.r.t. reference int 32 bits 100 nano-radians
latitude)
Maximum longitude (offset w.r.t. reference int 32bits 100 nano-radians
latitude)
: Maximum latitude difference for one profile's int 32bits 100 nano-radians
minimal bounding rectangle
Maximum longitude difference for one profile's int 32bits 100 nano-radians
minimal bounding rectangle
Maximum number (m) of bounding rectanglesin int 32 bits
* a record
Byte offset to the root in this data file int 32 bits
Number of deleted records in this data file int 32 bits

Byte offset to the first record on the linked listfor int 32 bits
the deleted records in this data file ’

62

Table 5.6 Structure of one record of the profile spatial index file.

Indicator of the data record char 8 bits

Byte offset of this record's parent record int 32 bits

Number of MBRs in this record int 32 bits

~ Minimum latitude for MBR 1 int 32bits Position scale

Minimum longitude for MBR 1 int 32bits Position scale
Maximum latitude for MBR 1 int 32bits Position scale
Maximum longitude for MBR 1 int 32bits Position scale
Byte offset for MBR 1 int 32 bits

Minimum latitude for MBR 2 int 32 bits Position scale
Minimum longitude for MBR 2 int 32bits Position scale
Maximum latitude for MBR 2 int 32 bits Position scale
Maximum longitude for MBR 2 int 32 bits Position scale
Byte offset for MBR 2 int 32 bits

Minimum latitude for MBR m int 32 bits Position scale
Minimum longitude for MBR m int 32bits Position scale
Maximum latitude for MBR m int 32 bits Position scale
Maximum longitude for MBR m int 32 bits Position scale
Byte offset for MBR m int 32 bits

5.3 Building R-tree Indices

Index files are built using a combination of fop—down and bottom-up approaches.

The program starts from a project directory, visits each vessel directory under the project,

then each day under the vessels, and finally all lines under each day. An index file is

| created for all the profiles on this line, and an MBR for all the profiles is also established.
This MBR is the bounding rectangle for the data of this line. After all the line MBRs are

found, index files can be created for those lines. Minimal bounding rectangles are

propagated up to the project directory.

63

Guttman's algorithms are adopted after some modificatdion. The modified
algorithms take into account the difference in the data structures, file operations, as well

as the deleted record collection which will be introduced in Section 5.5.

An R-tree is built up by inserting new rectangles into its leaf nodes. Coverage and
overlay problems should be minimized when adding new rectangles. The right leaf node is
determined by traversing the tree from the root to one of its leaves while at each node
choosing the sub-tree whose MBR would have to be enlarged the least to enclose the new

rectangle.

If there are M minimal bounding rectangles in the leaf n‘ﬁde in which the new MBR
is about to be added, it has to be split. The splitting propagates up till a non-leaf node with
less than M rectangles is reached. Two rectangles with the greatest normalized separations
along all the dimensions among the M + 1 rectangles are found and used as the first MBRs
in the two split nodes. The rest of the MBRs are added arbitrarily into one of the two
nodes which would be cnlafgcd the least by the addition.

5.4 Range Search Using R-tree Indices

Given a project name and a query window, a range search starts from a project
directory, and searches the R-tree index files in the hierarchically structured directories.
Searching an R-tree is straightforward. The MBRs at each node are compared with the
given fangc when traversing through the index tree starting from its root. If the QW
encloses an MBR, all the MBRs of the sub-tree are within the query range, so that a
further test can be skipped.

A sub-directory name can be obtained from File2 whose address in the file is
acquired from a leaf node of Filel. Then the search program moves to the lower directory
for the further search. The tuple-IDs in profile spatial index files whose MBRs are within

the search range yields the search results: the in-window profile numbers.

5.5 Linking Deleted Records in R-trees

The fundamental operations for dynarriic index file updating are inserting and
deleting records. To avoid moving massive data within the file, deleted records are linked
into a Hst through the last byte offset of the record. A pointer in the file header records the

first record of the list, and is set to a negative value if the list is empty.

The linked list approach makes it easy to access all the deleted records and makes
it ﬂcxiblé to dynamically update R-tree indices. .A newly deleted record can be easily
attached to the list without moving other fecords and modifying the pointers to the
records. When a new record is about to be added into the file, the linked list is checked
first. If the list is not empty, the first record on the linked list is released and the disk space

is reused; otherwise the new record is appended to the end of the file.

5.6 Deleting Profiles From R-tree Indices

Whenever some profiles are deleted from the data set, the R-tree spatial index files

based on this data set should be modified by deleting profile entries in the R-trees.

Deleting a profile from an R-tree is performed in the following four phases:

65

1. The profile's MBR is used to find the leaf-node containing the profile. Then the
leaf is searched to find the entry whose tuple-ID matches the profile number.

2. Remove the entry from the leaf,

3. If the number of entries in the node is less than M/2, keep the entries in a list for
re-insertion, and delete this node from the tree. Otherwise tighten the MBR for the node.
Move up to the parent of the node and repeat the operations in this phase on the parent

until it is a node. Re-insert all the entries in the list into the tree.

4. If the root has only one child, delete the root. Set the root pointer in the file
header to the old root's child.

Suppose some profiles, defined by the range of profile sequential numbers, are
removed from a line. To modify the indices, the line's profile spatial index file must be
changed first. Then the deletion propagates up to the corresponding day, vessel and
project directories, and the directory spatial index files under these directories are
modified accordingly. Changing each directory R-trcé index file (Filel) involves the same
- steps mentioned above. If a whole directory is removed, a record in File2 is deleted by

changing the directory name length N to a negative value.

5.7 Modified Deletion Algorithm

A proﬁlé spatial index R-tree is well packed. The profiles close in space are close

‘in the tree. They are stored in the same leaf-node or in the leaf-nodes of common

66

ancestors. An R-tree for the first 15 profiles on line 16:57:19, under project

ConceptionBay, vessel Matthew, date 199134, is shown in Figure 5.5.

Ra

|

I

t
I |
R1

node-A
Raf Rb| Re | Rd
R1{R2|R3 /R4 R5|R6 | R7 RG{R10/R11|R8 R14/R13(R15[R12
leaf-node 1 leaf-node 2 leaf-node 3 leaf-node 4

Figure 5.5 A simple R-tree for profile MBRs.

- The deletion algorithm works in a profile-by-profile approach. Each time a deletion
is requested, a search for the profile from the root to the leaf and a tree adjustment from
the leaf to the root have to be performed. Since most of the deletions in HDCS are caused
by removing a range of profiles, say from profile 100 to profile 500, by removing all the
should—bc-rcmoved profiles from a leaf-node or the leaf nodes of the same close ancestors,

a deletion can avoid substantial amounts of the search and adjustment.

67

The modified deletion algorithm takes into account that the profiles are packed
into an R-tree. It finds the first profile in a leaf-node, deletes all the node's profiles which
are within the profile range. Then it climbs up a limited level of the tree, searches in the
siblings of the node just visited, and deletes all the profiles in the range.

A linked list, called AvoidList, is used to avoid repeatedly deleting a profile. It
keeps the profile numbers being deleted, and changes as more profiles are deleted. In
order to speed up searching the list, when a profile number is found on the Lst, the profile
will be removed. Suppose the current to-be-deleted profile number is i, therefore all the
profile numbers on the list are no less than i. The modified deletion algorithms are given in
Appendix D. .

For example, suppose we wish to delete profiles 4-14 from the R-tree in Figure
5.5. The deletion starts with profile 4, finds leaf-node 1 containing an entry R4 for the
profile, and deletes R4.. All other entries in leaf-node 1 are checked for deletion, but no
more removal occurs in the node. Then, the R-tree is condensed. The next profile to be
deleted is profile 5 which has an entry RS in leaf-node 2. After RS is deleted, other entries
in the node are checked. Evidently, entries R6 and R7 for profiles 6 and 7, respectively,
are within the deletion range, and they are deleted from leaf-node 2. Now leaf-node 2 is
empty, and it is added into the deleted record linked list in the R-tree. After that function
DeleteUpwards is called to delete leaf-node 2 from its parent node-A and to delete the

profiles 8-14 from leaf-node 3 and leaf-node 4. Finally the R-tree is condensed starting
from leaf-node 4.

The function DeleteUpwards first deletes leaf-node 1 from node-A, then goes to
leaf-node 2's first sibling on the right, i.e. leaf-node 3. Entries for profiles 8-11 are deleted

from leaf-node 3, and the deletion leaves the node empty. Again, DeleteUpwards is cailed

68

to delete leaf-node 3 from the node-A and to remove the profiles in the first right sibling
of leaf-node 3. Since only entry R14 can be deleted from leafinode 4 and the node is not
empty after the removal of R4, the deletion stops.

