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SUMMARY

‘We present a parser for analysing communication overheads in OCCAM 2
programs for transputers., The input to COMMAN is a source file contain-
ing PROTOCOL statements which are defined by an augmented OCCAM 2
grammar. The output of the parser is a report detailing the expected com-
munication times for the given input protocols. We show that COMMAN
reasonably predicts transputer communication times for a variety of modes
including internal and external communication, using both sequential as well
as variant protocols. The parser is implemented using yacc while the lexical
scanner is implemented using fez, which are utilities available in the nunix and
other environments. We give details of the lex and yacc implementations inclad-
ing the tokens recognized, the detection of scope and the grammar production
rules. The communication times are modeled by Iinear functions and are built
into the yacc grammar production rules.

KEY WORDS Communication Analysis, GOCAM 2, parsing, Transputer, multicomputers, par-
allel processing

1 Introduction

Qur goal is to analyze a given OCCAM 2 program or program segment and deter-
mine the communication times reguired by any input or output communication in
that program segment. We are only concerned with comrunications between pairs
of processes, either executing on the same transputer (internal) or on two adjacent
transputers (external). This prediction of communication times can be used in the
static analysis of program code for measurement or performance purposes. For ex-
ample, we use a version of the protocol analyzing parser described in this paper to
assist in our evaluations of generated systolic implementations given in {1,2].

All QCCAM 2 communication occurs via channels where each channel is con-
nected to a matching input { ? ) and output { ! ) OCCAM 2 statement. OCCAM 2
requires that most channel communication be datatyped by the OCCAM 2 PROTC-
COL statement. Such datatyping specifies the exact sequential order and datatype
of the data being transmitted. OQur approach is based upon analyzing the datatype
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4 BRIAN J. 'AURIOL AND VIRENDRA C. BHAVSAR

components in a PROTOCOL statement. In this way, we obtain information about
the communication behavior of any channels so datatyped.

In this paper, we present a parser for an augmented subset of the OCCAM 2
language as specified in [3] which computes the expected communication times for
defined OCCAM 2 sequential and variant protocols. The parser is specified as a
yuee [4] grammar while a lez [4] scanner provides the token stream to the parser.
We have modeled our own yece grammar after the one developed by Polkinghorne
in {5]. Qur lexical analyzer however, differs from Polkinghorne’s lexical analyzer in
that we use lez instead of a handcrafted analyzer.

This paper is organized as follows. Section 2 describes the overview of COMMAN
and gives specific details of its implementation. We present our results for selected
experiments in Section 3 and concluding remarks are given in Section 4.

2 COMMAN

COMMAN is an OCCAM 2 protocol analyzing parser for the transputer. Its pur-
pose is to analyze a set of OCCAM 2 PROTOCOL statements and predict the
required transputer communication times for any OCCAM 2 cha_._hne] which is
datatyped by these PROTOCOL statementis. COMMAN is composed of two main
functional units as shown in Figure 1, a lexical analyzer and a grammar parser. Input
to COMMAN is a file containing PROTOCOL statements in OCCAM 2 format (with
one exception as described below) for which channels used in a program segment
are datatyped. The predicted communication times for these protocol statements
is output. We use lez to process the input file into 2 stream of tokens and yace to
correctly parse the inputs. The communication analysis model is incorporated into
the yace parser.

COMMAN evaluates the internal or external {as specified by the user) commu-
nication times for each PROTQCOL statement in the input file. Since transmission
of data on a transputer occurs serially, the transmission of a single BYTE takes
less time than the transmission of a single INT32. Through empirical testing, a
set of linear functions have been found to model transputer communication. This
communication model, combined with the parsing function, allows COMMAN to
be a useful tool in the static analysis of OCCAM 2 programs.

The remainder of this section is devoted to describing details of COMMAN. Sec-
tion 2.1 describes the methods used to model the communication times. Sections 2.2
and 2.3 discuss the lexical analyzing and parsing methods used while Section 2.4
describes our changes to the interface between lexical analyzer and parser.

2.1 Modeling Transputer Communication

Coemmunication on the transputer is influenced by three factors: the instructions
used for the communication, whether the communication occurs internally or ex-
ternally, and the state of compiler generated code specific to the communication
process (i.e. the compiler options specified). The link transmission speeds impact
only when external communication occurs. We assume that the link transmission
speeds are constant throughout our discussion.

