i
i
|
|

CLAUSE TREES and FACTOR PATHS

by
J.D. Horton and Bruce Spencer

TR94-088 October 1994

Faculty of Computer Science
University of New Brunswick
P.O. Box 4400
Fredericton, N.B.
Canada E3B 5A3

Phone: (5086) 453-4566
Fax: (5086) 453-3566

Clause Trees and Factor Pa'ths

J. D. Horton and Bruce Spencer
Faculty of Computer Science
University of New Brunswick

P.O. Box 4400
Fredericton, New Brunswick, Canada
E3B 5A3
email : jdh@unb.ca and bspencer@unb.ca
17 October, 1994

Abstract

The concept of a clause is generalized to that of a clause tree which
shows how the clause can be proved from a set of input clauses.
Procedures are provided to find factorizations and tautologies at build-
time using the internal structure of the tree. Model Elimination and SLI
are specializations of this technique. Other resolution-based proof
procedures, including bottom-up ones, could include these concepts to
make better procedures. One example top-down procedure, ALPOC,
has been implemented as part of Stickel’s PTTP system,

Content areas: automated reasoning, theorem proving, disjunctive logic programming

1 Introduction

Unrestricted resolution[Rob65] allows many proofs. This can lead to inefficiencies in
procedures that build proofs because, although many choices are possible, a great number
of these choices lead to proofs that are essentially identical. This paper offers a new way
to use resolution that eliminates many choices and consequently admits fewer of these
identical proofs. Completeness is preserved. The new definition characterizes when
factor paths and tautology paths can be used to eliminate redundant proofs. More
efficient proof procedures can be developed based on it, and we provide one, ALPOC, in
the Model Elimination (ME)[Lov69] family. We also expect that it can be used in
bottom up proof procedures such as OTTER[McC90].

The main idea is to differentiate build-time from proof-time. Build-time determines the
order that the proof is built by an procedure; proof time determines the order in which a
person would write down the proof so that each step follows from previous steps. These
“times”™ are already different in some procedures. The concepts developed in this paper

explain why the MESON procedure [Lov78], the SLI procedure [LMR92], the ordered
clause restriction [Spe91] and Shostak’s refutation graphs work.

This paper develops the theory using propositional logic, but standard lifting techniques
[C&L73] can be used to apply the results to first-order logic, as is shown by the ALPOC
algorithm,

2 Proof-time Concepts

This paper uses the standard definitions from propositional logic [C&L73] of atoms,
literals, formulas and clauses. It also uses some standard definitions from graph theory
[Har69].

Clause trees, defined in this paper, generalize clauses in that any clause can be
represented by a clause tree. However the clause tree in its internal structure maintains
how this clause can be proved from other clauses. A clause tree consists of a graph-
theoretical tree, together with a specified set of leaves that are said to be open (other
leaves are closed) and a set of paths in the tree that are called factor paths. The nodes of
the tree are of two types: OR nodes and atom nodes. All edges of the tree join an atom
node and an OR node, and are labeled positive or negative. The atom nodes are labeled
by the atoms and are either leaves or of degree two. If an atom node is of degree two, the
two edges are labeled differently, one positive and one negative. An OR node represents
that clause consisting of the disjunction of the labels of the neighbouring atom nodes,
modified by negation if the edge joining the atom node to the clause node is labeled
negative. The tree as a whole represents the disjunction of its open leaves, modified by
negation if the neighbouring edge is negative. Each internal atom node represents a
resolution step in a proof of the clause represented by the clause tree; each factor path
represents the removal of an atom or its negation by the process of factoring in a proof of
the clause represented by the clause tree. More formally, we define clause trees
recursively as follows.

Definition 1 Clause tree

A clause tree is a triple <N, E, F>, the set of nodes, edges and factor paths, vespectively,
defined by Definition 1(a}-(c).

Definition 1(a). Clause tree from an Input Clause

Given a clause C = {aj, ..., ay}, the clause tree T representing C satisfies the following.

» N consists of an OR node and n atom nodes, each labeled by a distinct atom from C.

o E consists of n undirected edges, each of which joins the OR node to one of the atom
nodes and is designated as positive or negative according to whether the atom is
positive or negative in the clause.

o Fis empity.