69

CHAPTER SIX

COMPARISON OF THE INDEXING METHODS

- 6.1 Experimental Description

Experiments for the Morton code, R-tree and INGRES Morton code indexing
methods were conducted using data surveyed by the vessel Marthew for the Canadian
Hydrographic Service in 1991. The area surveyed was in Conception Bay off the north-
east coast of Newfoundland, Canada. Figure 6.1 shows a map.'of the surveyed area. The

range covered by the survey is

minLat = 0.829973 (47°33'14"N) minLong = -0.926763 (53°05"59"W)
maxLat = 0.831002 (47°36'46"N) maxLong =-0.925504 (53°01°39"W)

Spanning four days, the survey includes 46 lines. The total number of profiles
collected is 54,192, each of which contains 32 sounding points. The total amount of data
is about 128.9 mégabytes. Appendix E gives the numbers of projects, days, lines, profiles,

and the data size of each line,

70

2 ‘?‘L AMW

{WZ =, f o s 8 kﬂ_f_‘:i "”:T'-; /

Figure 6.1 Surveyed area in Conception Bay off the north-east coast of Newfoundland.
[from Canadian Hydrographic Chart 802, Newfoundland Shelf}

.

The programs for building and searching the indices were developed on a Sun
workstation called jupifer, a model Sparc 670MP running Sun OS 4.1.3, with 128 MB
main memory and 18GB of hard disk, in the Computing Services Department, University

of New Brunswick.

The time for building and searching spatial indices using the three approaches was
measured. R-trees were constructed using four different branch factors from M=4 {0 M=7.
Range searches on the Morton code and R-tree indices were performed usixig thirteen
query windows of different sizes. The windows, listed in Table 6.1, were chosen based on

the percentage of profiles returned in the search results.

Table 6.1 Query windows and their coverage.

QW Min. Lat. Min, Long. Max, Lat, Max. Long. Coverage (%)
1 0.83060 -0.9260 0.83060 -0.9260 0

2 0.83064 -0.9260 0.83065 -0.9259 5

3 0.83064 -0.9260 0.83070 -0.9259 11
4 0.83060 -0.9260 0.83070 -0.9259 15
5 0.83040 -0.9264 0.83060 -0.9260 21
6 0.83040 -0.9266 0.83060 -0.9259 29
7 0.82970 -0.9266 0.83070 -0.9260 40
8 0.82970 -0.9264 0.83060 . -0.9259 50
9 0.82970 -0.9264 0.83090 -0.9259 60
10 0.83020 -0.9267 0.83060 -0.9256 70
11 0.83020 -0.9267 0.83070 -0.9255 80
12 0.82990 -0.9266 0.83090 -0.9257 90
13 0.82990 -0.9268 0.83110 -0.9255 100

An index file was built ten times, and each query window was also searched ten
times. The averages for the building and searching were calculated, along with their

standard deviation. In order to minimize the effect of other processes running on the

72

machine during the testing, the experiment was designed in such a way that the building

and searching of Morton code and R-tree indices were interleaved as described below:

Loop 10 times
Construct Morton code indices;
Search the Morton code indices against the QW,(G=1,13); -
Construct R-tree indices for M=4;
Search the R-tree indices against the QWJ. G=1,13)
Construct R-tree indices for M=5;
Search the R-free indices against the QWJ. (G=1,13);
Construct R-tree indices for M=6;
Search the R-tree indices against the QW G=1, 13)
Construct R-tree indices for M=7,
Search the R-tree indices against the QW, (j = 1, 13);
EndLoop

Figure 6.2 Algorithm for Morton code and R-tree index build and search experiments.

The timing results for building and searching the Morton code and R-tree indexing
files are listed in Tables 6.3 - 6.8, and the file space requirements of the two methods are
listed in Table 6.12.

Seven profile ranges (see Table 6.2) were used to test Guitman's deletion
algorithm and the modified algorithm. Line 16:44:37 of day 1991314 was used in the
experiment. There are 1076 profiles in this line. A deletion range is éhosen according to
the percentage of profiles it covers on the line, and is defined by two numbers giving the

starting profile and the ending profile for the deletion.

73

Deletion timing was also taken ten times for each range using the two algorithms
on the R-tree indices with the branch factor M equal to 4. Tables 6.9 and 6.10 list the

timing results obtained using the following algorithm:

Table 6.2 Profile ranges to delete for profile deletion experiment.

Range Start No, End No. Coverage (%)

1 0 0 0

2 500 608 10
3 400 616 20
4 300 732 40
5 200 848 . 60
6 100 964 _ 80
7 1 1076 s 100

Loop 10 times
For each range R, j=1,7,loop
Build R-tree indices;
Delete R, using Guttman's algorithm
Build R-tree indices;
Delete R, using modified algorithm
EndLoop
EndLoop

Figure 6.3. Algorithm for rangé deletion experiment,

INGRES Morton code indices were built under the INGRES environment. The
same query windows listed in Table 6.1 were used to test the search speed. The time
required for building and searching using INGRES tables was very long, so the timing was

taken only once and the results are listed in Table 6.11.

74

6.2 Times for Building Morton Code and R-tree Spatial Indices

The time used in building both the Morton code and R-tree index files was
measured in the manner described in Section 6.1 between 9 AM and 7 PM, October 30,

1993. A Saturday was chosen since this is the day when the number of users is the least in

a week.

The timing results in building R-trees varies with the branch factor M. The fastest
building performance was obtained when M=7, and the slowest one when M=4, which
have average execution times of 8.86 seconds and 11.16 seconds, respectively. As
illustrated in Table 6.3 and Figure 6.4, there is no significant differcnce among the timings
when Mis 5,6, and 7.

It is shown in Table 6.3 that building Morton code- indices is almost two to three

times faster than constructing R-tree indices.

Table 6.3 Times (in seconds) for building Morton code and R-tree indices.

MC RT(M=4) RT(M=5) RTM=6) RT (M=7)

1 4.32 10.65 8.70 10.83 7.82

2 3.27 10.92 10.62 9.88 8.67

3 3.50 10.08 10.05 9.07 8.67

4 5.40 11.80 10.88 12.15 11.53

5 432 13.38 9.33 9.02 9.67

6 3.68 10.52 8.33 11.22 9.00

7 3.55 11.78 9.35 8.78 8.62

3 3.48 11.00 8.03 8.42 - 7.17

9 3.62 11.62 9.30 8.02 7.72

10 3.20 9.85 7.90 8.60 0.68
Average 3.83 11.16 9.25 9.60 8.86
Standard Deviation 0.67 1.03 1.04 1.37 1.24

75

0] T~~~

ganﬁo‘\ﬁ

=4 M=5 M=§ M=7

- Figure 6.4 Times for building R-tree indices for HDCS using different branch factors.

6.3 Times for Searching Morton Code and R-tree Spatial. Indices

The distribution of data, the position and the sizes of the query windows are three

major factors that affect the search time if the other conditions are the same.

The times for searching Morton code and R-tree indices were taken in the same
period as measuring the times for building the indices. Thirteen query windows of different
sizes were used, and each query window was searched ten times against Morton code
indices and R-tree indices of M= 4, 5, 6, and 7, respectively. The timing results, their
average (AV) and the standard deviations (SD) are listed in Tables 6.4 - 6.8. The averages
are used in.Figurc 6.5.

The figures in the tables display that the time for searching R-tree indices is very
consistent. The search time on an R-tree index does not change substantially with the size
and the location of the query windows. The query windows QW1 - QW4 use about 0.01

seconds and the query windows QW5 - QW13 use about 0.08 seconds. The search time

76

consistency holds for the R-trees of different branch factors. The change of branch factors

affects the search time slightly, as shown in Figure 6.5, with M=4 giving the fastest times.

Table 6.4 Times (in seconds) for searching Morton code indices.

QW QW QW QW QW QW QW QW QW QW QW QW QW
1 2 3 4 5 6 7 8 9 10 11 12 13
0.03 0.00 0.00 0.03 0.25 0.30 047 0.62 0.70 0.65 0.43 0.45 0.60
0.05 0.02 0.02 0.02 020 022 033 042 045 037 040 0.50 0.62
0.05 0.02 0.02 0.02 0.17 0.20 0.48 0.43 0.52 0.52 0.37 043 0.60
0.05 0.02 0.02 0.03 023 025 0.42 0.68 045 0.50 0.65 0.67 0.78
0.07 0.02 0.02 0.02 0.18 0.27 040 0.33 0.57 0.47 0.48 0.87 0.90
0.05 0.02 0.03 0.02 0.17 0.20 0.33 0.28 0.47 0.38 0.37 0.45 0.62
0.05 0.03 0.07 0.05 0.25 0.37 032 0.38 0.52 0.40 0.45 0.45 0.58
0.07 0.00 0.02 0.03 030 0.25 0.83 0.37 0.40 0.38 0.33 0.52 0.43
0.05 0.03 0.03 0.03 0.20 0.20 0.28 0.35 0.60 0.45 0.38 0.43 0.47
0.03 0.02 0.02 002 0.13 020 0.35 0.28 0.78 0.35 0.35 0.53 0.65
0.05 0.02 0.03 0.03 0.21 025 0.42 641 0.55 045 042 0.53 0.63
0.01 0.01 0.02 0.01 0.05 0.06 ¢.16 0.13 0.12 0.09 0.09 0.14 0.14

g:goch\mhmww

‘Table 6.5 Times (in seconds) for searching R-tree (M=4) indices.