At the assembler level, communication on the transputer is initiated using one
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COMMAN — A COMMUNICATION ANALYZER FOR OCCAM 2 5

of three instructions [6]: out, outbyte and outword . Though empirical
observation, we have determined that the outbyte instruction is used whenever
the communication consists of single BYTE or BOOL datatyped values while the
outword instruction is used for INT32 and REAL32 datatyped values. The
out instruction is used for all other datatypes including arrays of BYTE, BROOL,
INT32 and REAL32. Since this instruction is the more used of the three, we
concentrate our modeling efforts with respect to its usage.

The ocut instruction outputs a message packet of the required length. For
a primitive datatype (other then those mentioned above) the length of the trans-
mission is the length of the associated datatype. For example, a REALS4 value
has a message length of eight bytes. The length of a non-primitive datatype (e.g.
an array) is the number of elements multiplied by the length of the datatype. An
example of this is the output of [5]INT32 which has a message length of 20
bytes.

Both internal and external communication is accomplished using the same in-
structions [6, Sections 6.8 and 10.4]. However, very different hardware operations
occuz. From our viewpoint, we need not be concerned with these differences since
we are interesied in analyzing the communication at the program lt_:_ire]. We apply
the same modeling method to each mode of communication.

The effect of different compilation modes also impact upon our model. In par-
ticular, the y compiler option [7, Section 25.7] controls the inclusion of debugging
code into channel communications. The absence of debugging code allows faster
communication. While not directly affecting the communication code per se, we
group three additional options (k, u, a [7, Section 25.2]) together and consider the
impact upon the model in two cases: unoptimized and optimized (where optimiza-
tion in this case refers to the effects of these four options only). Similar to the effect
of internal and external communication, we apply the same modeling method to
each of these two cases.

We have conducted timing experiments on a multiple-transputer system to de-
termine the communication times for various lengths of transmission packets. The
transputer machine used in these experiments consists of one T800 - 26MHz trans-
puter 2nd eight T800 - 20MHz transputers on a B008 link board. Only one and two
transputers were required for these timings, specifically one 26MHz and one 20MHz
transputer. Selected timing results are shown ir Figures 2 and 3 for communications
of different array lengths consisting of the REAL32 datatype. Actual timings were
conducted with an iteration count of 1000 for accuracy reasons. Figure 2 shows the
result for unoptimized internal communication while Figure 3 shows the result for
optimized external communication. Timings for the other possible modes, optimized
internal and unoptimized external, follow very similar trends. In Figures 2 and 3,
a straight line represents the communication time (time 1) required for increasing
message lengths. The decreasing curve shows the time (time 2} required per 32-bit
word. Consequently, throughput increases with increasing message length (up %o
the maximum allowed by the hardware).

We summarize in Table 1 the results of a linear regression analysis conducted for
each of the four mode categories. We note that there are different linear constants
(slope and intercept) for each mode. Since the R-squared statistic is very close
to one, the linear regression model accurately predicts the communication tirnes

8/4/1994 19:00 PAGE PROOFS journal3




6 BRIAN JI. 'AURIOL AND VIRENDRA C. BHAVSAR

in this experiment. Given that communication times are predicted according to
yo = ma + b, the throughput curve was obtained by dividing the time to effeci
communication by the message length, that is ¢; = 2/yo. By substituting for yo,
we obtain g = (1) + m.

The PROTOCOL statement in OCCAM 2 indicates the datatype of the in-
formation that is to be communicated. Additionally, the PROTOCOL statement
also defines a sequential order on the communication where different packets are
delimited by a semicolon. Each packet is encoded at the assembler level using one
of the three instructions mentioned above. There is thus a one-to-one correspon-
dence between a datatype (whether primitive or non-primitive) and the output of
the packet. Since our communication model evaluates each message in the protocol,
the summation of the predicted times for all messages in the protocol will give an
estimate of the total communication time required:

N
Expected time; = Z f(packet-Iengthj) (1)

i=1

where N refers to the number of message packets in the it® communication and f
is the appropriate linear function to be applied to each packet.