Definition 1(b). Resolving two Clause trees

An open leaf of a clause tree <N, E, F> is an atom node of degree one in E that is not the
tail of any factor pathin F. Let T} = <Ny, Ej, Fy> and T) = <N, E9, F)> be two
clause trees such that nj is an open leaf of Ty and n) is an open leaf of T». Suppose that
nj is labeled by an atom a and attached by a negative edge {rn}, m}, while n) is labeled
by a, but attached by a positive edge. Let E=Epo Ey- {{n;m}} U {{nym}} where
{no,m} is a negative edge. ThenT=<Nj U Ny— {nj} E Fypu F> isa clause
tree.

Definition 1(c). Adding a Factor Path

Let T = <N, E, F> and let n}] and n) be two open leaves in T that are both labeled by the
same node. If the edges to nj and n) have the same sign then the unique undirected path
Jrom E joining these open leaves is a potential factor path. Construct a path P that
contains for each edge on this potential path, a directed edge so that P connects nj to n.
Then Ty = <N, E, F U {P}>is a clause tree. P is called a factor path. The head of P is
n) and the tail of P is nj. P is said to end on n).

Figure 1 illustrates the parts of Definition 1. Figure 1{a) shows the clause tree for the
clause {a, b, —¢, —d}. Figure 1(b) shows the result of resolution with the clause tree for

{e, —=b, —g, —~d}. Figure 1(c) shows the result of adding a factor path, shown by the thin
line.

(a) |) ©
o aio/d ako/d
c =T \Kb c = ‘b c =
\O"'/e \Kbxo+ e
g’:/ \d g—/ \d

Figure I Example Clause trees

Definition 2. The clause of a clause tree T, written cl(T), is the set of literals formed by
the atoms labeling the open leaves of T, modified by negation if the edge incident on the
open leaf is designated negative.

Definition 3. Given a set P of clauses, a derivation of T, from P is a sequence T}, ..., Ty,
of clause trees such that each T; fori =1, ..., n is the result of one of the following:

« an application of Definition I(a) on a member of P,

o an application of Definition 1(b) on I; and Ty wherej <iand k <1i, or

» an application of Definition I(c) on T; wherej <.

Theorem 1. Let P be a set of clauses and C a clause. P =C if and only if there exists a
clause tree T from P such that cl(T) c C.

Proof Sketch Clause tree operations can perform an ordinary resolution step so they are
complete. Each operation is sound so a sequence of them is also sound.]

Corollary 2. P is an unsatisfiable set of clauses if and only if there is a clause tree T
Jfrom P with no open nodes.

3 Build-time Concepts

Although the definition of a clause tree allows adding a factor path between nodes only
when both are open leaves, after it is used in a resolution step the head of the factor path
will no longer be a leaf. Under some conditions the addition of a factor path with an
internal node for a head can be allowed. All that is necessary to be able to add such a
factor path to a clause tree is to show that some derivation ¢an be constructed, The
sequence of operations in the derivation does not have to be the sequence that an
algorithm uses to build T. Thus two sequences of operations are considered: the proof-
time sequence that satisfies Definition 3, and a sequence of build-time operations that
may include the insertion of a factor path to an internal node. Other operations will be
included as well,

Figure 2 Two Impossible Clause trees

What are the necessary conditions on these more general factor path insertions to ensure
that a proof-time sequence (derivation) exists? First, no two factor paths A and B can end
on each other, for if they do then in proof-time the endpoints of A must both be leaves of
some clause tree, with one endpoint of the B not yet created. And yet at a different time
the endpoints of B must both exist with one endpoint of A not yet created. Since this is

clearly impossible, no such derivation can exist. An-example is shown in the upper part
of Figure 2.

Moreover, if there are two factor paths A and B such that A ends on B then a third factor
path C cannot be added to the clause tree if it happens that B ends on C and C ends on A.
Again the reason why is that no derivation exists that can produce the factor path A
before B, B before C and C before A. This impossible situation is illustrated in the lower
part of Figure 2. Other conceivable situations involving three or more competing factor
paths are also to be avoided.

The following definitions and results show what situations must be avoided and what
paths can be allowed.