QW QW QW QW QW QW QW QW QW QW QW QW QW
1 2 3 4 5 6 7 8 9 10 11 12 13
0.02 0.00 0.00 0.02 0.05 0.05 0.12 0.07 0.05 0.07 0.05 0.12 0.08
0.05 0.00 0.00 0.02 0.08 0.13 0.13 0.08 0.08 0.08 0.08 0.10 0.10
0.02 0.00 0.00 0.00 0.10 0.10 0.08 0.07 0.10 0.13 0.17 0.10 0.08
0.03 0.00 0.02 0.00 0.08 0.08 0.12 0.10 0.12 0.15 0.13 0.32 0.20
0.02 0.00 0.00 0.00 0.07 0.07 0.13 0.07 0.13 0.10 0.08 0.08 0.10
0.03 0.00 0.00 0.00 0.07 0.08 0.10 0.10 0.08 0.12 0.10 0.18 0.18
0.02 0.00 0.00 0.00 0.10 0.08 0.15 0.07 0.08 0.07 0.10 0.10 0.12
0.03 0.00 0.00 0.00 0.08 0.10 0.10 0.13 0.10 0.13 0.10 0.10 0.13
0.02 0.02 0.00 0.00 0.07 0.10 0.07 0.07 0.07 0.13 0.12 0.10 0.10
0.03 0.00 0.00 0.02 0.07 0.08 0.10 .10 0.10 0.10 0.10 0.10 0.12
AV 0.03 0.00 0.00 0.0t 0.08 0.09 0.11 0.09 0.09 0.11 0.10 0.12 0.12
SD 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.08 0.04

SO0t R W N

77

Table 6.6 Times (in seconds) for searching R-tree (M=>5) indices.

QW QW QW

1
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.00

%za\omqa\whmwn—-

2
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.00
0.00
0.00
0.01

3
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.00

0.00

0.01

QW QW

4
0.02
0.02
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01

5
0.07
0.05
0.08
0.07
0.07
0.05
0.05
0.10
0.07
0.05
0.07
0.02

QW
6
0.08
0.07
0.05
0.07
0.05
0.07
0.07
0.08
0.07
0.12
0.07
0.02

QW
7
0.10
0.07
0.07
0.08
0.05
0.08
0.08
0.07
0.07
0.10
0.08
0.01

QW
8
0.07
0.05
0.07
0.12
0.05
0.12
0.05
0.05
0.03
0.05
0.07
0.03

QwW
9
0.07
0.08
0.08
0.13
0.03
0.08
0.08
0.08
0.07
0.05
0.08
0.03

QW QW

10
0.08
0.08
0.13
0.10
0.03
0.08
0.05
0.08
0.08
0.05
0.08
0.03

11
0.07
0.07
0.12
0.07
0.05
0.07
0.10
0.05
0.05
0.05
0.07
0.02

Qw
12
0.03
0.18
0.08
0.12
0.05
0.08
0.08
0.07
0.05
0.07
0.09
0.04

Table 6.7 Times (in seconds) for searching R-tree (M=6) indices.

Qw
1
0.02
0.03
0.02
0.02
0.03
0.02
0.02
0.02
0.02
0.02
AV 0.02
SD 0.00

et J RN N N R

QW QW QW QW

2
0.00
0.00
0.02
0.02
0.00
0.02
0.02

0.00

0.00
0.02
0.01
0.01

3
0.00
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.01

4
0.00
0.00
0.00
0.02
0.02
0.00
0.00
0.02
0.00
0.00
0.01
0.01

5
0.05
0.08
0.07
0.07
0.05
0.10
0.07
0.05
0.05
0.07
0.07
0.02

QW
6
0.03
0.07
0.07
0.07
0.10
0.07
0.07
0.05
0.07
0.05
0.07
0.02

QW
7
0.05
0.08
0.07
0.08
0.08
0.13
0.08
0.07
0.07
0.07
0.08
0.02

78

QwW
8
0.03
0.08
0.07
0.07
0.08
0.08
0.05
0.07
0.07
0.07
0.07
0.02

Qw
9
0.05
0.10
0.08
0.17
0.12
0.08
0.07
0.05
0.12
0.08
0.09
0.04

QW
10
0.08
0.08
0.07
0.12
0.10
0.08
0.07
0.20
0.10
0.07
0.10
0.04

QW
11
0.08
0.10
0.07

0.13

0.07
0.10
0.07
0.10
0.12
0.07
0.09
0.02

Qw
12
0.08
0.08
0.08
0.08
0.08
0.13
0.08
0.12
0.13
0.08
0.09
0.02

QW
13
0.08
0.12
0.07
0.10
0.03
0.10
0.07
0.03
0.07
0.10
0.08
0.03

QW
13
0.08
0.17
0.07
0.07
0.07
0.10
0.08
0.18
0.05
0.08
0.10
0.04

Table 6.8 Times (in seconds) for searching R-tree (M=7) indices.

QW QW QW QW QW QW QW QW QW QW QW QW Qw
1 2 3 4 5 6 7 8 9 10 11 12 13
0.02 0.02 0.00 0.02 0.05 0.05 0.07 0.05 0.07 0.07 0.07 0.07 0.12
0.03 0.02 0.00 0.02 0.05 0.12 0.12 0.10 0.13 0.12 0.08 0.08 0.07
0.02 0.02 0.00 0.02 0.10 0.07 0.08 0.08 0.08 0.12 0.12 0.12 0.08
0.02 0.00 0.00 0.02 0.07 0.08 0.10 0.10 0.08 0.07 0.07 0.05 0.07
0.03 0.02 0.00 0.02 0.07 0.07 0.07 0.08 0.08 0.07 0.07 0.07 0.07
0.02 0.00 0.00 0.00 0.08 0.03 0.07 0.05 0.08 0.07 0.10 0.05 0.05
0.02 0.00 0.00 0.00 0.07 0.07 0.05 0.07 0.05 0.05 0.10 0.07 0.05
0.03 0.00 0.06 0.02 0.05 0.02 0.05 0.07 0.08 0.07 0.07 0.08 0.13
0.02 0.02 0.02 0.02 0.08 0.12 0.10 0.65 0.05 0.05 0.05 0.03 0.03
10 0.02 0.00 0.02 0.00 0.08 0.08 0.07 0.08 0.07 0.05 0.05 0.05 0.05
AV 002 001 0.00 0.01 0.07 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.07
SD 0.00 0.01 0.01 0.01 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03

oo =) OhLh W)

|
07 T ~— - - Motton Code
o e R-tree (M=4) _
0.5 + - e — R-tre@ (M=5) - 4
R-tree (M=6} ~ y
05 + ——R-tree (M=7) _ 2R y
"’ \‘h‘.‘ ‘
-/ .S
K 04 <
g /
0 .
303 4 .
S
02 <+ Rl
/ ------
0.] - e THp : ----------- —_—
{ [~ . .. /
0 - $

| Figure 6.5 Times for searching Morton code and R-tree indices in HDCS.

Generally, the larger the query window is, the longer the search takes on a Morton

code spatial index file. The search time, however, also varies with the change of the

79

~ window's locations. QW10 and QW11 give better search speeds because of their location

in the data set.

6.4 Times For Deleting Profiles from R-tree Spatial Indices

R-tree indices with a branch factor M equal to 4 are used in timing the Guttman's
deletion algorithm and the modified deletion algorithm. All the deletions take place on one
line: 16:44:37 of day 1991314. Seven deletion ranges covering different percentages of

profiles on the line were used (see Table 6.2).

The experiment started with no profile being deleted, and ended with the whole
line .being removed. For each range, ten timing results were recorded on each algorithm,
and are listed in Tables 6.10 and 6.11, as well as their averages and standard deviations.

The timing averages are used in Figure 6.6.