Datatypes encoded as outbyte instructions can be modeled by our method
in the following way. The effect of the optimization inherent in the outbyte
instruction can be modeled by introducing an ‘attenuation’ factor into Eq. (1}.
This will appropriately reduce the estimated communication time for each packet.
For this case, the total estimated time is computed by

N

Expected time; = Z v(f(packet-length )) (2)
F=1

where N and f are defined as before. The v function computes the ‘attenuation’
factor based on the curve ¢, = b{ —i—) + m where b and m are found by applying a
linear regression analysis on the corresponding yo curve. Specifically, a regression
analysis was applied to the points generated by the following method: the number
of bytes in the message multiplied by the division of the measured by the predicted
times.

2.2 Lexical Analysis

The lexical analysis is provided by lez [4]. les is a utility available on a namber
of platforms which scans an input source file and breaks the input stream into a
series of defined tokens. The lexemes are specified as regular expression patterns
in a specification file which is input to lez. In addition to the regular expressions,
the input specification file also allow program fragments to be attached to each
recognized token. Consequently, the lexical analyzer can perform an action for each
token recognized. In our case, we use lez under unix and the program fragments
are in the C-langunage.

Tokenizing an OCCAM 2 PROTOCOL statement means recognizing string pat-
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terns for all lexemes within the context of the statement. We categorize these lex- -
emes into four groups as follows:

1. Regular expression patterns corresponding o an identifier and integer

2. All primitive datatypes and all symbols used in the construction of non-
primitive datatypes

3. Special lexemes consisting of scope delimiters, end-of-line and comments

4. Two special lexemes not defined in the standard OCCAM 2 grammar (dis-
cussed in detail in Section 2.3).

The indentation characteristic of OCCAM 2 to signify begin and end of scope
complicates the lexical analysis. The scope in an OCCAM 2 program is determined
by its current level of statement indentation relative to the statement indentation of
the construct defining the current segment. Each indentation level can be identified
by two ‘white spaces’. The identification of scope in a lexical analyzer is made
difficult for the following two reasons.

o The white space character {including two white spaces back-to-back)} may
occur in one of three contexts: as fillers between language tokens {i.e. as
between two identifiers), as indentation markers of scope, or as indentation
markers for line continuation. The latter is defined in context of the semantics
of a grammar production rule, with the only restriction imposed on the lexical
analyzer being that the indentation level of the line continuation exceeds the
level for the current scope.

® Whereas the beginning of a new scope can be identified by counting appropri-
ate numbers of groups of two while spaces, there iz no identiiable token which
indicates the end of the scope. Only afier the lexical analyzer scans in a token,
can the analyzer identify that one or more exdents have occurred. Figure 4
provides an example of this scanning problem. In the protocol labeled ‘p4’
(also ‘pb’), while the CASE statement is preceded by one two-space token
and the identifier, tagl, is preceded by two two-space tokens, ounly after
the colon is scanned can the appropriate number of exdents be determined.
In this example there are two exdents.

Both of these language characteristics lead to problems when defining the lexical
analyzer and parser using lez and yacc. In our application, we solve the first of these
problems by using the end-of-line character as a delimiter and by not allowing line
continuation and solve the second by providing a foken buffer interface between lex
and yace (discussed in detail in Section 2.4).

The end of the line character serves to distinguish between white spaces used
as fillers and white spaces used for indents. Indents can be identified then, when
two-white spaces occur after the end of the line and before any other token. We use
a boolean variable to track when indentations can occur and an integer variable to
track the number of two-white space tokens detecied on that line of input.

‘We have developed lez specifications as shown in Figure 5. In this specification
the two regular expression patterns corresponding to an identifier ( id ) and an in-
teger { integer } are specified in the first part. Regular expressions corresponding
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8 BRIAN J. 'AURIOL AND VIRENDRA C. BHAVSAR |

to individual tokens for all primitives and non-primitives are given in the second
part. Also included here is the recognition of the special lexemies. Program frag-
ments attached to each recognized token export the token identifier to the parser
via the return_proc procedure not shown in Figure 5. Program fragmenis for
processing certain tokens including the special lexemes differ in the required actions.
An identifier is added to a symbol table by the symlook procedure not shown in
Figure 5. The value of a recognized integer must also be retained by the yylval
variable. OCCAM 2 comments are identified as starting with the double-hyphen
and completing with the end of the line. The two variables required to identify the
scope are included in the program fragment for the two white-space token shown
at bottom of Figure 5. A list of all tokens recognized is given in Figure 6.

A number of auxiliary procedures called from the various program fragments
complete the lez specification file. These procedures provide support for symbol

‘table operations as well as passing tokens back to the parser (detailed in Section 2.4).