Definition 4. For two paths A and B, A < B ("4 precedes B"} if and only if an end of A
occurs on B.

Definition 5. A potential path P in a clause tree T is the unique directed path from a
node nj to a node n) in T where the atoms that label these nodes are identical. If the
first and final edges of P both have the same sign then it is a potential factor path. If the
signs on the first and final edges of P are different, then it is a potential tautology path.

Thus factor paths are also potential factor paths,

Definition 6. A set of potential factor paths and potential tautology paths in a clause tree
is legal if the < velation can be extended to a partial order <*

Theorem 3. Let T = <N, E, F;> be a clause tree and let F) be a set of potential factor
paths in which the tail of each path is a leaf of T. Then F = Fp o Fyis legal if and only
if Tk =<N E, F>is aclause tree.

Proof Since F is legal there is a partial order <* on F. Extend this partial order to a total
order on F. We use this total order to build a derivation of Tf. First, the clause
corresponding to each OR node is made into a clause tree using Definition 1(a). Next,
each path in F is processed according to the total order: Py, P9, ..., Px. For each P; all of
the resolutions corresponding to the internal atom nodes of P; are done using Definition
1(b), except that any resolution already done while processing Py...., Pi.1 is not done
again. At this time, the head of P; will be a leaf of the clause tree since only the
resolutions corresponding to internal nodes of Py,..., P; have been performed and by the
ordering, the head of P; is not among them. The tail of P; is also a leaf by assumption.
Thus P; can be added as a factor path of the clause tree by Definition 1(c). After all paths
in F have been processed, all of the other atom nodes can be resolved to form TF.

Conversely if Ty is a clause tree, it has a derivation. This derivation can easily be
modified to become a derivation of T by omitting the steps that add the factor paths in Fy
to the set of factor paths. Order the factor paths of F according to the order that they are

5

inserted into F. When a path is inserted, the head of the path must be a leaf, so that it
cannot be on another path that comes before it in the ordering. Hence the relation < is a
subrelation of this total order, and so < * is a partial order.(J :

When a factor path is created, does it matter which direction the path is orienied? Ina
fundamental sense it does not, as shown by the next lemma.

Lemma 4. Path Reversal

Let T = (N, E, F) be a clause tree, and let A be a factor path in F. Let A" be the path with
the same edge set as A, but oriented in the opposite direction. Then there is a clause tree
T'=(N,E', F)suchthat N=N', ci(T) = cl(T"), and A" is in F",

Proof Let A be a factor path in F with the atom a at both ends. Let the set of factor paths
that contain the head of P be {Bj, ..., By}. Let the set of paths that end on A be {Cq, ...,
Cp}. Note that for all i and j, Cj <™ Bj , since A < Bj and Cj < A.

Modify the clause tree in the following way. The whole subtree that is joined to the head
of A is removed and reattached at the tail of A. Thus the set of nodes remains the same
but one edge is changed between E and E'. Also each B must be replaced in F' by
another path B' . The edge set of By’ is the symmetric difference of the edge sets of B and
A, The head and tail of B remain the head and tail of B';. All other paths of F remain in
F'. The top of Figure 3 shows A and Bj; the bottom shows AT and B';.

Clearly (N, E',) is a clause tree, and F' consists of a set of potential factor paths. The
relation < is the same on F" as on F except between the Bj and the Cj. However since G
< A <Bj and Cj < AT < BY, the relation <* does not change between F and F'. Thus F'
must be legal as F is legal, and T' is a clause tree. The proof is completed by noting that
cl(T) = cI(T"), since the open leaves of T are the open leaves of T, except possibly for the
head of A (if it is a leaf), in which case it would be replaced by the tail of A which has the
same literal.[J

Figure 3 Before and after the Path Reversal

The fundamental purpose of a clause tree T is to show that cl(T) can be derived from the
clauses corresponding to the OR-nodes of the tree. Lemma 4 shows that the same
derivations can be found regardless of the direction chosen to create a factor path. Thus

6

an algorithm can specify which way a factor path is oriented, without affecting
completeness.

Definition 7. A clause tree T = <N, E, F> is admissible if there is no potential tautology
path P such that F o {P}is legal.