Table 6.9 Times (in seconds) for deleting R-tree indices using Guttman's algorithm,

(M=4) Rangel Range2 Range3 Range4 Range5 Range6 Range7
0.00 0.23 0.43 0.88 0.93 1.82 1.57
0.00 0.15 0.35 0.68 1.47 1.52 1.97
0.00 0.28 0.37 0.93 1.22 2.05 2.15
0.00 0.07 0.28 0.93 1.57 1.65 1.80
0.00 0.10 0.27 0.77 1.07 1.97 1.75
0.00 0.08 0.37 1.03 1.45 1.95 1.78
0.00 0.17 0.33 0.80 1.05 1.90 1.98
0.00 0.12 0.43 0.77 1.08 1.88 1.73
0.00 0.10 0.25 0.78 1.02 1.88 2.45
0.00 0.08 1.27 1.35 1.13 3.17 3.15
0.00 0.14 0.44 .89 - 1.20 1.98 2.03
0.00 0.07 0.30 0.19 0.22 0.45 0.46

%Jz;\cooqc\m.hwmw

20

Table 6.10 Times (in seconds) for deleting R-tree indices using modified algorithm.,

(M=4) Range1l Range2 Range3 Range4 Range5 Range6 Range?
0.00 0.00 0.02 0.03 0.08 0.18 0.26
0.00 0.02 0.02 0.02 0.07 0.17 0.24
0.02 0.02 0.00 0.02 0.07 0.14 (.28
0.00 0.00 0.02 0.02 0.06 0.16 0.28
0.00 0.02 0.02 0.02 0.06 0.18 0.21
0.00 0.00 0.00 0.02 0.08 0.11 0.19
0.00 0.00 0.02 0.03 0.09 0.20 0.20
0.00 0.00 0.02 0.02 0.08 0.22 0.23
0.00 0.00 0.02 0.02 0.09 0.20 0.21
0.00 0.00 0.02 0.07 0.12 0.29 0.30
AV 0.00 0.01 0.02 0.03 0.08 0.19 0.24

S WA AW~

SD 0.01 0.01 0.01 0.02 0.02 0.05 0.04
W
" = = = Guttman's Deleting
Algorithr
o~ Modifled Algotithemn o
p ’
u 7 7/
$- -
] 7
8 _ P
- //
- -
3 1 _ - -
o - — - — , =—-__——_:______._—-——'—_:
8 g g g g 1 8
a @ a a 3 a B
[o ® ®]] @
-— [] 7] o L] -] -4

Figure 6.6 Average time used in the deletion of different ranges.

The time used by the modified deletion algorithm increases slightly with the
enlarging of the profile deletion ranges. On the contrary, the deletion time of Guttman's
algorithm increases rapidly, and the time used by Guttman's algorithm turns out to be 10

to 20 times that used by the modified algorithm.

81

6.5 Times for Building and Searching INGRES Morton Code Indices

The time used to build and search INGRES Morton code indices is very high.
Bui]ding. indices for HDCS took 121.32 CPU seconds. The timing results for the 13 QWs
are listed in Table 6.11.

Table 6.11 Times (in seconds) for searching INGRES Morton code in_diccs.

Query Window Time
QW1 3.95
Qw2 8.95
QW3 22.07
Qw4 16.32
QWS 99.28
QW6 197.63
QW7 595.50
QW8 880.72
QW9 1183.05
Qw10 1127.55
Qw11 1046.65
Qw12 1715.65
Qw13 1853.72

Seconds

:

L MO
< MO
£ M
¥ MD -
5 MO
9N
L MO
6 MDD
oL MO
LI MO +
L M
£l MO

Figure 6.7 Times used in searching INGRES Morton code indices.

82

6.6 Space Requiremelit of the Three S[iatial Indexing Approaches

The sizes of index files for directories or profiles change with the number of
directories or profiles being indexed. The more the directories or profiles, the larger the
index file sizes. Since the directory numbers are far less than the profile numbers in HDCS,
the size of a directory spatial index file is far smaller than the size of a profile spatial index
file. For example, under Morton code indexing, the directory spatial index file for vessels
under project ConceptionBay has only one vessel, Matthew, and takes 224 bytes, while the
profile spatial index file under day 1991314 and line 16:44:37 contains 1076 profiles and
uses 51708 bytes. Because of this difference, only the sizes of proﬁle- spatial index files are

considered here.

While the size of Morton code and R-tree spatial index files can be displayed by
the UNIX command /s, the size of INGRES Morton code spatial index tables can be
calculated using the formula given in Chapter Four. Table 6.12 gives the number of kilo-
bytes for an index file or a table of different number of profiles contained in the spatial

indices.

83

Table 6.12 Number of kilobytcs required by the three approaches.

No. of Profiles = M=4 M=5" M=6 M=7 MC INGRES

515 24 20 22 20 25 96
743 33 28 33 29 35 138
367 38 32 38 33 41 161
907 39 33 38 35 43 132
1002 43 37 42 37 43 187
1097 47 40 47 42 52 204
1195 52 44 50 44 57 222
1262 58 47 54 47 60 235
1370 59 50 58 51 65 255
1452 63 53 62 54 69 270
1710 74 63 73 63 81 318

Average ~ 0.043 0.037 0.042 0.037 0.048 0.187
KB/Profile

| Figure 6.8 shows the disk space usage occupied by the INGRES tables, Morton
code index files (MC) and R-tree index files. With the same profile number, an INGRES
table takes four to five times the size of a Morton code or R-tree file. The space
requirement of the three approaches increases linearly with the growth of the number of

profiles being indexed, and the INGRES tables have the fastest growth rate.

The space used by Morton code index files is slightly more than that used by R-
tree index files. The difference, howcvcf, is not sig[iiﬁcant, An interesting observation is
- that the space used by R-trees of even branch factors M is larger than that used by the
trees of odd M, while the sizes of the trees are almost identical within each group. Figure

6.9 gives a better view of the space used by Morton code and R-tree index files.

84

Size of index files in kilobytes

Size of index files in kilobytes

42@

300

202

108

—rrrereir—
reaaguana
——————
-
s, B,

[EY— ——

R-tree, M=4

R-tree, M=S5

R—tree, M=6 :
R-tree, M=7 __',-»-‘°
Morton code P
INGRES L

920 1100 1389 .. 1508

Number of prof.les

Figure 6.8 Space requirement for Morton code, R-tree and INGRES MC indices.

o0

80

1192 1320 1500 1708 1992
Number of' profiles

Figure 6.9 Spéce requirement for Morton code and R-tree indices.

85

6.7 Advantages and Disadvantages of the Three Indexing Approaches
From the experiment, the following conclusions are drawn,

1. Since Morton codes are easy to compute, it takes the smallest amount of time to
build index files among the three spatial indexing approaches. Building an R-tree requires
comparing of minimal bounding rectangles, splitting nodes, and re-inserting entries, so that

it is two to three times slower than building Morton code index files.

2. From the range search point of view, R-tree indices are better than Morton code
indices. The search time on the trees is almost not affected by tﬁe size and location of the
query w‘indows. On the contrary, the search time on the Morton code indices increases
sharply when the query range becomes bigger. With the query window at a different

location, the search algorithm appears to have a slightly different performance.

3. The Morton sequence is an indexing mechanism for static data. Since a Morton
sequence is not organized through pointers, taking out one Morton code from the
sequence will cause massive data movement. Linked by pointers, an R-tree can be easily
reorganized when adding or removing .somc of its entries. The pointer's values are
changed so that nodes are linked together in a new order. Deleted nodes can also be

collected through the pointers, and the nodes can be reused when a new one is required.

No data movement is needed.

4. For packed R-trees like these built here for HDCS, deletion time can be .Iargely
reduced since a deletion usually takes place with a range of profiles being removed and

those profiles are kept in the sibling nodes of an ancestor in the trees.

86

5. Due to the overhead of managing an INGRES database, it is very costly to build
and search Morton code indices under the INGRES environment, Building the index under
INGRES required 32 times more CPU time than directly building Morton code index, and
searching required an average of 176 times more CPU time compared to the Morton code

index.

87

g
2
:
i
i
]
;
3.
i
|
i
H
]

CHAPTER SEVEN

SUMMARY AND CONCLUSION

Spatial mdexing 1s an important and active research topic in spatial data structures.
Among the ever-growing numbers of spatial data structures, Morton sequences are widely
used in geograp.hic data related applications. The fast query speed on R-trees is attributed
to their hierarchical structures. R-trees are also promising in indexing dynamically

changing spatial data.

Morton sequences were used to index profiles of swath data, both directly and in a
relational database management system (RDBMS) environment under INGRES. A timing

comparison between the direct and RDBMS approaches was made,

R-trees were also used to index profiles of swath data, and a hierarchical approach
was invented using R-trees to index groups of profiles, with each group having a sub-

index such as another R-tree to index the data within the group.