2.3 Parsing

The parser is provided by yaec [4]. yacc generates an LALR parser for the tokens
which the lexical analyzer recognizes. While not requiring that lez be used as the
lexical analyzer, yacc does allows a convenient interface to lez and consequently,
is often used with lez. Similar to lez, yacc takes an input specification file which
primarily specifies the language grammar in the form of production rules. Program
fragments (again in our case, in the C-language) can also be attached to each
production rule.

With one exception, we define a grammar for the PROTOCCL statement of
OCCAM 2. This exception involves the counted array. In QCCAM 2, a statement
of the form

channel ! 10::array

indicates that 10 elements from the array will be communicated. The declaration
for this in the PROTOCOL statement might be

PROTOCOL name IS INT32::[]B¥TE:

which indicates that one 32-bit integer is communicated followed by an unspecified
number of bytes. In this example, the value 10 is outpui using the outword
instruction followed by ten bytes output using the out insiruction. Since our
purpose is to evaluate a defined protocol, we require that the protocol specify the
exact number of bytes involved in the communication.

We augment the language syntax so as to specify the length of the array as
follows

length-variable(actual-length):: [Jarray-type.

The actual length reflects the user’s expectation of what run-time conditions is
expected. The corresponding new declaration for the above example wouid be

PROTOCOL newname IS INT32(10)::BYTE:
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COMMAN — A COMMUNICATION ANALYZER FOR OCCAM 2 9

The full grammar in yece form is given in Figure 7. A COMMAN program
consists of one or more COMMAN PROTOCOL statements separated by one or
more blank lines. The yace production rule for 2 definition allows multiple
PROTOCOQL statements in either of its two forms to be included into a COMMAN
program. There are three basic grammar elements to a PROTOCOL statement
arranged in a loose hierarchy. A variant protocol consists of one or more taglists
where each taglist is either an identifier or the combination of an identifier and
a sequence of datatypes. The yace production rule for taglist allows one or
more taglists in either variant to be formed. The simpleproto preduction rule
defines the syntax for sequences of primitive and non-primitive datatypes. Lastly,
grammar production rules for the datatypes are type, arrtype, primtype
and primtype2. :

Incorporating the communication analysis procedure discussed in Section 2.1
into the yace parser is a two step process which corresponds to implementing either
Eq. (1) or Eq.( 2}. We must first evaluate the appropriate function for each defined
packet after which we must accumulate the times for all packets invoived in the
PROTOCOL statement.

The grammar in Figure 7 has been devised in such a way that the recognition
of primitive types is sufficient to classify individual packets; the semicolon is only
used to define correct syntax. There are three possibilities for each packet: either it
consists of a single primitive type, an array type, or a counted array type (where, as
defined in above, the count is explicitly specified). We can succinctly evaluate the
packet communication times by coding yaee action statements and atiaching them
to the appropriate primitive type production rules. Consequently, the actions asso-
ciated with primtype represent the first step in the evaluation of the respective
prediction eguation (Eq.{ 1) or Eq. (2)) for primitive datatypes only. The actions
associated with primtype2 likewise represent the first step in the evaluation of
the prediction equation, but for non-primitive datatypes. Note that the counted
array consists of both a primitive and non-primitive component which is correctly
modeled by our method. The second step in the evaluation of the prediction equa-
tion, namely the summation, is handled by the procedures initl and init2
attached to the definition production rule, but not otherwise shown expiicitly.
These procedures also perform some housekeeping chores as well as formatting and
printing the generated report. :

2.4 lez and yacc Interface

. The indentation problem in QCCAM 2 can succinctly be described as follows:
The END token, representing an exdent or end of scope, is not explicttly given in
the program source stream. Only when several conditions are met, including the
recognition of some other token, can the END token be inferred. Furthermore, more
than one END token may may be inferred at the same time. Since lez automatically
scans the program source and returns the next token found, any END {okens which
may be inferred will not be returned to the parser.

Our solution to this problem involves redefining the interface between lez and
yace. In the usual case, yaee (having generated the y.tab.c program) contains
function calls to the lez generated function, yylex. When yylex recognizes a token,
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10 BRIAN J. ’AURIOIL, AND VIRENDRA C. BHAVSAR

the corresponding token number is returned via the return statement to the parser.
In our case, we need to insert appropriate numbers of the END token whenever the
exdent is detected.