Definition 8. A clause tree T = <N, E, F> is minimal if there is no potential factor path
P such that F O {P} is legal.

Definition 9. Let Ty and T) be clause trees. Ty subsumes Ty if ci(T1) < cl(Ty).

Theorem 5. Let Ty = <N, E, F> be a clause tree. There exists a minimal admissible
clause tree T that subsumes T}.

Proof. Let P be a potential factor path whose tail » is not a leaf, and that would form a
legal set of paths if added to F. Suppose that P travels left to right. Reverse all of the
factor paths that start to the right of # and end to the left of . Now the subtree to the left
of n can be removed, together with all factor paths whose tails have been removed.

Let O be a potential tautology path from nj to n), that would form a legal set of paths if
added to F. Suppose Q travels left to right. Reverse all paths that start to the right of 1)
and go through 7 but not through 77, Also reverse all paths that start to the left of ny
and go through »n; but not through »». Now remove and all subtrees other than the two
subtrees attached to #; and »n), and then attach these two subtrees together. Again
remove any factor path that lost a tail. The heads of the remaining paths are not affected
so the partial order is still legal.

These two operations are repeated until no such potential paths remain. As these
operations can remove open leaves, but can never add them, the resulting clause tree T'is
minimal, admissible and subsumes 7. O

We now have the following set of operations that can be used to construct clause trees:

+ Input clause as a clause tree (Definition 1(a));

¢ Resolution (Definition 1(b));

» Factor path insertion from leaf to leaf (Definition 1(c¢));

« Factor path insertion from leaf to internal node (Theorem 3);

« DPath reversal (Proof of Lemma 4);

 Factor path insertion from internal node to internal node (proof of Theorem 5);

+ Tautology path removal (proof of Theorem 5);

Sequences of the above operations can only generate clause frees whose clause is entailed
by the input clauses. These sequences can generate a subsuming clause for every logical
consequence of the input clauses.

An algorithm to build clause trees can use its own criteria for the choice of operations that
should be performed, and where to perform them, as long as the resulting set of factor

paths is legal. The algorithm in the next seciion uses this freedom to decrease the search
space needed by Model Elimination theorem provers.

4 A Clause Tree Algorithm

The Model Elimination [Lov78] method of theorem proving applied to propositional
logic can be described as a tree-building procedure with the addition of the ancestor
resolution rule. It also may be described as a procedure for building clause trees with the
following specializations.
1. It builds a clause tree with one node specified as the root.

2. An open leaf node is selected as the current leaf, which means it is the site of the next
' resolution step.
3. One of the participants in a resolution step will be the clause tree of an input clause.
4. Tt searches for factor paths and tautology paths only between the current leaf node and

the root,

On the basis of the fourth of these restrictions, factor paths can never form an illegal set
because all factor paths point to the root. The paths can be ordered by how close they are
to the root. '

Another procedure in the ME family, SLI [LMR92] can be described in terms of clause
trees. The procedure to build SLI clause trees adheres to the first three restrictions above.
The main distinction between ME and SLI is that factor paths and tautology paths are
allowed from the current leaf either to an ancestor or an ancestor’s sibling that is still an
open leaf. Thus SLI can detect more opportunities for factoring, and can avoid more
tautologies than ME can,

To make the discussion simpler, suppose that the SLI procedure uses a left-to-right
ordering of literals in the input clauses to determine which open leaf will be the current
leaf. Then a proof-time ordering can be imposed on the heads of factor paths: those
deeper in the tree are earlier in proof-time, and among those that end at a given level, the
ones on the left are earlier. Thus it is immediate that SLI clause trees are legal.

Both ME and SLI can be restricted by the ordered clause restriction [Spe91] which
imposes a total order on the set of input clauses and allows factor paths to ancestors only
if the OR node adjacent to the tail is larger in the total order than the OR node adjacent to
the head. Completeness is preserved since by path reversal, Lemma 4, the factor path can
be oriented in either direction. The ordered clause restriction imposes a priori a direction
based on the total order.