Comparisons were made among Morton code and R-tree spatial indexing
mechanisms, and Morton code implementations in both the C language and under the
INGRES RDBMS with the C as its host language. It is the first time such a comparison

was conducted.

The data structures designed for Morton sequences, R-trees and INGRES Morton

sequences to index profiles in HDCS were all shown to be viable. The search results

88

include the scquential numbers of the profiles which are within or overlapping a query
window, as well as the path from the project to these profiles. The path and the profile

sequential numbers can be used to access the data associated with the profiles.

To decide the best structure for spatial indexing, three factors should be taken into
account: the time used for building and searching indices, and the space required by the
index files. Table 7.1 lists the construction time, the search time based on QW8 which
covers about 50% of the data, and space used for index files of a line with 1710 profiles.
The minimum and maximum values of time and space requirements are used for R-trees of

different branch factors,

Table 7.1 Comparison of times (in seconds) for building and sc'arching index files and the
' index file's space requirements (in KB).

Average build time Search time for QW8 Space required

Morton Code 3.833 - 041 81
R-tree (min.) 8.86 (M=T7) 0.07 M=5, 6, 7) 63 M=5,7)
R-tree (max.) 11.16 (M=4) 0.09 M=4) 74 (M=4)
INGRES MC 121.32 1853.72 318

Based on these experimental results, the main findings of this research are

1. Morton code indices under the INGRES RDBMS cannot satisfy the needs of
HDCS applications. Building and keeping INGRES Morton code indices takes too much
computer resources. It is also extremely slow to search the INGRES tables.

2. Building Morton sequence indices is about three times faster than building R-

tree indices.

89

3. R-trees take a slightly less amount of disk space than Morton sequences do,

and, more importantly, the search time using R-trees is from five to nine times faster.

4. Improved efficiency of the modified deletion algorithm is definitely another asset

when profile positions have to be modified due to e.g. navigation corrections.

3. R-trees with different branch factors have different characteristics. R-trees of
branch factor 7 yield the best performance relative to M=4, 5, and 6 in building and

searching, and also have the least file storage.

It can be concluded that the R-tree structure is the best among the three for the

application of spatial indexing of bathymetric profiles.

The R-tree index construction algorithm makes substantial use of disk storage.
One suggestion for future work would be to improve the speed by moving all parts of the

algorithm to be in memory. The speed of the searching algorithm could also be improved

in this way.

This research has given rise to the following (;p'en questions:

1. Why is the RDBMS so much slower?

2. How slow is the Morton code index on deletion?

3. How well can Morton code indexing based on a list structure (e.g. skip lists)
suppbrt deletion?

4. How well does R-tree indexing generalize to more general types of spatial data,
e.g., polygons, polylines, and volumetric data? |

5. Are other RDBMS systems equally slow?

20

REFERENCES

Abel, D. J. (1989). "SIRO-DBMS: a database tool-kit for geographical information
systems.” International Journal of Geographical Information Systems, Vol. 3, No.
2, pp. 103-116.

Abel, D. J., and Mark, D M. (1990). "A comparative analysis of some two-dimensional

orderings." International Journal of Geographical Information Systems, Vol. 4, pp.
21-31.

Ahuja, N. (1983). "On approaches to polygonal decomposition for hierarchical image
representation.” Computer Vision, Graphics, and Image Processing, Vol. 24, pp.
200-214.

Bell, S. B., Diaz, B. M., Holroyd, F., and Jackson, M., J. (1983). "Spatially referenced
methods of processing raster and vector data." Image and Vision Computing, Vol
1, No. 4, pp. 211-220. -

| Bentley, J. L. (1975). "Multidimensional binary search trees used for associative
searching." Communications of the ACM, Vol. 18, pp. 509-517.

Date, C. J. (1981). An Introduction to Database Systems. Reading, Massachusetts.
Addison-Wesley.

Franklin, W. M. R. (1984). "Adaptive grids for geometric operations.” Cartographica,
Vol. 21, pp. 160-168.

Faloutsos, C., Sellis, T., and Roussopoulos, N. (1987). Analysis of object oriented spatial
access methods. Proceedings of the SIGMOD Conference, San Francisco,
California, May. pp. 426-439.

Gibson, L. and Lucas, D. (1982). "Vectorization of raster images using hierarchical
' methods.” Computer Graphics and Image Processing, Vol. 20, No. 1, pp. 82-89.

Goodchild, M. F. (1989). "Tiling large geographical database". Proceedings of Design
and Implementations of Large Spatial Database, First Symposium SSD'89, Santa
Barbara, California, July 17-18, pp. 138-146,

Greene, D. (1989). "An implementation and performance analysis of spatial data access
methods." Proceedings of the Fifth IEEE International Conference on Data
Engineering, Los Angeles, California, February 6-10. IEEE Computer Society
Press, pp. 606-615.

Guenther, O., and Buchmann, A. (1990). "Research issues in spatial database." .SIGMOD
Record, Vol. 19, pp. 61-68.

91

Guttman, A. (1984). R-trees: "A dynamic index structure for spatial searching.” SIGMOD
Record, VOL. 14, pp. 47-57.

INGRES Manual (1990). "Dynamic Programming for C", Chapter 4, 12 pages.
INGRES Manual (1992). "Space Calculation”, Chapter 16, 20 pages.

Morton, G. M (1966). "A computer oriented geodetic data base and a new technique in
file sequencing.” IBM Litd., Ottawa, Canada.

Nievergelt, J., Hinterberger, H., and Sevcik, K. C. (1984), "The grid file: An adaptable,
symmetric multikey file structure." ACM Transactions on Database Systems, Vol. 9,
pp. 38-71.

Nievergelt, J., and Hinrichs, K. H. (1993). Algorithms and Data Structures. Prentice Hall,
Englewood Cliffs, New Jersey.

Noronha, V. T. (1988). "A survey of hierarchical partitioning methods for vector images."
Proceedings of the Third International Symposium on Spatial Data Handling,
- Sydney, Australia, August, pp. 185-200.

Ocean Mapping Group (1990). "Requirements analysis and conceptual design of data
cleaning tools for large bathymetric data sets." University of Mew Brunswick.

Ocean Mapping Group (1991). "B-5 Data structure design working document."
University of Mew Brunswick, March 6.

Peuquet, D. J. (1984). "A conceptual framework and comparison of spatial data models."
Cartographica, Vol. 21, pp. 66-113.

Preparata, F. P., and Shamos, M. I. (1985). Computational Geometry: An Introduction.
Springer-Verlag, New York.

Roussopoulos, N., and Leifker, D. (1985). "Direct spatial search on pictorial databases
using packed R-trees." Proceedings of the SIGMOD Conference, Austin, Texas,
May. pp. 17-31.

Samet, H., and Webber, R. E. (1988). "Hierarchical data structures and algorithms for
computer graphics.” IEEE Computer Graphics & Applications, May. pp. 48-68.

Samet, H. (1990a). The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, Massachusetts. '

92

Samet, H. (1990b). Applications of Spatial Data Structures. Addison-Wesley, Reading,
- Massachusetts.

Tomlinson, R. F. (1976). "Computer handling of geographical data." Paris, The UNESCO
Press.

Ware, C., Wells, D., Nickerson, B. G., Lee, Y. C., Derenyi, E., and Vanicek, P. (1990).
"Strategic research project progress report.” STR0040636 Progress Report, Ocean
Mapping Project, University of New Brunswick, 7 pages.

Ware, C,, Slipp, L., Wong, K. W., Nickerson, B. G., Wells, D, Lee, Y. C., Dodd, D. and
Costello, G. (1992). "A system for cleaning high volume bathymetry." International
Hydrographic Review, Accepted June 1992,

Waugh, T. C. and Healey R. G. (1987). "The GEOVIEW design: A relational data base
approach to geographical data handling." International Journal of Geographical
Information Systems, Vol. 1, No. 2, pp. 101-118.

Witten, I. H. and Wyvill, B. (1983). "On the ge¢neration and use of space-filling curves."
Software, Practice and Experience, Vol. 13, No 6.

Wood, D. (1993). Data Structures, Algorithms, and Perfomance Addison-Wesley
Publishing Company, Readmg, Massachusetts.

Yang, W. P. (1992). "A new range search algorithm for large point databases.” M.Sc.E.
thesis, University of New Brunswick.