We use a foken buffer as a queue and enqueue the required number of END
tokens in this buffer. We place the currently recognized token as the last in the
buffer. For consistency, we place all tokens recognized by the lez scanner into this
token buffer. Normally, the buffer length will be just one (corresponding to the
current token}, however, the buffer will fill up whenever exdents are identified. We
consequently, ignore the return value from yylex.

An iniermediate procedure must now be defined beiween the parser and the
lexical analyzer which will intercept calls $o yylex (see Figure 8). The parser issues
a request for a token to the intermediate procedure. The intermediate procedure
checks the token buffer and returns the next token to the parser whenever the token
buffer is non-empty. If the buffer is empty, then a call to the lexical analyzer yylex
is made. The lexical analyzer places one or more tokens into the buffer and control
returns to the intermediate procedure. At this point, the first token in the buffer is
returned to the parser. Note that whenever the lexical analyzer recognizes a single
token (normal operation) that token is returned (via buffer write and read} to the
parser. Only when an exdent is detected, does the buffer fill up. In this case, the
parser will retrieve the END tokens appropriately as if they were present in the
input source file directly,

Two additional changes are required to the generated code from lex and yace,
Firstly, the generated code for the parser y.tab.c contains two calls to the lexical
analyzer yylex. These calls must be changed so that the intermediate procedure is
called instead. Secondly, when the end of file condition is detected by the lexical
analyzer, the zero token is returned to the parser. The return of this special end
of file token occurs within the generated code from lez. Conseguently, this return
statement must be changed so as to place the zero token into the token buffer.

We use the unix utilities sed and awk to make these changes. Since the changes
need to be made after (but before the final application is linked) lez and yacc
generates the lexical analyzer and parser, we include these additional utilities within
our makefile program.

3 Results

In this section we compare the predicted values of communication times with those
measured for two typical types of communication found in OCCAM 2 programs.

In the first example we consider communication as consisting of one or more
bytes as follows

PROTCCCL 3byte IS BYTE;BYTE:BYTE:

which is a message of 3 bytes. Each packet (consisting of exactly one byte) is
encoded by separate transputer outbyte instructions. Figure 9 compares the
predictions for messages consisting from one to fifteen bytes for unoptimized internal
communication. The top line corresponds to the prediction using Eq. (1) while the
middle line corresponds to the prediction using Eq. (2). Note that the ‘attenuation’
model, Eq. (2), compares favorably with the actual measured {imes (bottom line).
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COMMAN — A COMMUNICATION ANALYZER FOR OCCAM 2 11

Lastly, all time lines are linear as is expected. Thus the number of instructions
directly correspond with the number of bytes in the message.

The second example consiste of predicting more complex sequential and variant
protocols. We have chosen five protocols given in Figure 4. Figures 10 and 11
compare the measured times (first column in each groups) with predictions using
Eq. (1) and (2) for unoptimized and optimized internal communication respectively.
Figures 12 and 13 present similar details for unoptimized and optimized exfernal
communication, respectively.

With respect to unoptimized internal communication (see Figure 10), COM-
MAN correctly predicts the communication times for the first four protocols to
within 2% error using Eq. (1). However, there is an 8% error with respect to pro-
tocol 5. By employing the ‘attenuation’ factor, Eq. (2}, the error for this protocol
drops to less then 1%. COMMAN behaves similarly for the optimized case '(Fig-
ure 11}, although the errors range between 5%- 20% for predictions using Eq (1)
and 1.5%- 15% for predictions using Eq (2).

The predictions, however, are not as good for the external communication trans-
missions. Predictions using Eq (1) have errors ranging between 13%-20% for the
unoptimized case while errors range between 15%-20% for the optimized case. Ob-
viously, predictions using Eq (2) fair worse. )

Our prediction meodels rely on the linear properties of communication, that
is, the transmission times increases linearly with the amount of communication
(in bytes or words) that is involved. We have empirically derived the slope and
intercept from measurements which involve small and compaet code. By contrast,
our comparisons in Figures 9 through 13 involve somewhat larger code segments
(due to the more complex protocols involved). There is consequently, additional
overhead involved with respect to the global communication between two points.
We have investigated this further by concentrating on protocol ‘pl’. The significant
or dominant message packet is the array of REAL64 . When we measure the time
for this component only using the program segment used for our comparisons, we
find a 19.50% error. However, when measured using the program segment used to
derive our constants, we arrive at virtually the same time as that predicted. This is
due to the fact that we derive the constants from repeated measurements of arrays
-of this form — actually we have used arrays of REAL32 for our measurements, but
the transputer encodes arrays of REAL64 in the same way using greater message
lengths. We believe that the excess time in processing these messages then, is due
to the larger code and variable space in use. Other experiments not relating to this
paper also confirm this viewpoint.