A new procedure has been implemented that also adheres to the first three specializations
above, but generalizes ME and SLI in that it searches most of the current clause tree for

factor paths and potential tautology paths. In this algorithm, the current leaf is selected in
a depth-first manner and within a clause the ordering is left-to-right. Therefore the clause

tree is composed of three distinct parts: the ancestors of the current open leaf, the
descendants of the left siblings of these ancestors, none of which are open leaves, and the
right siblings of the ancestors, all of which are open leaves. (See Figure 4.) Factor paths
are allowed (and tautology paths can be avoided) from the current leaf either to an
ancestor or to a descendant of a left sibling of an ancestor. Those that end at an ancestor
are called ancestor paths, and the others are called left paths. Because this procedure
creates Ancestor and Left Paths and uses the Ordered Clause restriction, it is called
ALPOC.

a;

az \
Proved Open
Goals

Leaves .

St

Lo

Current Goal and ancestors

Figure 4 Left, Current and Right portions of the Goal tree

Unlike ME and SLI, the factor paths created by ALPOC will not form a legal set by virtue
of the search procedure alone. Any ancestor path can be used. But a potential left path
on its way down the tree may run over the head of some ancestor path running up. If so,
then it cannot end anywhere on this ancestor path. Nor can it end on any other path that
(transitively) precedes this ancestor path. If a path from a node u to a node v can be
added to the set of factor paths and the set of paths remains legal, we say v is visible from
1, otherwise v is invisible from u.’

For example, consider the partial tree shown in Figure 5 as built by ALPOC. The signs
on the edges are omitted. When the current goal is a right sibling of e (or any descendant
thereof), left paths to any left descendants of €’s parent ¢ are possible. Later when the
current goal is one level higher, at a right sibling of ¢, no nodes on the ancestor path C are
visible and neither are those on the left path D since D ends on C. When the current leaf
is at the next higher level, most of the left nodes are invisible.

a

/< left paths may goto b and k

b ancestor paths to a

left paths may gotoc, f h, j and k
ancestor paths to a and b

.. leftpaths mavgotod, e f, g h jandk
ancestor paths to a, b and ¢

Figure 5 A partial clause tree and potential factor paths

Given that the set of paths forms a legal set, the clause tree represents a sound deduction.
If the input set of clauses is satisfiable but becomes unsatisfiable with the negation of the
theorem, then a clause tree exists that proves the theorem and the ALPOC procedure will
find it.

Theorem 6. The ALPOC procedure is sound and refutationally complete.
Proof omitted.

Although the extra paths in ALPOC add some extra work, this work can be implemented
so that it increases the overall work by only a modest factor, (See Section 6.) Consider
that the current goal p has just been proved. Let D, be the maximum depth of the head of
a factor path preceded by some path through p. For example if there is only one ancestor
path through p and it stops at level L in the tree then D, = L. (See Figure 6.) In future
operations, if a left path is drawn to p, it must not rise in the tree as high as D,

Otherwise it will stop on a path that it precedes, which is illegal.

10

Level D, Illegal Left Path
P
Factor Path
to an |
ancestor
Figure 6 Illustration of D,

The ALPOC procedure maintains a list of nodes that are visible from the current node,
and thus are candidates for heads of left factor paths. This visible list is modified when
the current goal changes so that it is always up to date. The list is organized by levels so
that when the current goal p is completed, it is entered to the visible list at level Dy,
When the level of the current goal changes from L to L-1 (i.e. a rightmost sibling was the
current goal) then all the goals in the visible list at level L are removed. These two
operations of inserting and removing goal from the visible list are relatively inexpensive.

The ALPOC algorithm has been implemented by adding it to Stickel’s PTTP procedure
[Sti88]. PTTP operates by converting each contrapositive form of each input clause to a
Prolog clause and adding an argument to each goal in this clause to contain the ancestors
in the goal tree. Also, for each distinct predicate and each negation, two clauses are
added. One clause halts search and initiates backtracking if the current goal is identical to
one of its ancestors. This corresponds to tautology ancestor paths. The other clause
allows the current goal to succeed if a unifiable negated ancestor exists. This is an
ancestor factor path. A special case of this occurs when that negated ancestor is identical
to the current goal. In that case further searching to solve this goal is eliminated.