93

APPENDIX A

STRUCTURES ACCOMMODATING SEARCH RESULTS

typedef struct ProjectStruct {

char - *name;
struct {
char ‘*title;
int number;
struct {

char *name;
double semiMajorAxis, semiMinorAxis;
double deltaX, deltaY, deltaZ;

} ellipsoid;

int utmZone, timeZone;

char “*glevationDatumName;

} config;

int mapProjection;

int numVessels;
Vessel *irstVessel;

Vessel *lastVessel;

int numSpatialSubsets;

SpatialSubset *firstSpatialSubset;
SpatialSubset *lastSpatialSubset;
} Project;

typedefstruct VesselStruct {

char *name;
HDCS_VesselConfig vesselConfig;
struct ProjectStruct *project; /¥ ptr to parent */
struct SpatialSubsetStruct *spatialSubset:/* ptr to parent */
: ' int numDays;
Day *firstDay;

Day *lastDay;

struct VesselStruct *next;

struct VesselStruct *previous;

} Vessel;

94

typedefstruct DayStruct (
char

struct VesselStruct
int

Session

Session

struct DayStruct
struct DayStruct

} Day; '

typedefstruct SessionStruct {

char

struct DayStruct

unsigned char .

int

NavLine

NavLine

double

double

double

double

int

PDProfile

PDProfile

unsigned char

struct SessionStruct

struct SessionStruct
} Session;

*name;
*vessel;
numSessions;
*firstSession;
*lastSession;
*next;
*previous;

/* ptr to parent ¥/

*name;

*day;
navStatusChanged;
numNavLines;
*firstNavLine;
*astNavLine;
minTimePD, maxTimePD;
mink.atPD, maxLatPD;
minLongPD, maxLongPD;
minDepthPD, maxDepthPD;
numProfiles;

*firstProfile;

*lastProfile;

statusChanged;

*next;

*previous;

/* ptr to parent */

95

typedefstruct NavLineStruct {

int lineNurmsber; /* 1..numlLines */
char *sourceFile;

int bgnindex;

int endIndex;

double minTime, maxTime; /* in seconds ¥/
double minLat, maxL.at; /* in radians */
double minlong, maxtong; /* in radians */
struct SessionStruct *session;

unsigned char statusChanged;

int numNavPositions;

NavPosition *firstNavPosition;

NavPosition *lastNavPosition;

struct NavLineStruct *next;
struct NavLineStruct *previous;
} NavLine;

typedefstruct NavPosnStruct {

int positionNumber;

double time;

double latitude; /* in radians */
double longitude; /* in radians */
double positionalAccuracy; /* in meters */
unsigned char statusChanged;

unsignedlong status;

double X, /* in meters */
double Y; /* in meters */
unsigned long color;

struct NavLineStruct *navLine; /* ptr to parent */

struct NavPosnStruct *next;
struct NavPosnStruct *previous;
} NavPosition;

9%

typedefstruct PDProfileStruct {

mt

double

double

double

double

double

unsigned char

struct SessionStruct
int

PDepth

PDepth

struct PDProfileStruct
struct PDProfileStruct

} PDProfile;

typedefstruct PDepthStruct {

mt

double

double

double

double

double

unsigned char
unsigned long
unsigned long
double

double

int)

struct PDProfileStruct
struct PDepthStruct
struct PDepthStruct

} PDepth;

index;

time;
latitude;
longitude;
X,

Y:
statusChanged;
*gession;
numDepths;
*firstDepth;
*lastDepth;
*next;

*previous;

index;

time;

latitude;
longitude;
depth;
depthAccuracy;
statusChanged;
status;

color;

X;

¥s)
stDevievel;
*profile;

*next;
*previous;

97

typedefstruct SpatialSubsetStruct {

int '

int

double

double

double

double

double

double:

double

double

double

double

double

double

double

doubie

double

double

double

double

int

int

struct ProjectStruct

int

Vessel

Vessel

struct SpatialSubsetStruct

struct SpatialSubsetStruct
} SpatialSubset;

id,

cleaned;

centerLatitude; /¥ in radians */
centerLongitude; /¥ in radians */
widthHeight; /* in meters */
tiftAngle; /¥ in radians */
centerX; /¥ in meters */
centerY; /* in meters ¥/
cosTiltAngle;

sinTiltAngle;

cosNegTiltAngle;

sinNegTiltAngle;

latitude[4]; f* in radians */
longitude(4]; /* in radians */
x[4]; /* in meters */
yl4l; /¥ in meters */
minX, maxX; /* in meters */
minY, maxY; /* in meters */

minLat, maxl.at, deltalat;

minLong, maxLong, deltalong;
minLatM$, maxLatMS, incriatMS;
minLongMS$, maxLongMS, incrLongMS;

~ *project; /* ptr to parent ¥/ -

numVessels;
*firstVessel;
*lastVessel;
*next;
*previous;

98

APPENDIX B

ALGORITHMS FOR SEARCHING MORTON SEQUENCE
| INDICES IN HDCS

Algorithm 1. SearchProfileMS

Functionality: Search a profile spatial index file and report all the profiles which have at
least one of their four MBR corner points within the query window.

Input: A QueryWindow structure, a pointer to a file containing one line's profile spatial
index.

Output: A list of profiles from this line within and intersecting the QW.

1. Initialize a counter array of size equal to the number of profiles in this file;
2, Calculate the Morton codes, MCyy, MCy, MCyy, and MCpg, for the query window's
four corner points;
3. Define the first MC, MC,,, in the Morton sequence of this file which is not smaller than
MCy;;
4. Define the first MC in the Morton sequence of this file which is not smaller than MCiy;
5. MCp <« MC,,s
6. While MCqpp <« MCix
7. MCy, « MCq;
8. Decode MCpp to get TP's latitude and longitude
9. If the test point is in the QW
. 10. Counter increases one for profile with MCyp:
11. MCqp ¢ next MC in the file;
12. Else
13. Call FindEnteringPoint to calculate MCgp;
14, MCyp « the MC just larger than MCgp;
15. EndIf
16. EndWhile _
17. Sequentially scan the counter array, and create a list for all the profiles having a non-
ZETo counter.

99

Algorithm 2. FindEnteringPoint

Functionality: Find the point on the edge of, or in the query window, where the Morton
sequence is entering,

Input: A Morton code of an outside-window point, a query window, and the Morton
codes of the window's southeast and north west corners: MCyz and MCy,,.

Output: The Morton code of the entering point.

1. Call PointQWRelation to find the relation between the point and the query window;
2. For Area One:;
3. Call GetQWEdgeMC to calculate the MC on the bottom edge;
4. For Area Three:
5. IFMCoee > MCyy
6. If 1\/IC£,W,e > MCy /* The Morton sequcncc crosses the right edge. */
7. Call GctQWEdchC to calculate the MC on the right edge: MCgg;
3. Call FallintoQW to calculate the MC in the QW;
9. Else
10. Call GetQWEdgeMC to calculate the MCr and MChg;
11.If MCz > MCre /* The Morton sequence touches the right edge */
12. Call FallIntoQW to calculate the MC in the QW;
13. Else /* The Morton sequence touches the left edge */
14. MGy is the MC in the QW;
15. EndIf
16. EndIf
17. Else /* The Morton sequence touches the bottom edge */
18. Call GetQWEdgeMC to calculate the MC on the bottom edge;
19. EndIf
20, For Area Four:
21. Call GetQWEdgeMC to calculate the MCyg;
22. For Area Six:
23.If MCQM, > MGy /* The Morton sequence crosses the nght edge */
24, Call GetQWEdgeMC to calculate MC on the right edge;
25. Call FallIntoQW to calculate MC in the QW;
26. Else
27. Call GetQWEdgeMC to calculate MC,; and MC;
28.If MCrp > MCry, /* The Morton sequence touches the right edge */
29. Call FallIntoQW to calculate the MC in the QW:

30. Else /* The Morton sequence touches the left edge */
31. MC,y,; is the MC in the QW;
32. EndIf
33, EndIf

24. For Area Seven:
35.If MCousae > MCy
36. X MCouee > MCiz /* The Morton sequence crosses the top edge */
37. Call GetQWEdgeMC to calculate MC on the top edge;

100

38. Call FallIntoQW to calculate MC in the QW;
39. Else
40. Call GetQWEdgeMC to calculate the MCgg and MCiy;;
41, I MChpe > MGy, /* The Morton sequence touches the top edge */
42. Call FalilntoQW to calculate the MC in the QW;
43. Else /* The Morton sequence touches the bottom edge */
44, MCguan is the MC in the QW:;
45. EndIf
46, EndIf
47. Else /* The Morton sequence touches the left edge */
48. Call GetQWEdgeMC to calculate the MC on the left edge;
49, EndIf
50. For Area Eight:
5LIF MCouiee > MCig /* The Morton sequence crosses the top edge */
52. Call GEtQWEdgeMC to calculate the MC on the top edge;
53. Call FallIntoQW to calculate the MC in the QW:
54. Else
55. Call GetQWEdgeMC to calculate the MCBE and MC ;
56. If MCpoyn > MCr, /* The Morton sequence touches the top edge */
57. Call FalllntoQW to calculate the MC in the QW;

58. Else /* The Morton sequence touches the bottom edge */
59. MCpyeem is the MC in the QW;
60. EndIf
61. EndiIf

Algorithm 3. GetQWEdgeMC

Functionality: Get an on-edge Morton code which is the smallest among all the on-edge
Morton code larger than the Morton code outside the QW.