4 Conclusion

We have presented an OCCAM 2 protocol communication analyzer, named COM-
MAN, for transputers. COMMAN reads, as input, a source file containing valid
PROTOCOL statements and compuses the expected times for data communications
which use that PROTOCCL statement. The syntax of the PROTOCOL statement
is defined by an augmented OCCAM 2 grammar. We have showed that our parser
reasonably predicts the transputer communication times for various communication
meodes involving both sequential and variant protocels. Moreover, the prediction is
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12 BRIAN J. 'AURIOL AND VIRENDRA C. BHAVSAR

more accurate for transmissions involving a small and compact code. However, our
model is alsc useful for analyzing any typical QOCCAM 2 code.

Our analysis of transputer communications indicate that the communication
times can be predicted by a linear model. Both the type of communication (internal
or external} and whether the compiler has optimized such communication impact
upon the constants used in the model; the behavior remains invariant. We have
derived constants specific for the T800 transputer on a BO08 link board.

The language recognized by COMMAN includes all grammar elements, with one
exception, of the standard OCCAM 2 PROTOCOL statement. However, the counted
array datatype as specified by OCCAM 2 cannot be accommeodated by COMMAN.
Instead, the grammar for this datatype has been augmented to include a specified
integer representing the expected length of that array. Changes to an OQCCAM 2
source programn may therefore be reqguired before being analyzed by COMMAN.

We have successfully applied a version of COMMAN as discussed in this paper
to the problem of evaluating the communication costs in OCCAM 2 implementa-
tion of systolic arrays. We use the results from our analyzing parser (in combination
with additional analysis criteria) to predict the total execution time for these im-
plementations.
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Figure 1. Overview of COMMAN.
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Table 1. Transputer communication linear regression model.
Commurication Type Regression Qutput
Mode | Optimized slope (m) | constant (b) | R squared
Internal No 3.2466 x 107 | 6.5333 x 10~F 99999
Yes 3.2463 x 10~ | 3.0590 x 10~° 99999
External No 2.2501 x 107° | 4.6584 x 107° .99999
Yes 2.2501 x 107° | 2.5862x 107° .59999
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PROTCCOL pl IS INT16; [24]REALG64;BYTE; [24]BOOL; INT32:
PROTOCOL p2 IS INT16;INT16(24):: []REAL64;BYTE; INT32(24):: []1BOOL;INT32:
PROTOCOL p3 IS INT16;INT16(100});::[]REAL64;BYTE; INT32{100) :: [1BOOL; INT32:
PROTOCOL p4
CASE
tagl;INT16;INT16(50) :: []REALG4;BYTE; INT232{50):: [IBOOL; INP32
tag2

PROTOQOCCL pb
CARE
tagl;BYTE; [17] BYTE; REAL64 ;REAL32 ; BYTE{25) : : [JREAL32; [10] INT16; ROOL
tag2

Figure 4. OCCAM 2 protocols used in our experiments.
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/* regular definitions +/

digit
letter
integer
id

[0-9]

[A-Fa-z]

fdigit}*

fletter} {{letter} | {digit}{\.)*

/* Token patterns and actiong */
%%

PROTOCOL
CASE
BYTE
BOOL
INT
INT16
INT32
THTE4
REAT3Z2
REALG4
Is

n,n

" ; Al
"Ln

win
wyw

wgn

nym

%1{

{return_proc{"PROTOCOL ", PROTOCOL) ;1

{return_proc{"CASE ", CASE) ;1
{return_proc{"EYTE *, BYTE) ; }
{return_proc{"BOOL ", BOOL) 7}
{rekurn_proc{"INT ", INT} ;)

{return prog("INTls *, INT1&};}
{return proc ("INT32 ", INT32};]
{return_proc ("INT&4 ¥, INTSE4):}