Three additions to PTTP are necessary to achieve ALPOC: D, is calculated for each goal
that succeeds, the visible list is maintained, and left paths are drawn. Two additional
arguments are added to each goal to construct the list of levels (integers) of the heads of
ancestor paths that pass through the goal. Two additional arguments are added to
construct the visible list. Finally one more argument contains the goal’s level in the proof
tree. (A pair of arguments is needed for D;, and for the visible list since these are Prolog
accumulators.) Left paths are drawn by adding clauses to the procedure for each goal,
similar to ancestor paths. If a member of the visible list is identical to the goal, then one
clause halts searching and initiates backtracking, because a legal left tautology path
exists. If a negated member of the visible list is unifiable with the goal then another
clanse uses the legal left factor path to it. A special case occurs here also; if the negated
member of the visible list is identical to the goal then further searching is disabled.

11

S An Example

The first non-propositional example that we ran was example 8 from [C&L73], which
also appeared as an example in [Sti88] and is NUM015-1 in the TPTP problem set
[SSY93]. The theorem to be proved is that any natural number is divisible by a prime.
The input formulae are:

I divides(X,X).

2 not_divides(X,Y);not_divides(Y,Z);divides(X,Z).

3 prime(X);divides{divisor(X),X).

4 prime(X);less(1,divisor(X)}).

5 prime(X});less(divisor(X),X).

6 not_less(1,X);not_less(X,a);prime(factor_of(X)).

7 not_less(1,X);not_less(X,a);divides(factor_of{X),X).
8 less(l,a).

9 not_prime(X);not_divides(X,a).

10 query:-prime(X),divides(X,a)

The first formula means that a number X divides itself; the second is the transitivity of
divides; 3-5 define “X is prime”; 6 and 7 express an induction hypothesis, that the
theorem is true for numbers less than a; 8 says that 1 is less than a; 9 is the negation of the
theorem; and 10 is the query.

This problem was run using both PTTP by iiself, and with ALPOC included. PTTP
found a proof using 10 clauses, while ALPOC found a proof using only 9 clauses. The
proofs are given below from computer output.

ALPOC Proof:
Goal# WEL# WLf Instance

[0] 10 query :- [1],[12].

(1] 3 prime(a} :- [2].

{2] 2 not_divides (divisori{a),a) :- [3],(8].

3] 7 divides (factor cof (divisori{a)) . diviscr{a)) :- [41,[6].
[4] 4 less({l,divigor{al) :- [5].

[6] red net_prime{a).

[6] 5 less {(divisor{a),a} - [7].

[7] red not_prime{a).

is] 9 not_divides {factor_of{diviscr{al},a} :- [9].
[9] 6 prime (factor_of (diviser{a))) - [10],[11].
[101 1fp less(l,divisori{a)).

[11] 1fp lezg{divisox{a),a).

[12] 1 divides(a,a).

12

PTTP Proof:
Goal# WEEfg WEL Instance

[C] 10 query :- [11,[13].

[1] 4 prime{a) :- [2].

[2] & not_less{l,divisor{a)) :- [3],I[5].

[3] 5 less{divisor{a),a} :- [4].

[4] red not_prime{a) .

[5] 9 not_prime (factor_of (divisorf{aj}) :- [&].

[6] 2 divides (factor_of (divisor(a}),a} :- [7],[11].
[7] 7 divides (factor_of (divisor{a)},divisor{a)) :-[8],[9].
[8] red legs{l,divigor(al}.

(9] 5 less{divisor{a),a) :- [10].

[10] red not_primefa).

[11] 3 divides(divisor{a),a) :- [12].

[12) red not_prime(a).

[13] 1 divides{a,a).

The PTTP proof uses four ancestor factor paths (red); the ALPOC proof uses two
ancestor factor paths and two left factor paths (Ifp). The ALPOC proof can be extended
with two more clauses to form an ME type proof with only ancestor factor paths, which is
then longer than the proof found by PTTP.

PTTP uses iterative deepening in its search methodology. Thus because the ALPOC proof
is smaller than the PTTP proof, it is found at an earlier level and therefore found faster
than the PTTP proof. But there is another advantage for ALPOC. ALPOC does fewer
inferences at most levels, as shown in the table below. The first few levels are the same,
then ALPOC starts to do fewer inferences, and the number of inferences at each search
level grows more slowly for ALPOC than for PTTP. The end result for this problem was
that ALPOC did fewer than a fourth of the inferences (886 to 3830), and took just more
than a third of the time of PTTP (0.216 to 0.617 seconds). On the other hand, ALPOC
“took about 50% more time per inference than PTTP.