Input: The Morton code of an outside-window point, two corner points describing one
_ edge of the QW.,
Output: MCgy.

1. Set the first and last point to the corners of the query window;
2. While (first <= last)
3. middle = (first + last) / 2;
4. Calculate the Morton code of middle MCyqe
5. If MC ey < MC e
6. MCgy — MC;
7. last «mid - 1;
8. Else
9. first ¢~ mid + 1;
10. EndWhile

101

Algorithm 4. FalllntoQW

Functionality: Calculate a new Morton code from two Morton codes, one of which is
outside the QW and the other is on the edge of the window. The new Morton code
is larger than the outside one; and the point it represents is within the QW.

Input: Two Morton codes, one outside and the other on the cdge of the QW.

Output: A Morton code inside the QW. '

1. Compare two input Morton codes, digit by digit;
2. If two Morton codes are different at ith digit
3. Change the ith and (i-I)th digit of the on-edge Morton code to two and zero
respectively, so that it becomes an in-window Morton code,

Algorithm 5. Encoding

Functionality: Compute a 64-bit Morton code by interleaving a pair of 32-bit unsigned
integer coordinates.

Input: X and Y coordinates.

QOutput: A Morton code.

l.Fori=1to 0, loop
2. mc[i] « 0;
3.Forj=0to 16, loop
4. bitPair=((x & D<<1) | y&1);
5. Set the mc[i] ¢~ mc[i] | bitPair << (2 * j);
6.x=x>>1;
Ty=y>>1;
8. EndLoop
9. EndLoop

102

Algorithm 6. Decoding

Functionality: Decode a 64-bit Morton code into a pair of 32-bit unsigned integer
coordinates.

Input: A Morton code.

Quitput: X and Y coordinates.

1. bitShift « 0;
2. Initialize the coordinates: x < 0, y ¢ 0;
3. mcTmp « mc;
4.fori=1100,loop
5. forj=0to 16, loop
6. yBit & mcTmpfi] & 1;
7. xBit « ((mcTmp[i] >> 1) & 1);
8. X & x| (xBit << bitShift);
9. y < y | (yBit << bitShift);
10. bitShift «— bitShift +1;
11, mcTmp[i] ¢~ mcTmpl[i] >> 2;
12. EndLoop '
13. EndLoop

103

APPENDIX C

AN EXAMPLE OF USING DYNAMIC SQL TO RETRIEVE
MORTON CODES FROM AN INGRES TABLE

Listed below are two functions to illustrate the use of dynamic SQL to retrieve a
Morton code which is larger than a given Morton code mc. The name of the table to
search the Morton code from is also given, and the search result is stored in structure

profileSpIndxData which has items for a Morton code and a profile number.

#include <stdio.h>
#include <malloc.h>

/* Declare the SQLCA structure and the SQLDA typedef */
EXEC SQL INCLLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;

EXEC SQL DECLARE stmt STATEMENT: /* Dynamic SQL statement */
EXEC SQL DECLARE csr CURSOR FOR stmt;

define NUM_INDEX_ELEMS 15
define SQL_NQTFOUND 100 _ _
define LEN_SQIL._CMD 100 /* Max SQL statement length */

#include "MortonSequenceSpatiallndex.h"
#include "IngresMortonCode.h"

int32
FindALargerMC(mc, profileSpIndxData, tableName)
MortonCode me; /* A Morton code */
ProfileSpatiallndexFileData *profileSpIndxData; /* A structure */
char *tableName; /¥ A string */

{
int 1,3
char mc0Str[15], me1Str[15];

double doubleMC0, doubleM(1;

104

int base_type; |

OSQLDA *sqida = (IISQLDA *)0; /*Pointer to the SQL dynamic area */
IISQLVAR *sqv;

EXEC SQL BEGIN DECLARE SECTION;
char sglSelectPro[LEN_SQL_CMD +1];
EXEC SQL END DECLARE SECTION;

if (profileSpIndxData == NULL)
{
return (-1);

}

/* Convert the Morton code into strings */
UnsignInt32ToStr(mc[0], mcOStr);
UnsignInt32ToStr(me[1], me1Str);

/* Form a search command */ _

sprintf(sqlSelectPro, "%s %s", "SELECT * FROM", tableName);
strcat(sglSelectPro, " WHERE mc0 > ");

strcat(sqlSelectPro, mc(Str);

streat(sqlSelectPro, "OR (mc0="});

. strcat(sqlSelectPro, mc0Str);

strcat(sqlSelectPro, " AND mcl >");

streat(sglSelectPro, mc1Str);

strcat(sglSelectPro, ")");

/* Allocate a new SQLDA */
Init_Sqlda(&sqlda, NUM_INDEX_ELEMS);

EXEC SQL PREPARE stmt from :sqiSelectPro;
EXEC SQL DESCRIBE stmt INTO :sqlda;

/* Allocate memory for the variables corresponding to the items in the table */
AllocateProTable Variables(&sqlda);

/* Open the dynamic cursor */

EXEC SQL OPEN csr;

if (sqlca.sglcode !=0) {
return{ -1);

}

EXEC SQL FETCH csr USING DESCRIPTOR :sqlda;
if (sqlca.sqlcode ==0) {

105

for i =0; i< sqlda->sqld; 1++) {
sqv = &sqlda ->sqlvarf{i];

/* Find the base->type of the result */ _

if ((base_type = sqv->sqltype) < 0) {
base_type = - base_type;

}

switch (base_type) {
case IISQ_INT_TYPE:
profileSpIndxData->ProfileNumber = *(long *)sqv->sqldata;

break;
case IISQ_FLT TYPE:
if (i==0) {.
profileSpIndxData->MC{[(] =
(unsigned long) (*(double *)sqv->sqldata);
})
else | _
profileSpIndxData->MCf1] =
(unsigned long) (*(double *)sqv->sqldata);
}
break;
}
}
}
rc=0;

}
else if (sqlca.sglcode == 100)
{

}

re = 100:

EXEC SQL CLOSE csr;

return(rc);

106

AllocateProTableVariables(sqlda)

NSQLDA **sqlda;

int i
IISQLVAR *sqv;
int base_type;
int res_cur_size;

struct
{

int res_length; /* Size of mem_data */

char *res_data; /*Pointer to allocated result buffer */
} res_buf;

res_buf.res_length = 0;
res_buf.res_data =NULL;

for (res_cur_size = 0, i=0; i < (*sqlda)->sqld; i++)
{ .
sqv = &(*sqlda)->sqlvarli];

if ((base_type = sqv->sqltype) < 0)
base_type = -base_type;

switch(base_type)
[.
case [ISQ_INT TYPE:
res_cur_size +=sizeof(long);
sqv->sqllen = sizeof(long);
break;

case [ISQ_FLT TYPE:
res_cur_size += sizeof(double};
sqv->sqllen = sizeof(double);
break;

}

if (res_buf.res_length>0 && res_bufres_length < res_cur_size)
{

free(res_buf.res_data);

res_buf.res_length =0;

107

}

if (res_buf.res_length == 0)

{
res_buf.res_data = Alloc_Mem(res_cur_size,
"result data storage area');
res_buf.res_length = res_cur_size;
}

for (res_cur_size=0, i=0; i< (*sglda)->sqld; i++)
{ .
sqv =&(*sqlda)->sqivar{il;

if ((base_type = sqv->sqltype) < 0)
base_type =-base_type;

sqv->sqldata = (char ¥*)&res_buf.res_datafres_cur_size};
res_cur_size += sqv->sqllen;

if (base_type == IISQ_CHA _TYPE)
{
res_cur_size++;
if (res_cur_size %2)
res_cur_size ++;
}

if (sqv->sqltype < 0)
{

}
else
{ |
sqv->sqlind = (short *)0;
) .
1

sqv->sqlind = (short *)&res_buf.res_data[res_cur_size];

108

APPENDIX D

THE MODIFIED R-TREE DELETION ALGORITHMS

Algorithm 1: ModifiedRTreeDeletion

Functionality. This function deletes profile within the range [p;, p,] from a R-tree spatial
index s.

Input: A pointer to the spatial index s, and a range of profiles to be deleted [P, P4l

Output: A modified R-tree index file.