{return_proc ("REAL3Z ", REAL32)};}
ireturn proc ("REALS4 ", REALG4};}

{return proc{*Ig ", I8);}

ireturn proc{"; ", SEMICOLON) ; }
freturn_proc{":: ", COCOLOM} ;
freturn proc{': " COLON) ; }
freturn_proc{"[ OPEN_SQBRACKET) ; 1

freturn_proc{"{ " OPEN_RDBRACKET) ;1

’
freturn_proc{"] *, CLOSE_SQBRACKET] 1}
freturn_proc{"} *, CLOSE_RDBRACKET) ;1

/* identifier */

%}
{ig}

% {
/* integer */
%

finteger]

%1
/* comments */
%}

no_w

%{
/% and of line
%}

" \nn

%

{symlook (yytext): /*symprint{-1);*%/
return proci{"id ", ID);

fyylval=atol {yytext); return proc(“integer", INTEGER):}

{out { "COMMENT\n") ;
while { (¢ = getchar(}) I= *\n};
}

*/
£

return_proo{"EDL\n", ECL};
1

/* indenk/exdent tracking =*/

%}

%1

{if {indent} §
current_level++;

/* ignore all other patterns */
%}

%%

i}

Figure 5. ler specification file.
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Ltoken
%token
Btoken
%token

%Stoken
Stoken
%Stoken

BYTE BOOL 1o EOQL PROTOCOL

INT INT16 INT32 INT64 REAL REAL32
BEG END Is CASE

SEMICOLON COLON COCOLON

OPEN_SQBRACKET CLOSE_SOBRACKET INTEGER
CPEN RDBRACKET CLOSE RDBRACKET
ERR

Figure 6. Tokens recognized by the parser.
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18 BRIAN J. AURIOL AND VIRENDRA C. BHAVSAR

program : zep definition
| definition
definition : BEROTOCOL 1D IS simpleproto COLON sep {initl();}

i definition PROTOCOL ID IS simpleproto COLON sep {initl();:}
| PROTOCOL ID sep BEG CASE sep BEG taglist END END COLON
sep. {init2{);}
| definition PROTOCOL ID sep BEG CASE sep BEG taglist END END
COLON sep {init2();}

sep : EOL
| sep EOL
simpleproto : type

| primtype OPEN_RDBRACKET INTEGER CLOSE_RDBRACKET COCOLON
OPEN_SQBRACKET CLOSE SQBRACKET primtvpe2 :
| sinpleproto SEMICOLON type - .
| sinpleproto SEMICOLON primtype OPEN_RDERACKET INTEGER
CLOSE_RDBRACKET COCOLON QPEN_SOQBRACKET
CLOSE_SQBRACKET primtype2

taglist H ID sep
| ID SEMICOLON simpleproto sep
| taglist ID =sep
| taglist ID SEMICCOLON simpleproto sep
type : primtype
| arrtype
primtype : BOOL {xmit_time{0.25};1
| BYTE {xmit_time{0.25};}
| INT {zmit_time{1.00};}
| INT16 {xwit_time{0.50};}
| INT32 {xmit_time{l.00};}
| INT&4 {zxmit_time(2.,00};}
| REAL32 {xmit_time{1.00);}
i REAL64 {xmit time{2.00);}
arrtype : CPEN_SQBRACKET INTEGER CLOSE SQBRACKET primtype2
primtype2 : BOOL {xmit_time{0.25*yylval);}
BYTE {xmit_time (0.25*yylval);}
INT {xmit_time(1.00*yylval);}

INT16 {xmit_time(0.50*yylvall;}
INT32 {xmit_time (1.00*yylval);l
INT64 {xmit_time{(2.00%yylval);}
REAL32 {xmit_time{1.00*yylval);}
REAL64 {xmit_time{2.00*yylval);}

Figure 7. yacc grammar specification file,
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get token
(buffer empty ).

ntermediate Lexical
procedure Analyzer

Request for
a token

parser

~ tokens in
bufier
Figure 8. Interface between the parser and the lexical analyzer.

token
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Figure 9. Unoptimized internal communication for messages consisting of bytes.
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Figure 10. Unoptimized internal communication for various protocols
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Figure 11. Optimized internal communication for various protocols
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Time {sac}

Figure 12,
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Figure 13. Optimized external communication for verious protocols

8/4/1994 19:00 PAGE PROOFS journal3