13

Search Number of Inferences
Level PTTP ALPOC
cum | diff | cum | diff
1 3 3 3 3
2 9 6 9 6
3 27 18 27 18
4 57 30 55 28
5 118 61 103 | 48
6 212 94 171 | 68
7 405 197 | 284 | 113
8 700 | 295 | 430 | 146
9 1317 | 617 | 685 | 255
10 2291 | 874 | 886 | 20t
11 3830 | 1539 - -

6 Empirical Results and Analysis

We have run many problems from the TPTP collection of problems [SSY93], using both
PTTP and ALPOC, using a SUN SPARCStation 2. The theorem provers are written in
Quintus PROLOG 3.1.1. All timings are reported in seconds, but we have ignored
problems that ran in less than 0.2 seconds on both systems. Reading across each row, the
table below reports the time taken by PTTP, by ALPOC, the factor by which PTTP is
faster if it is faster, and the factor by which ALPOC is faster if it is faster. These
problems were chosen from among those reported by Stickel [Sti88] and were in TPTP.

14

Problem Name PTTP Time ALPOC PTTP ALPOC

Time Factor Factor
GRP0OO1-1 11.83 37.62 3.2 -
GRPO08-1 387.50 364.77 - 1.1
GRP009-1 1.48 4.33 29 -
GRPO12-1 0.10 0.27 2.7 -
GRP(12-2 180.52 540.57 3.0 -
GRP013-1 1.22 3.32 2.7 -
GRP029-1 14.62 52.15 3.6 -
GRP030-1 2.05 0.10 - 20.5
GRP036-3 0.13 0.45 3.4 -
GRP037-3 3.05 8.43 2.8 -
MSCG01-1 67.65 103.27 1.5 -
MSC002-1 0.23 0.67 2.9 -
MSC004-1 80.65 0.23 - 346.1
NUMO0O01-1 0.50 0.93 1.9 -
NUMO002-1 0.18 0.35 1.9 -
NUMO15-1 0.62 0.22 - 2.9
NUMO024-1 6.15 12.58 2.0 -
NUMO027-1 10.00 14.55 1.5 -
PUZ030-0 > 9 hours 36.97 - > 876
RNGO01-5 626.02 2016.32 3.2 -
RNG(40-2 29.72 42.45 1.4 -
RNG041-1 1.50 2.37 1.6 -
SET002-1 0.35 0.35 1.0 -
SYNO034-1 0.72 0.03 - 21.7
MSC007-1.005 > 60 hours 0.22 - > 980000
MSC007-1.006 DNR 2.27 - NA
MSC007-1.007 DNR 24.38 - NA

DNR means the problem was not attempted. NA means the factor is not available. A
time reported as > means that the proof was not completed after that much time.

The extra maintenance and searching that ALPOC imposes do add to the runtime, by a
factor of less than four. But ALPOC can also decrease the number of goals in the search
tree. When this happens ALPOC runs significantly faster than PTTP. The effect is
magnified by the iterative deepening search performed by PTTP, since the search at each
level reproduces the search at all previous levels. By reducing number of levels for some
proofs, ALPOC has improved on PTTP by large factors,

A known problem with the ordered clause restriction added to PTTP is that it may
increase the number of levels that need to be searched. However ALPOC will never
increase the number of levels over PTTP, thus solving the problem..

15

7 Related and Future Work

ALPOC is related to Shostak’s work [Sho76]. The visible lists created by ALPOC
correspond to C literals. One significant difference is that ALPOC uses the ordered
clause restriction. Another is that ALPOC has been implemented using Prolog
technology to achieve a high speed theorem prover.

Left paths allow a type of “lemmaizing” for non-Horn problems, similar to the proposal
of Astrachan and Stickel [Ast92], except that with ALPOC the lemmas need not be single
literals. As they report, lemmas can lead to a significant improvement in run-time.