1. Initialize AvoidList to NULL;
2. For each profile i in the profile range {p,, p,], loop _
3. If iis on AvoidList, delete § from the list and repeat Step 2 for i+1;
4. Find the leaf-node f containing i;
5. Delete entry i fromf;
6. For each profile j in f, loop
7. If the j is within the range [p;, p,]
8. Addjinto AvoidList,
9. Delete profile j from node f;
10, EndIf
11, EndFor
12. If all the profiles in the leaf-node have been deleted
13. Add the record to the deleted record linked list in the R-tree file;
14. Call DeleteUpwards to delete f from f's parent and the profiles in the siblings
off
15. EndIf
16. EndFor _
17. Call CondenseTree to propagate the deletion up to the root;
18. Check the root and remove the root if it has only one child;

109

- Algorithm 2. DeleteUpwards

Functionality: This function starts from a node f and goes up to f's parent P to delete P's
other children.

Input: A pointer to the spatial index s, a pointer to node f, and a pointer to a node g where
a deletion stops.

Output: A modified R-tree index file.

If the node fis the root, return.
. P & f+parent.
. Search and delete f from P;

. Call DeleteSubtree(P) to delete the profiles in P's sub- trees which are on the right of fi
. If there is no entry leftin P

6. Call DeleteUpwards(s, £, g) recursively to delctc the parent of P;
7. EndIf

[N P

110

Algorithm 3. DeleteSubtree

Functionality: This function deletes the profiles in the sub-trees of a node P. .

Input: A pointer to the spatial index s, a pointer to node P, a pointer to a node g where a
deletion stops, and a pointer to AvoidList.

Output: A modified R-tree index file.

1. For each child C in the node P, loop
2. If Cis a leaf-node

3. If the profile number i in an entry e of C is within the range [p;, p.]
4. Addiinto AvoidList,

5. Delete e from C;

6. Endif

7. If any entry is deleted from the node and the node is not empty
8. Return;

9. Else if a entry is deleted from the node and the node is empty
10. Add the node into deleted record list in the file:
11. Delete C from N; '

12. Else if no entry is deleted

13. Return;
14. Endif
15. Else /* when C is not a leaf-node */

16. Call DeleteSubtree recursively to delete the subtree of N:
17. If there is no entry in C of the subtree
18. Delete C from N;
19. Endlf
20. EndIf
21. EndFor
22. If node N is empty

23. Add the node into deleted record linked list in the file
24, EndIf

111

APPENDIX E

A DETAILED LIST OF HDCS DATA USED FOR THE

‘ConceptionBay
Matthew

1991311
13:46:06
14:03:47
14:21:30
14:54:31
15:13:55
16:12:31
16:40:50
16:58:51
17:17:11
17:35:29

1991312
13:36:42
13:57:02
14:24:03
14:42:16
15:13:39
15:32:13
15:58:39
16:17:00
16:38:40
16:57:29
17:12:19
17:31:44
17:52:43
18:06:58
18:37:41

1991313
13:13:58
13:44:12
14:12:06
14:48:16
15:02:26

EXPERIMENT

number of days =4
rumber of lines =10

number of profiles = 1145
number of profiles = 1202
number of profiles = 1171
number of profiles = 1277
number of profiles = 1097
number of profiles = 1170
number of profiles = 1071
number of profiles = 1082
number of profiles = 1200
number of profiles = 1197

number of lines =15

number of profiles = 1384
number of profiles = 1370
number of profiles = 1195
number of profiles = 1262
number of profiles = 1421
number of profiles = 1452
number of profiles = 1472
number of profiles = 1261
number of profiles = 1241
number of profiles = 1278
number of profiles = 1294
number of profiles = 1269
number of profiles = 907

number of profiles =789

number of profiles = 743

number of lines =21

number of profiles = 1449
number of profiles = 1710
number of profiles = 907
number of profiles = 867
number of profiles = 963

112

size of data = 2765 KB
size of data = 2903 KB
size of data = 2823 KB
size of data = 3077 KB
size of data = 2648 KB
size of data = 2823 KB
size of data = 2592 KB
size of data = 2618 KB
size of data = 2896 KB
size of data = 2898 KB

size of data = 3331 KB
size of data = 3297 KB
size of data =2884 KB
size of data = 3041 KB
sizg of data = 3418 KB
size of data = 3498 KB
size of data = 3538 KB
size of data = 3036 KB
size of data =2992 KB
size of data = 3085 KB
size of data =3117 KB
size of data = 3052 KB
size of data = 2198 KB
size of data = 1924 KB
size of data = 1804 KB

size of data = 3480 KB
size of data = 4105 KB
size of data =2198 KB

size of data = 2101 KB

size of data = 2326 KB

15:17:36
15:31:28
15:44:55
15:59:49
16:14:06
16:27:06
16:40:40
16:55:41
17:09:40
17:25:30
17:40:36
17:53:38
18:01:52
18:10:25
18:23:26
18:36:03
1991314
16:44:37
16:57:19
17:10:17

number of profiles = 888
number of profiles = 875
number of profiles = 1003
number of profiles = 961
number of profiles = 1036
number of profiles = 1027
number of profiles = 1056
number of profiles = 1002
number of profiles = 1098
number of profiles = 995
number of profiles = 1031
number of profiles = 515
number of profiles = 506
number of profiles = 1032
number of profiles = 1050
number of profiles = 1071

number of lines =3

number of profiles = 1076
number of profiles = 1046
number of profiles = 1078

113

size of data =2151 KB
size of data =2117 KB
size of data =2419 KB
size of data = 2326 KB
size of data = 2510 KB
size of data = 2477 KB
size of data = 2552 KB
size of data = 2419 KB
size of data = 2653 KB
size of data = 2402 KB
size of data = 2493 KB
size of data = 1272 KB
size of data = 1236 KB
size of data = 2493 KB
size of data = 2536 KB
size of data = 2585 KB

size of data = 2594 KB
size of data = 2529 KB
size of data = 2602 KB

VITA

Candidate’s full name: Feng Gao
Place and date of birth: Shanghai, China
May 7, 1963
Education:
9/1980 - 7/1984 Beijing College of Architecture and Civil Engincering,
Beijing, China,
B.Sc.E (Surveying Engineering)
0/1984 - 7/1987 Tsinghua University, Beijing, China.
M.Sc.E (Surveying Engineering)

9/1990 - 12/1993 University of New Brunswick,
Fredericton, N.B., Canada

Training:
2/1990 - UNESCO sponsored invitational ttanung course on Remote
Sensing and Active Faults for Land Use Management,
Manila, Philippines
Publications:

Gao, F. and Lin, H. (1986). The study and development of a cartographic database
management Systemn for large scale maps. Proceedings of the First National

Symposium on Cartography for Large Scale Maps, Kunming, China,
November.

Gao, F, (1987). "Computer aided cartography systems " Surveying and Mapping,
No. 2, 1987.

Gao, F. and Liu, H. (1987). "The study and development of a cartographic
database management system for large scale maps." Beijing Surveying and
Mapping, No. 2, 1987,

Liu, H. and Gao, F. (1987). The design and implementation of a cartographic
database management system. Proceedings of the Second National

Symposium on Computer Aided Cartography, Wuhan, China, May,

Gao, F. and Guo J. (1988). "A new method for field data acquisition in computer
aided cartography." Bulletin of Surveying and Mapping, No. 4, August.

114

Guo, I, i, R, Na, X, Gao, F., Wang, G., Ding, H., and Rong, G. (1988). Using
an infrared spot position measuring system for dynamic testing of structural
models. Proceedings of the First Symposium on Surveying Instruments,
Beijing, China, November.

Guo, J. and Gao, F. (1988). Communication between SHARP PC-1500 and IBM

PC family. Proceedings of the First Symposium on Surveying Instruments,
Beijing, China, November.

Guo, J., Gao, F., Zhang, J. and Tao, Q. (1988). The research process of a
automated cartographic system for large scale maps. Proceedings of the
National Symposium on Applications of Computer Aided Cartography for
Engineering Surveying, Wuhan, December.

Gao, F. (1989). "IBM-PC FORTRAN language's screen manipulation and its

applications in menu techniques." Microcomputer & Applications, No. 1,
March.

Gao, F. and Guo, J. (1989). Using software engineering technology in the
development of a computer aided cartographic system. Proceedings of the
Symposium for the 30th Anniversary of the Founding of the Chinese Society
of Geodesy, Photogrammetry and Cartography, Xian, April.

Gao, F. and Guo, J. (1989). Data handling and management in computer aided
cartography for large scale maps. Proceedings of the Symposium for the 30th
Anniversary of the Founding of the Chinese Society of Geodesy,
Photogrammetry and Cartography, Xian, April.

115