The work here relates to bottom-up theorem provers, such as OTTER[McC90], as well.
The clause tree that results from a resolution step may have a potential factor path from
one or several of its open leaves. Thus the clause of the result may have fewer literals
than the clause that would result from ordinary resolution on the clauses of its parent
clause tree. Similarly there may be potential paths in a clause tree which make the clause
tree either not minimal or not admissible. Therefore it can be reduced (Theorem 5). Thus
the existence of a subsuming clause may be detected without performing a subsumption
check as in OTTER. This seems relevant to the redundancy problem [Wos88]. One
drawback to using clause trees may be that clause trees are bigger than their
corresponding clauses, and so storing many of them may not be practical. Other
operations are possible on clause trees that remove nodes and can be used to reduce the
necessary storage.

A recent direction in theorem-proving work is to combine the high speed inference rates
of top-down systems, such as METEOR[Ast91] and SETHEO[L.SBB90], with the
flexible control strategy, redundancy control and clause retention of bottom-up systems.
For example UR-PTTP[Sti%1] uses theory resolution to apply Prolog technology to the
Unit Resulting rule of inference. The clause tree formalism provides a basis for a new
family of proof procedures that combines ideas from both approaches.

8 References

[Ast91] O. L. Astrachan and D. W. Loveland, METEORs: High Performance Theorem
Provers using Model Elimination, In Automated Reasoning Essays in Honor of Woody
Bledsoe, Robert S. Boyer (ed.) 31-59, 1991.

[Ast92] O. L. Astrachan and M. Stickel, Caching and Lemmaizing in Model Elimination
Theorem Provers. In D. Kapur, ed., CADE-11, pp 224-238, 1992.

[C&L73] C.-L. Chang and R.C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, New York and London, 1973.

[Har69] F. Harary, Graph Theory. Addison-Wesley, Reading, Mass., 1969.

16

[LSBB90] R. Letz, J. Schumann, S. Bayerl and W. Bibel, SETHEO- A High Performance
Theorem Prover for First-Order Logic. Journal of Automated Reasoning 8(2), 1990.

[LMR92] J. Lobo, J. Minker and A. Rajasekar. Foundations of Disjunctive Logic
Programming. MIT Press, 1992.

[Lov69] D. Loveland, Theorem-Provers Combining Model-Elimination and Resolution.
In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pp 7386, University
Press, Edinburgh, 1969.

[Lov78] D. W. Loveland, Automated Theorem Proving: A Logical Basis, North-Holland,
Amsterdam, the Netherlands, 1978.

[M&R90] J. Minker and A. Rajasekar. A Fixpoint Semantics for Disjunctive Logic
Programs. Journal of Logic Programming, 9:45-74, 1990.

[McC90] W. W. McCune, OTTER 2.0 Users Guide, Tecnical Report ANL-90/9,
Mathematics and Computer Science Division, Argonne National Laboratories, Argonne,
1L, 1990,

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle
Journal of the ACM, 12(1):23-41, 1965.

[Sho76] R. E. Shostak, Refutation Graphs, Artificial Intelligence, 7(1), 51-64, 1976.

[Spe91] B. Spencer, Linear Resolution with Ordered Clauses. In J. Lobo, D. Loveland
and A, Rajasekar, editors, Proceedings ILPS Workshop — Disjunctive Logic
Programming, 1991.

[Sti88] M. Stickel, A PROLOG Technology Theorem Prover: Implementation by an
Extended PROLOG compiler. Journal of Automated Reasoning, 1(4):353-380, 1988.

[Sti91] M. Stickel, PTTP and Linked Inference. In Automated Reasoning: Essays in
Honor of Woody Bledsoe, Robert S. Boyer (ed.), Kluwer Academic Publishers,
Dordrecht, 1991.

[SSY93] G. Sutcliffe,C. Sottner, and T. Yemenis, TPTP Thousands of Problems for
Theorem Provers Problem Library Release v1.0.0, Internet newsgroup comp.lang. prolog,
Nov 13, 1993.

[Wos88] L. Wos, Automated Theorem Proving: 33 Basic Research Problems, Prentice-
Hall, Englewood Cliffs, New Jersey, 1988.

17

